删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

东北玉米根系生物量模型的构建

本站小编 Free考研考试/2022-01-01

吕国红,
谢艳兵,
温日红,
王笑影,,
贾庆宇
中国气象局沈阳大气环境研究所 沈阳 110166
基金项目: 国家自然科学基金项目31501215
公益性行业(气象)科研专项基金2016SYIAEZD

详细信息
作者简介:吕国红, 主要研究方向为生态气象
通讯作者:王笑影, 主要研究方向为生态气象。E-mail:wangxy_0917@qq.com
中图分类号:S513

计量

文章访问数:542
HTML全文浏览量:1
PDF下载量:641
被引次数:0
出版历程

收稿日期:2018-01-25
录用日期:2018-07-05
刊出日期:2019-04-01

Modeling root biomass of maize in Northeast China

LYU Guohong,
XIE Yanbing,
WEN Rihong,
WANG Xiaoying,,
JIA Qingyu
Shenyang Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China
Funds: the National Natural Science Foundation of China31501215
the Special Scientific Research Fund of Meteorology in Public Welfare of China2016SYIAEZD

More Information
Corresponding author:WANG Xiaoying, E-mail: wangxy_0917@qq.com


摘要
HTML全文
(4)(2)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:开展根系生物量的观测和研究,建立通用性的根系生物量模型对于开展生态系统生物量的监测和评估具有重要意义。为得到根系生物量的实时信息,2016年9月末利用挖土法和根系扫描系统,获取玉米根系的生物量及生态指标,分析了玉米根系生物量的垂直分布特征并建立了根系生物量与根系生态指标之间的模拟方程。结果表明:玉米根系生物量主要集中于0~30 cm,占玉米根系垂直分布量的94.44%。利用普通最小二乘法建立根系生物量模型均存在异方差问题,增加根长作为自变量建立的根系生物量模型显著提高了模拟精度,决定系数(R2)达0.91以上。采用对数转换消除方程的异方差及比较不同的模拟方程后发现,玉米根系生物量与根径和根长的组合变量(D2H)建立的指数函数是模拟玉米根系生物量的最优方程,决定系数(R2)最高,为0.90,平均绝对误差(MAE)、估计值的标准误差(SEE)、平均预估误差(MPE)均最小,满足了模拟方程的精度要求。对该方程进一步验证发现,模拟值和实测值之间的相关系数为0.92,说明此模型能较好地模拟根系生物量。利用根系生物量模型结合微根管法,可解决根系生物量实时观测难的问题。
关键词:玉米/
根系生物量/
根长/
根径
Abstract:It is of great significance to explore root biomass and establish a universal root biomass model for the monitoring and evaluation of the ecosystem biomass. In order to get the real-time information of a root system, the biomass and ecological indexes of maize root system were collected using soil sampling method and root scanning systems at the agricultural meteorological experiment station in Jinzhou City, Liaoning Province in September 2016. The vertical distribution characteristics of root biomass of maize were analyzed and simulation equations were established based on the relationships between root biomass and root ecological indexes. The results showed that the maize root biomass decreased with increase of soil depth. The root biomass of maize mainly concentrated at the soil depth from 0 cm to 30 cm, which accounted for 94.44% of the total root biomass. The simulation accuracy of exponential and power functions of root biomass with root diameter as independent variable established by ordinary least square method was low, and R2 was 0.10 and 0.12, respectively. The biomass model constructed by adding root length as an independent variable significantly improved the simulation accuracy, with R2 reaching above 0.91. There was heteroscedasticity issue in the models of root biomass established by the ordinary least square method inducing less stable and inaccurate prediction results. This issue could be eliminated by using logarithmic transformation. The biomass model of maize root system with root length and root dimeter together as variables (D2H) had a better simulation effect and a good prediction accuracy, with the coefficient of determination (R2) as 0.90 and the evaluation indexes MAE, SEE and MPE as 4.38 g, 18.68 g and 16.09%, respectively. The correlation coefficient between simulated and measured values was 0.92 (P < 0.01), indicating that this model could be used to simulate the biomass of maize root system in Northeast China. The study results indicated that the difficulty in observing root biomass in real time could be resolved by using root biomass model combined with the minirhizotron method.
Key words:Maize/
Root biomass/
Root length/
Root diameter

HTML全文


图1玉米根系生物量的垂直分布
根系生物量测量的土壤体积为25 000 cm3
Figure1.Vertical distribution of root biomass for maize
The soil volume for measurement of root biomass is 25 000 cm3.


