张世鹏,
谢攀,
刘长仲,
甘肃农业大学植物保护学院/甘肃省农作物病虫害生物防治工程实验室 兰州 730070
基金项目: 甘肃农业大学科技创新基金-学科建设专项GAU-XKJS-151
甘肃省科技计划项目18JR3RA162
详细信息
作者简介:钱秀娟, 主要研究方向为害虫生物防治。E-mail:qianxj@gsau.edu.cn
通讯作者:刘长仲, 主要研究方向为昆虫生态及害虫治理。E-mail:liuchzh@gsau.edu.cn
中图分类号:S476+15计量
文章访问数:3004
HTML全文浏览量:5
PDF下载量:2775
被引次数:0
出版历程
收稿日期:2018-06-16
录用日期:2018-10-09
刊出日期:2019-06-01
Effects of UV-B radiation on entomopathogenic nematode survival and pathogenicity
QIAN Xiujuan,ZHANG Shipeng,
XIE Pan,
LIU Changzhong,
College of Plant Protection of Gansu Agriculture University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070, China
Funds: the Science and Technology Innovation Fund of Gansu Agricultural UniversityGAU-XKJS-151
The Science and Technology Fund of Gansu Province18JR3RA162
More Information
Corresponding author:LIU Changzhong, E-mail:liuchzh@gsau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探明紫外辐射对昆虫病原线虫(entomopathogenic nematodes,EPN)的作用,以甘肃省分离得到的昆虫病原线虫为研究材料,用室内模拟生测法,测定了经20 W、40 W紫外线辐射后,斯氏属(Steinernema feltiae,S.kraussei)和异小杆属(Heterorhabditis brevicaudis,H.megidis)4种昆虫病原线虫9个品系的存活率,并以大蜡螟(Galleria mellonella)为供试昆虫,采用改良的ONE ON ONE法,测定了其对大蜡螟的致病力。结果表明:经UV-B辐射后供试的9个昆虫病原线虫品系存活率未发生显著变化(P>0.05)。20 W紫外辐射30 min后,S.feltiae 0639C和0663TD 2品系对大蜡螟的致病力提高,其中S.felitiae 0639C致病力显著升高(P < 0.05),侵染32 h后,寄主昆虫死亡率由13.3%升高到73.3%;S.felitiae 0661YM品系的致病力显著降低(P < 0.05),侵染32 h后,寄主昆虫死亡率率由66.7%降低到0;其余各品系致病力均无显著变化。不同辐射时长和辐射强度对S.felitiae 0639C和0663TD引起寄主昆虫死亡的时间有影响,较对照组而言,经辐射预处理后,2品系线虫引起寄主昆虫死亡的时间均提前,其中S.felitiae 0639C随着辐射强度的增大引起寄主昆虫开始死亡时间提前,而S.felitiae 0663TD随着辐射强度增加引起寄主昆虫开始死亡时间延后。不同紫外辐射时长对S.felitiae 0663TD和S.felitiae 0639C致病力无显著影响,30 min、60 min、90 min、120 min辐射处理之间差异不显著(P>0.05)。研究表明,9个供试昆虫病原线虫品系均对UV-B辐射具有一定的耐受能力;20 W UV-B辐射30 min,能刺激S.felitiae 0663TD和S.felitiae 0639C侵染和致死寄主昆虫;一定的辐射时长内(120 min),辐射时长对S.felitiae 0663TD和S.felitiae 0639C的致病力无影响。
关键词:昆虫病原线虫/
UV-B辐射/
大蜡螟/
存活率/
致病力/
非生物胁迫
Abstract:Entomopathogenic nematodes (EPN) possess many positive attributes as biocontrol agents. They are safe to humans and generally safe to other non-target organisms. To investigate the effects of ultraviolet radiation exposure on EPN, we studied the effects of 20 or 40 W UV-B radiation for different time lengths (30, 60, 90, or 120 min) on the virulence of EPN infective juveniles (IJs) to Galleria mellonella, including 9 strains from 4 species (Steinernema feltiae, S. kraussei, Heterorhabditis brevicaudis, and H. megidis) isolated from Gansu Province. The results showed that there were no differences among the strains in the survival rate of IJs with and without 30 min UV-B irradiation. The