下载: 全尺寸图片幻灯片


图2玉米根系生物量模型的构建及残差分析
W:根系生物量; D:根径; H:根长; R:残差。
Figure2.Biomass estimation models of maize root system and their residual analysis
W: root biomass; D: root diameter; H: root length; R: residual.


下载: 全尺寸图片幻灯片


图3消除异方差后玉米根系生物量模型的构建及残差分析
W:根系生物量; D:根径; H:根长; R:残差。
Figure3.Biomass estimation models of maize root system and their residual analysis after eliminating heteroscedasticity
W: root biomass; D: root diameter; H: root length; R: residual.


下载: 全尺寸图片幻灯片


图4玉米根系生物量模型的实测值和模型估计值
Figure4.Measured and estimated values of root biomass for maize


下载: 全尺寸图片幻灯片

表1玉米根系生物量回归模型及其拟合优度评价(基于生物量乘以100后计算)
Table1.Root biomass regression models and evaluation of the goodness in fitting for maize (based on multiplying by 100 for root biomass)
公式
Formula
参数估计值
Parametric
estimated
values
拟合优度评价指标
Evaluation indicators for fitting
goodness
β1 Β2 R2 MAE
(g)
SEE
(g)
MPE
(%)
W=β1eβ2D 5.31 1.48 0.10 14.17 34.72 42.85
W=β1Dβ2 27.79 1.63 0.12 13.68 34.36 42.40
W=β1Hβ2 0.00 2.11 0.91 5.37 9.20 11.35
W=β1(D2H)β2 0.96 0.85 0.95 4.36 18.58 15.85
W:根系生物量; D:根径; H:根长; R2:决定系数; MAE:平均绝对误差; SEE:估计值的标准误差; MPE:平均预估误差。W: root biomass; D: root diameter; H: root length; R2: coefficient of determination; MAE: mean absolute error; SEE: standard error of estimate; MPE: mean prediction error.


下载: 导出CSV
表2消除异方差后玉米根系生物量回归模型及其拟合优度评价(基于生物量乘以100后计算)
Table2.Root biomass regression models and evaluation of the goodness in fitting for maize after eliminating heteroscedasticity (based on multiplying by 100 for root biomass)
公式
Formula
参数估计值
Parametric
estimated
value
拟合优度评价指标
Evaluation indicator
for fitting goodness
β1 β2 R2 MAE
(g)
SEE
(g)
MPE
(%)
W=β1eβ2D 1.93 0.65 0.32 10.27 35.57 43.89
W=β1Dβ2 1.42 2.66 0.35 10.36 35.72 44.08
W=β1Hβ2 0.57 -0.35 0.20 10.74 34.69 42.81
W=β1(D2H)β2 1.04 -1.02 0.90 4.38 18.68 16.09
W:根系生物量; D:根径; H:根长; R2:决定系数; MAE:平均绝对误差; SEE:估计值的标准误差; MPE:平均预估误差。W: root biamass; D: root diameter; H: root length; R2: coefficient of determination; MAE: mean absolute error; SEE: standard error of estimate; MPE: mean prediction error.