virulence of IJs varied among strains after exposure to 20 W ultraviolet radiation for 30 min: virulence of two strains (S. felitiae 0639C and S. feltiae 0663TD) was increased (P < 0.05), that of one strain (S. feltiae 0661YM) decreased (P < 0.05), and that of all others (H. brevicaudis 0641TY, H. megidis 0627M, S. felitiae 0639C, S. felitiae 0619HT, S. kraussei 0663HT, and S. kraussei 0657L) showed no significantly change (P > 0.05). For example, when measured at 32 h after infection, the mortality rate of host insects infected by S. felitiae 0639C increased significantly, from 13.3% to 73.3% (P < 0.05), whereas that of insects infected by S. felitiae 0661YM decreased significantly from 66.7% to zero (P < 0.05). At the same time, treating S. felitiae 0639C and 0663TD with UV affected host mortality 24 h after exposure to IJs:for S. felitiae 0639C, host mortality at 24 h was greater in the 40 W treatment than in either control or the 20 W treatment; for S. felitiae 0663TD, host mortality at 24 h was greater in the 20 W treatment than in either the control or the 40 W treatment. Ultraviolet radiation duration (30 min, 60 min, 90 min, or 120 min exposure) had no effect on the pathogenicity of S. felitiae 0663TD or S. felitiae 0639C (P > 0.05). Therefore, the following conclusions were drawn:All of the 9 tested strains of EPN isolated from Gansu Province had some tolerance to UV-B radiation, and, in particular, S. felitiae 0622L had a high tolerance to ultraviolet radiation. In addition, ultraviolet radiation had a variable impact on the pathogenicity of EPN in Gansu Province, as there were differences among different species and strains. For example, 20 W UV-B radiation for 30 min enhanced the pathogenicity of S. felitiae 0663TD, whereas it significantly weakened that of S. felitiae 0661YM. Ultraviolet radiation stimulated S. felitiae 0663TD and S. felitiae 0639C to infect and kill host insects more quickly, although the radiation intensity that optimized the 24-h mortality rate varied between the two strains. After 48 h, however, there was no significant difference in the pathogenicity of S. felitiae 0663TD and S. felitiae 0639C between the different radiation intensities (20 and 40 W). Additionally, IJs of S. felitiae 0663TD and S. felitiae 0639C both had high pathogenicity after 48-72 h, regardless of the radiation intensity (20 W or 40 W) or the duration of exposure (30, 60, 90, or 120 min). These findings will shed more light on using entomopathogenic nematodes under ultraviolet radiation stress.
Key words:Entomopathogenic nematodes/
Ultraviolet radiation/
Galleria mellonella/
Survival rate/
Pathogenicity/
Abiotic stress
HTML全文
图1UV-B辐射强度与处理时间对处理后不同时间S. felitiae 0639C(a)和0663TD(b)致病力的影响
Figure1.Effects of UV-B radiation time and intensity on pathogenicity of S. felitiae 0639C (a) and 0663TD (b) after different times of treatment
下载: 全尺寸图片幻灯片
表1不同时间不同强度UV-B辐射对不同昆虫病原线虫品系存活率的影响
Table1.Entomopathogenic nematodes infective juveniles (IJs) survival rate at different ultraviolet radiation intensities under different exposure time length
线虫种 Species | 品系 Strain | 处理 Treatment | 存活率 Survival rate (%) | |||||||
0.5 h | 1 h | 1.5 h | 2 h | 3 h | 4 h | 5 h | 6 h | |||
Steinernema feltiae | 0639C | CK | 95.3±2.3aA | 95.3±2.3aA | 95.3±2.3aA | 95.3±2.3aA | 95.3±2.3aA | 95.3±2.3aA | 95.1±2.3aA | 95.3±2.3aA |
20W | 92.3±1.7aA | 90.0±0.5aA | 87.1±2.1aA | 83.3±2.3aA | 56.1±2.1bABC | 30.1±2.8bBC | 12.6±0.5bB | 0bB | ||
40W | 91.7±2.1aA | 77.7±0.4bAB | 63.1±0.4bA | 60.3±1.1bAB | 50.5±2.8bABC | 26.7±2.4bBC | 3.4±0.5bB | 0bB | ||
0661YM | CK | 91.6±3.4aA | 91.6±3.4aA | 91.6±3.4aA | 91.6±3.4aA | 91.6±3.4aA | 91.6±3.4aA | 91.6±3.5aA | 91.6±3.4aA | |
20W | 89.9±4.1aA | 86.4±1.5aA | 84.6±2.1aA | 84.6±3.6aA | 34.5±2.6bBC | 10.2±0.4bC | 3.9±0.2bB | 0bB | ||
40W | 89.1±3.7aA | 81.1±0.9aA | 75.1±3.5bAB | 79.3±4.6bA | 30.1±5.3bBC | 4.9±1.0bC | 0bB | 0bB | ||
0619HT | CK | 98.7±0.5aA | 98.8±0.5aA | 98.8±0.5aA | 98.8±0.5aA | 98.8±0.5aA | 98.8±0.5aA | 98.7±0.5aA | 98.8±0.5aA | |
20W | 96.4±0.7aA | 94.3±3.1aA | 94.1±2.7aA | 92.6±3.1aA | 42.2±1.8bBC | 15.2±5.7bBC | 5.2±0.8bB | 2.7±1.3bB | ||
40W | 95.3±2.5aA | 89.7±3.5aA | 80.6±4.8bA | 78.4±2.1bAB | 31.3±3.5bBC | 8.7±2.5bC | 2.1±0.5bB | 1.7±0.4bB | ||
0622L | CK | 83.6±3.4aA | 83.6±3.4aA | 83.6±3.4aA | 83.6±3.4aA | 83.6±3.4aA | 83.6±3.4aA | 83.5±3.5aA | 83.6±3.4aA | |
20W | 80.3±4.5aA | 69.0±3.7aAB | 67.6±2.5aAB | 59.3±1.3bAB | 39.3±2.3bBC | 12.5±3.6bC | 3.6±1.2bB | 3.2±0.6bB | ||
40W | 69.9±3.6bA | 50.1±4.6bB | 48.4±3.3bB | 40.4±4.2bB | 34.5±1.4bBC | 9.3±3.2bC | 3.4±0.8bB | 1.4±0.3bB | ||
0663TD | CK | 93.3±2.4aA | 93.3±2.4aA | 93.3±2.4aA | 93.3±2.4aA | 93.3±2.4aA | 93.3±2.4aA | 93.3±2.4aA | 93.3±2.4aA | |
20W | 91.8±2.6aA | 81.2±3.5abA | 78.9±4.1abAB | 77.8±2.5abAB | 45.3±3.6bBC | 24.6±3.1bBC | 10.2±2.4bB | 1.2±0.7bB | ||
40W | 91.0±1.3aA | 68.7±2.8bAB | 68.1±4.6bAB | 64.8±3.4bAB | 41.8±2.5bBC | 20.3±4.1bBC | 8.8±1.4bB | 0.9±0.5bB | ||
Steinernema kraussei | 0657L | CK | 99.3±0.2aA | 99.3±0.2aA | 99.3±0.2aA | 99.3±0.2aA | 99.3±0.2aA | 99.3±0.2aA | 99.2±0.2aA | 99.3±0.2aA |