下载: 导出CSV

参考文献(29)
[1]陈红, 冯云, 周建梅, 等.植物根系生物学研究进展[J].世界林业研究, 2013, 26(5):25-29 http://d.old.wanfangdata.com.cn/Periodical/swxjx201102002
CHEN H, FENG Y, ZHOU J M, et al. Research advance of plant root biology[J]. World Forestry Research, 2013, 26(5):25-29 http://d.old.wanfangdata.com.cn/Periodical/swxjx201102002
[2]罗东辉, 夏婧, 袁婧薇, 等.我国西南山地喀斯特植被的根系生物量初探[J].植物生态学报, 2010, 34(5):611-618 doi: 10.3773/j.issn.1005-264x.2010.05.015
LUO D H, XIA J, YUAN J W, et al. Root biomass of karst vegetation in a mountainous area of southwestern China[J]. Chinese Journal of Plant Ecology, 2010, 34(5):611-618 doi: 10.3773/j.issn.1005-264x.2010.05.015
[3]郭京衡, 李尝君, 曾凡江, 等. 2种荒漠植物根系生物量分布与土壤水分、养分的关系[J].干旱区研究, 2016, 33(1):166-171 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201601021
GUO J H, LI C J, ZENG F J, et al. Relationship between root biomass distribution and soil moisture, nutrient for two desert plant species[J]. Arid Zone Research, 2016, 33(1):166-171 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201601021
[4]张金凤, 徐雨晴.水氮添加对内蒙古多伦县退耕还草地生物量、生产力及其分配的影响[J].中国生态农业学报, 2016, 24(2):192-200 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016207&flag=1
ZHANG J F, XU Y Q. Responses of plant biomass and net primary production to nitrogen fertilization and increased precipitation in re-grassed croplands in Duolun County of Inner Mongolia, China[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2):192-200 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016207&flag=1
[5]韩畅, 宋敏, 杜虎, 等.广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征[J].生态学报, 2017, 37(7):2282-2289 http://d.old.wanfangdata.com.cn/Periodical/stxb201707015
HAN C, SONG M, DU H, et al. Biomass and carbon storage in roots of Cunninghamia lanceolata and Pinus massoniana plantations at different stand ages in Guangxi[J]. Acta Ecologica Sinica, 2017, 37(7):2282-2289 http://d.old.wanfangdata.com.cn/Periodical/stxb201707015
[6]周本智, 张守攻, 傅懋毅.植物根系研究新技术Minirhizotron的起源、发展和应用[J].生态学杂志, 2007, 26(2):253-260 doi: 10.3321/j.issn:1000-4890.2007.02.020
ZHOU B Z, ZHANG S G, FU M Y. Minirhizotron, a new technique for plant root system research:Its invention, development and application[J]. Chinese Journal of Ecology, 2007, 26(2):253-260 doi: 10.3321/j.issn:1000-4890.2007.02.020
[7]ZIANIS D, MUUKKONEN P, M KIP R, et al. Biomass and stem volume equations for tree species in Europe[J]. Silva Fennica Monographs, 2005, 4:1-63 http://jukuri.luke.fi/bitstream/handle/10024/512732/951-40-1984-9.pdf;jsessionid=8B0350EA169D05EA629DC4F6BA8A0B5D?sequence=1
[8]崔喜红, 陈晋, 沈金松, 等.基于探地雷达的树木根径估算模型及根生物量估算新方法[J].中国科学:地球科学, 2011, 41(2):243-252 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201102011
CUI X H, CHEN J, SHEN J S, et al. Modeling tree root diameter and biomass by ground-penetrating radar[J]. Science China Earth Sciences, 2011, 41(2):243-252 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201102011
[9]曾伟生, 唐守正.东北落叶松和南方马尾松地下生物量模型研建[J].北京林业大学学报, 2011, 33(2):1-6 doi: 10.3969/j.issn.1671-6116.2011.02.001