20W | 98.7±0.9aA | 97.4±0.9aA | 94.8±4.1aA | 96.3±2.1aA | 83.3±9.9aA | 23.6±6.3bBC | 5.5±1.2bB | 3.4±4.2bB | ||
40W | 96.2±1.4aA | 92.4±2.3aA | 91.5±2.3aA | 90.8±1.7aA | 74.2±4.1aAB | 17.4±2.3bC | 4.1±0.7bB | 1.7±0.9bB | ||
0663HT | CK | 83.3±6.9aA | 83.3±6.9aA | 83.3±6.9aA | 83.3±6.9aA | 83.3±6.9aA | 83.3±6.9aA | 83.3±6.8aA | 83.3±6.9aA | |
20W | 82.1±5.7aA | 76.3±1.3aAB | 67.7±0.9abAB | 50.4±0.6bB | 31.4±1.3bBC | 9.6±0.4bC | 1.6±0.3bB | 0bB | ||
40W | 81.8±1.3aA | 71.5±2.4bAB | 60.1±2.4bAB | 44.1±1.4bB | 22.4±0.5bC | 3.6±1.0bC | 0bB | 0bB | ||
Heterorhabditis brevicaudis | 0627M | CK | 87.7±5.8aA | 87.7±5.8aA | 87.7±5.8aA | 87.7±5.8aA | 87.7±5.8aA | 87.7±5.8aA | 87.7±5.8aA | 87.7±5.8aA |
20W | 86.4±2.8aA | 84.3±1.3aA | 80.6±4.1aA | 74.2±2.4abAB | 38.4±0.5bBC | 20.6±2.3bBC | 6.5±4.1bB | 1.7±0.7bB | ||
40W | 86.1±3.1aA | 83.3±3.4aA | 78.9±0.9aAB | 70.6±4.1bAB | 30.6±3.4bBC | 12.3±1.2bC | 4.1±0.7bB | 0bB | ||
大异小杆线虫 Heterorhabditis megidis | 0641TY | CK | 98.8±1.1aA | 98.8±1.1aA | 98.8±1.1aA | 98.8±1.1aA | 98.8±1.1aA | 98.8±1.1aA | 98.8±1.1aA | 98.8±1.1aA |
20W | 98.2±0.5aA | 98.1±0.3aA | 97.9±0.3aA | 97.3±0.1aA | 85.4±3.3abA | 53.6±5.7bB | 10.7±3.9bB | 5.0±2.6bB | ||
40W | 97.1±1.0aA | 84.2±0.7bA | 84.2±1.2bA | 82.3±1.4bA | 79.4±2.7bAB | 49.2±3.4bB | 6.7±2.6bB | 3.7±1.7bB | ||
采用t检验, 不同小写字母表示同一品系在不同处理之间差异显著(P < 0.05), 不同大写字母表示不同品系不同处理之间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among treatments within the same strain, while different capital letters stand for the significant differences among different strains (P < 0.05) by t test. |
下载: 导出CSV
表220W UV-B辐射30 min下不同昆虫病原线虫品系对大蜡螟致病力的影响
Table2.Effects of 20 W ultraviolet radiation after 30 min exposure on entomopathogenic nematodes' pathogenicity to Galleria mellonella
线虫种Species | 品系Strain | 处理Treatment | 累积校正死亡率Corrected mortality (%) | |||||||||||
32 h | 40 h | 48 h | 56 h | 64 h | 72 h | 80 h | 88 h | 96 h | 104 h | 112 h | 120 h | |||
Steinernema feltiae | 0639C | CK | 13.3± 1.6bCD | 20.0± 2.3bBCD | 53.3±2.6aABC | 73.3± 4.1aABC | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA |
UV | 73.3± 4.1aA | 86.6± 3.4aA | 86.6±3.4aAB | 100.0aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | ||
0661YM | CK | 66.7± 3.8aAB | 66.6± 3.8aAB | 80.0±6.7aABC | 100.0aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | |
UV | 0bD | 0bD | 20.0±2.3bBC | 20.0± 2.3bB | 26.67bB | 26.67bB | 46.7± 4.1bA | 66.7± 3.8aA | 80.0± 6.7aAB | 80± 6.7aA | 93.3± 1.7aA | 100aA | ||
0619HT | CK | 53.3±2.6 aABC | 86.6± 3.4aAB | 93.3±1.7aA | 100.0aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | |
UV | 46.7±4.1 aABCD | 46.7± 4.1aABC | 60.0±3.1aABC | 60.0± 3.1aAB | 73.3± 4.1aAB | 73.3± 4.1aAB | 73.3± 4.1aA | 80± 6.7aA | 93.3± 1.7aA | 93.3± 1.7aA | 93.3± 1.7aA | 100aA | ||
0622L | CK | 13.3±1.6 aCD | 26.7± 3.9aABC | 66.7±3.8aABC | 73.3± 4.1aAB | 73.3± 4.1aAB | 80.0± 6.7aAB | 80.0± 6.7aA | 80.0± 6.7aA | 80.0± 6.7aA | 86.7± 3.4aA | 100aA | 100aA | |
UV | 26.7±3.9 aABCD | 46.7±4.1aABC | 53.3±2.6aABC | 73.3± 4.1aAB | 86.7± 3.4aAB | 86.7± 3.4aAB | 86.7± 3.4aA | 86.7± 3.4aA | 86.7± 3.4aA | 100aA | 100aA | 100aA | ||
0663TD | CK | 66.6±3.8 aAB | 66.7± 3.8aABC | 66.7±3.8aABC | 93.3± 1.7Aa | 93.3± 3.4aA | 93.3± 1.7aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | |
UV | 93.3± 1.7aA | 100.0aA | 100.0aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA | ||
Steinernema kraussei | 0657L | CK | 0aD | 46.7± 4.1aABC | 73.3±4.1aABC | 73.3± 4.1aAB | 80.0± 6.7aAB | 93.3± 1.7aA | 93.3± 1.7aA | 100aA | 100aA | 100aA | 100aA | 100aA |
UV | 0aD | 33.3± 1.7aABC | 33.3±1.7aABC | 46.6± 4.1aAB | 66.7± 3.8aAB | 73.3± 4.1aAB | 73.3± 4.1aA | 86.7± 3.4aA | 100aA | 100aA | 100aA | 100aA | ||
0663HT | CK | 40.0±1.9 aABCD | 60.0± 2.1aABC | 60.0±2.1aABC | 60.0± 2.1aAB | 66.7± 3.8aAB | 73.3± 4.1aAB | 86.7± 3.4aA | 100aA | 100aA | 100aA | 100aA | 100aA | |
UV | 20.0±2.3 aBCD | 53.3± 2.6aABC | 66.7±3.8aABC | 66.7± 3.8aAB | 66.7± 3.8aAB | 66.7± 3.8aAB | 80.0± 6.7aA | 86.7± 3.4aA | 93.3± 1.7aA | 100aA | 100aA | 100aA | ||
Heterorhabditis brevicaudis | 0627M | CK | 6.7± 1.1aCD | 20.0± 2.3aBC | 33.3±2.9aABC | 60.0± 3.1aAB | 80.0± 6.7aAB | 80.0± 6.7aA | 100aA | 100aA | 100aA | 100aA | 100aA | 100aA |
UV | 6.7± 1.1aCD | 40.0± 1.9aABC | 53.3±2.6aABC | 60.0± 3.1aAB | 66.7± 3.8aAB | 73.3± 4.1aA | 86.7± 3.4aA | 100aA | 100aA | 100aA | 100aA | 100aA | ||
大异小杆线虫Heterorhabditis megidis | 0641TY | CK | 26.7±3.9 aABCD | 60.0± 3.1aABC | 80.0±6.7aABC | 80.0± 6.7aAB | 86.7± 3.4aAB | 93.3± 1.7aA | 93.3± 1.7aA | 93.3± 1.7aA | 93.3± 1.7aA | 100aA | 100aA | 100aA |
UV | 6.7±1.1 aCD | 53.3±2.6aABC | 73.3±4.1aABC | 80.0± 6.7aAB | 86.7± 3.4aAB | 86.7± 3.4aA | 86.7± 3.4aA | 86.7± 3.4aA | 93.3± 1.7aA | 93.3± 1.7aA | 93.3± 1.7aA | 100aA | ||
采用t检验, 不同小写字母表示同一品系在不同处理之间差异显著(P < 0.05), 不同大写字母表示不同品系不同处理之间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among treatments within the same strain, while different capital letters stand for the significant differences among different strains (P < 0.05) by t test. |
下载: 导出CSV
参考文献
[1] | GAUGLER R. Entomopathogenic Nematodes[M]. Wallingford, UK:CAB International, 2002:1-13 |
[2] | CUTHBERTSON A G S, AUDSLEY N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii[J]. Insects, 2016, 7(2):24 doi: 10.3390/insects7020024 |