ZENG W S, TANG S Z. Establishment of below-ground biomass equations for larch in northeastern and masson pine in southern China[J]. Journal of Beijing Forestry University, 2011, 33(2):1-6 doi: 10.3969/j.issn.1671-6116.2011.02.001
[10]肖义发, 欧光龙, 王俊峰, 等.思茅松单木根系生物量的估算模型[J].东北林业大学学报, 2014, 42(1):57-60 doi: 10.3969/j.issn.1000-5382.2014.01.013
XIAO Y F, OU G L, WANG J F, et al. Biomass estimation models of individual root for Pinus kesiya var. langbianensis[J]. Journal of Northeast Forestry University, 2014, 42(1):57-60 doi: 10.3969/j.issn.1000-5382.2014.01.013
[11]LITTON C M, RYAN M G, TINKER D B, et al. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density[J]. Canadian Journal of Forest Research, 2003, 33(2):351-363 doi: 10.1139/x02-181
[12]BOLTE A, RAHMANN T, KUHR M, et al. Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. Karst.)[J]. Plant and Soil, 2004, 264(1/2):1-11 doi: 10.1023/B:PLSO.0000047777.23344.a3
[13]JOHANSSON T. Biomass production and allometric above- and below-ground relations for young birch stands planted at four spacings on abandoned farmland[J]. Forestry, 2007, 80(1):41-52 doi: 10.1093/forestry/cpl049
[14]刘永霞, 岳延滨, 刘岩, 等.基于生物量的水稻根系生长动态模型[J].江苏农业学报, 2011, 27(4):704-709 doi: 10.3969/j.issn.1000-4440.2011.04.003
LIU Y X, YUE Y B, LIU Y, et al. Biomass-based dynamic model for rice root system[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(4):704-709 doi: 10.3969/j.issn.1000-4440.2011.04.003
[15]王空军, 郑洪建, 刘开昌, 等.我国玉米品种更替过程中根系时空分布特征的演变[J].植物生态学报, 2001, 25(4):472-475 doi: 10.3321/j.issn:1005-264X.2001.04.015
WANG K J, ZHENG H J, LIU K C, et al. Evolution of maize root distribution in space-time during maize varieties replacing in China[J]. Acta Phytoecologica Sinica, 2001, 25(4):472-475 doi: 10.3321/j.issn:1005-264X.2001.04.015
[16]许常华, 李荣平, 祁红彦, 等.植物根系模拟进展[J].中国农学通报, 2014, 30(18):18-22 doi: 10.11924/j.issn.1000-6850.2013-2881
XU C H, LI R P, QI H Y, et al. Study progress of plant root model[J]. Chinese Agricultural Science Bulletin, 2014, 30(18):18-22 doi: 10.11924/j.issn.1000-6850.2013-2881
[17]管建慧, 刘克礼, 郭新宇.玉米根系构型的研究进展[J].玉米科学, 2006, 14(6):162-166 doi: 10.3969/j.issn.1005-0906.2006.06.044
GUAN J H, LIU K L, GUO X Y. Advances of research on maize root system architecture[J]. Journal of Maize Sciences, 2006, 14(6):162-166 doi: 10.3969/j.issn.1005-0906.2006.06.044
[18]刘蕾.中国玉米根系生物量及空间分布特征[D].北京: 中国农业大学, 2016
LIU L. Biomass estimation and spatial distribution of maize root in China[D]. Beijing: China Agricultural University, 2016
[19]刘晶淼, 安顺清, 廖荣伟, 等.玉米根系在土壤剖面中的分布研究[J].中国生态农业学报, 2009, 17(3):517-521 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009321&flag=1
LIU J M, AN S Q, LIAO R W, et al. Temporal variation and spatial distribution of the root system of corn in a soil profile[J]. Chinese Journal of Eco-Agriculture, 2009, 17(3):517-521 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009321&flag=1
[20]廖荣伟, 刘晶淼, 安顺清, 等.基于微根管技术的玉米根系生长监测[J].农业工程学报, 2010, 26(10):156-161 doi: 10.3969/j.issn.1002-6819.2010.10.026
LIAO R W, LIU J M, AN S Q, et al. Monitor of corn root growth in soil based on minirhizotron technique[J]. Transactions of the CSAE, 2010, 26(10):156-161 doi: 10.3969/j.issn.1002-6819.2010.10.026
[21]黄建辉, 韩兴国, 陈灵芝.森林生态系统根系生物量研究进展[J].生态学报, 1999, 19(2):270-277 doi: 10.3321/j.issn:1000-0933.1999.02.021
HUANG J H, HAN X G, CHEN L Z. Advances in the research of (fine) root biomass in forest ecosystems[J]. Acta Ecologica Sinica, 1999, 19(2):270-277 doi: 10.3321/j.issn:1000-0933.1999.02.021
[22]杨宪龙, 魏孝荣, 邵明安.黄土高原北部典型灌丛枝条生物量估算模型[J].应用生态学报, 2016, 27(10):3164-3172 http://d.old.wanfangdata.com.cn/Periodical/yystxb201610013
YANG X L, WEI X R, SHAO M A. Stem biomass estimation models for dominant shrubs on the northern Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2016, 27(10):3164-3172 http://d.old.wanfangdata.com.cn/Periodical/yystxb201610013
[23]曾伟生. 3种异速生长方程对生物量建模的对比分析[J].中南林业调查规划, 2014, 33(1):1-3 doi: 10.3969/j.issn.1003-6075.2014.01.001
ZENG W S. Comparison of three allometric equations for biomass modeling[J]. Central South Forest Inventory and Planning, 2014, 33(1):1-3 doi: 10.3969/j.issn.1003-6075.2014.01.001
[24]张会儒, 唐守正, 胥辉.关于生物量模型中的异方差问题[J].林业资源管理, 1999, (1):46-49 http://www.cnki.com.cn/Article/CJFDTOTAL-LYZY901.011.htm
ZHANG H R, TANG S Z, XU H. The problem of heteroscedasticity in the biomass model[J]. Forest Resources Management, 1999, (1):46-49 http://www.cnki.com.cn/Article/CJFDTOTAL-LYZY901.011.htm
[25]李潮海, 李胜利, 王群, 等.不同质地土壤对玉米根系生长动态的影响[J].中国农业科学, 2004, 37(9):1334-1340 doi: 10.3321/j.issn:0578-1752.2004.09.013
LI C H, LI S L, WANG Q, et al. Effect of different textural soils on root dynamic growth in corn[J]. Scientia Agricultura Sinica, 2004, 37(9):1334-1340 doi: 10.3321/j.issn:0578-1752.2004.09.013
[26]李春俭, 彭云峰, 牛君仿, 等.土壤中的玉米根系生长及其研究应注意的问题[J].植物营养与肥料学报, 2010, 16(1):225-231 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201001034
LI C J, PENG Y F, NIU J F, et al. Real maize roots in the soil and issues should be considered by study[J]. Plant Nutrition and Fertilizer Science, 2010, 161(1):225-231 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201001034
[27]赵江, 张怡明, 牛兴奎, 等.不同密度条件玉米根系性状在不同土层中的分布研究[J].华北农学报, 2011, 26(S1):99-103 doi: 10.7668/hbnxb.2011.S1.021
ZHAO J, ZHANG Y M, NIU X K, et al. Studies on the distribution of maize root characteristics at different soil layers and densities[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S1):99-103 doi: 10.7668/hbnxb.2011.S1.021
[28]张玉, 秦华东, 伍龙梅, 等.玉米根系空间分布特性的数学模拟及应用[J].玉米科学, 2015, 23(4):92-97 http://d.old.wanfangdata.com.cn/Conference/8796618
ZHANG Y, QIN H D, WU L M, et al. Mathematical simulation of maize root spatial distribution and its application[J]. Journal of Maize Sciences, 2015, 23(4):92-97 http://d.old.wanfangdata.com.cn/Conference/8796618
[29]杨嘉龙, 肖生苓.异方差对生物量模型构建的影响[J].森林工程, 2014, 30(2):25-28 doi: 10.3969/j.issn.1001-005X.2014.02.007
YANG J L, XIAO S L. The influence of heteroscedasticity on the establishment of biomass model[J]. Forest Engineering, 2014, 30(2):25-28 doi: 10.3969/j.issn.1001-005X.2014.02.007

相关话题/生态 植物 生物量 土壤 根系