[3] | ILAN T, KIM-SHAPIRO D B, BOCK C H, et al. Magnetic and electric fields induce directional responses in Steinernema carpocapsae[J]. International Journal for Parasitology, 2013, 43(10):781-784 doi: 10.1016/j.ijpara.2013.05.007 |
[4] | KAPLAN F, ALBORN H T, VON REUSS S H, et al. Interspecific nematode signals regulate dispersal behavior[J]. PLoS One, 2012, 7(2):e38735 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3368880 |
[5] | KASPI R, ROSS A, HODSON A K, et al. Foraging efficacy of the entomopathogenic nematode Steinernema riobrave in different soil types from California citrus groves[J]. Applied Soil Ecology, 2010, 45(3):243-253 doi: 10.1016/j.apsoil.2010.04.012 |
[6] | SHAPIRO-ILAN D I, HAN R, DOLINSKI C. Entomopathogenic nematode production and application technology[J]. Journal of Nematology, 2012, 44(2):206-217 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232144815/ |
[7] | WILLETT D S, ALBORN H T, STELINSKI L L. Multitrophic effects of belowground parasitoid learning[J]. Nature Scientific Reports, 2017, 7(1):2067 doi: 10.1038/s41598-017-02193-2 |
[8] | 曹翠玲, 刘倩, 简恒, 等.昆虫病原线虫对非生物胁迫的响应机制[J].昆虫学报, 2009, 52(3):312-318 doi: 10.3321/j.issn:0454-6296.2009.03.011 CAO C L, LIU Q, JIAN H, et al. Response mechanisms of entomopathogenic nematode to abiotic stress[J]. Acta Entomologica Sinica, 2009, 52(3):312-318 doi: 10.3321/j.issn:0454-6296.2009.03.011 |
[9] | 钱秀娟.甘肃省昆虫病原线虫资源及其对非生物胁迫的适应性研究[D].兰州: 甘肃农业大学, 2014: 29-50 QIAN X J. Entomopathogenic nematodes resources of Gansu Province and its adaptation to abiotic stress[D]. Lanzhou: Gansu Agricultural University, 2014: 29-50 |
[10] | SHAPIRO-ILAN D I, BROWN I, LEWIS E E. Freezing and desiccation tolerance in entomopathogenic nematodes:Diversity and correlation of traits[J]. Journal of Nematology, 2014, 46(1):27-34 |
[11] | 胡祖庆, 亢菊侠, 赵惠燕, 等.不同紫外(UV-B)辐射时间对两种体色型麦长管蚜后代生物学特征的影响[J].生态学报, 2010, 30(7):1812-1816 http://d.old.wanfangdata.com.cn/Periodical/stxb201007018 HU Z Q, KANG J X, ZHAO H Y, et al. Effect of UV-B radiation on biological characteristics of two body color biotypes of Sitobion apenae (Fab.) offspring[J]. Acta Ecologica Sinica, 2010, 30(7):1812-1816 http://d.old.wanfangdata.com.cn/Periodical/stxb201007018 |
[12] | 闫生荣, 周青.紫外辐射与复合胁迫对植物抗氧化酶系统的影响[J].中国生态农业学报, 2007, 15(3):195-197 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2007350&journal_id=zgstny YAN S R, ZHOU Q. Effects of supplementary UV-B radiation and combined stresses on plant antioxidant enzymes[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3):195-197 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2007350&journal_id=zgstny |
[13] | 杜军利, 吴德功, 张廷伟, 等.紫外线(UV-B)辐射对不同色型豌豆蚜生物学特性的影响[J].中国生态农业学报, 2012, 20(12):1626-1630 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20121210&journal_id=zgstny DU J L, WU D G, ZHANG T W, et al. Effects of UV-B radiation on biological characteristics of different color pea aphid morphs (Acyrthosiphon pisum)[J]. Chinese Journal of Eco-Agriculture, 2012, 20(12):1626-1630 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20121210&journal_id=zgstny |
[14] | 唐莉娜, 林文雄, 梁义元, 等. UV-B辐射增强对水稻蛋白质及核酸的影响研究[J].中国生态农业学报, 2004, 12(1):40-42 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2004113&journal_id=zgstny TANG L N, LIN W X, LIANG Y Y, et al. Effects of enhanced ultraviolet-B radiation on soluble protein and nucleic acid in rice leaves[J]. Chinese Journal of Eco-Agriculture, 2004, 12(1):40-42 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2004113&journal_id=zgstny |
[15] | ZHAO Y L, WANG D Y. Formation and regulation of adaptive response in nematode Caenorhabditis elegans[J]. Oxidative Medicine and Cellular Longevity, 2012, 2012:564093 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3446806 |
[16] | 钱秀娟, 谷黎娜, 邢玉芳, 等.甘肃省昆虫病原线虫区系研究[J].草地学报, 2014, 22(3):593-599 http://d.old.wanfangdata.com.cn/Periodical/cdxb201403023 QIAN X J, GU L N, XING Y F, et al. Occurrence of entomopathogenic nematodes in Gansu Province[J]. Acta Agrestia Sinica, 2014, 22(3):593-599 http://d.old.wanfangdata.com.cn/Periodical/cdxb201403023 |
[17] | 钱秀娟, 刘长仲, 阮艳娥.昆虫病原线虫对甘肃省草地蛴螬的致病力研究[J].草地学报, 2015, 23(2):414-421 http://d.old.wanfangdata.com.cn/Periodical/cdxb201502029 QIAN X J, LIU C Z, RUAN Y E. Pathogenicity of entomopathogenic nematodes to grass grubs (Coleoptera:Scarabaeidae)[J]. Acta Agrestia Sinica, 2015, 23(2):414-421 http://d.old.wanfangdata.com.cn/Periodical/cdxb201502029 |
[18] | QIAN X J, GU L N, XING Y F, et al. Entomopathogenic nematodes isolated from Gansu province and four new species in China[J]. Applied Mechanics and Materials, 2014, 651/653:328-336 doi: 10.4028/www.scientific.net/AMM.651-653 |
[19] | 谷黎娜, 钱秀娟, 刘长仲.甘肃省昆虫病原线虫3个优良品系的生物学特性研究[J].甘肃农业大学学报, 2009, 44(2):85-89 doi: 10.3969/j.issn.1003-4315.2009.02.018 GU L N, QIAN X J, LIU C Z. Biological characteristics of three fine strains of insect pathogenic nematode in Gansu Province[J]. Journal of Gansu Agricultural University, 2009, 44(2):85-89 doi: 10.3969/j.issn.1003-4315.2009.02.018 |
[20] | GREWAL P S, BORNSTEIN-FORST S, BURNELL A M, et al. Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes[J]. Biological Control, 2006, 38(1):54-65 doi: 10.1016/j.biocontrol.2005.09.004 |