删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

玉米间作花生冠层微环境变化及其与荚果产量的相关性研究

本站小编 Free考研考试/2022-01-01

林松明1, 2,,
孟维伟2,
南镇武2,
徐杰2,
李林1,,,
张正2, 3,
李新国2,
郭峰2,
万书波1, 2,,
1.湖南农业大学农学院 长沙 410128
2.山东省农业科学院/山东省作物遗传改良与生态生理重点实验室 济南 250100
3.山东师范大学生命科学学院 济南 250000
基金项目: 国家重点研发计划项目2018YFD0201000
山东省农业重大应用技术创新项目SD2019ZZ011
山东省农业科学院农业科技创新工程项目CXGC2018E01
山东省重点研发计划项目2017GNC13107

详细信息
作者简介:林松明, 主要从事花生高产优质栽培生理生态研究。E-mail:linsm6312@163.com
通讯作者:李林, 主要从事花生栽培研究, E-mail:lilindw@163.com
万书波, 主要从事花生栽培生理研究, E-mail:wansb@saas.ac.cn
中图分类号:S565.2;S344.2

计量

文章访问数:558
HTML全文浏览量:7
PDF下载量:694
被引次数:0
出版历程

收稿日期:2019-07-13
录用日期:2019-10-08
刊出日期:2020-01-01

Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield

LIN Songming1, 2,,
MENG Weiwei2,
NAN Zhenwu2,
XU Jie2,
LI Lin1,,,
ZHANG Zheng2, 3,
LI Xinguo2,
GUO Feng2,
WAN Shubo1, 2,,
1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China
2. Shandong Academy of Agricultural Sciences/Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Province, Jinan 250100, China
3. College of Life Science, Shandong Normal University, Jinan 250000, China
Funds: the National Key Research and Development Program of China2018YFD0201000
the Major Agricultural Applied Technological Innovation Projects of Shandong ProvinceSD2019ZZ011
the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural SciencesCXGC2018E01
Shandong Key Research and Development Program2017GNC13107

More Information
Corresponding author:LI Lin, E-mail: lilindw@163.com;WAN Shubo, E-mail: wansb@saas.ac.cn


摘要
HTML全文
(4)(8)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:种植模式是影响花生冠层内透光率、光照度、温度、湿度等微环境的重要因素。本试验分别在2015年度和2016年度田间试验中设花生单作、玉米/花生宽幅间作2个处理,监测不同种植模式下花生结荚期后冠层透光率、光照度、冠层温、湿度的变化规律,并分析其与荚果产量的相关性。结果表明:1)与花生单作相比,玉米/花生宽幅间作显著降低了花生冠层的光照度、冠层顶部和中部的透光率及上午9:00-11:00的平均温度;增加了冠层平均湿度。2)花生冠层光照强度在晴天随时间推延而呈先升后降的单峰曲线,且单作显著高于间作;在上午光照强度上升期和下午光照强度下降期,单作和间作光照强度差值较大,而中午太阳直射期二者差值减小。间作降低了花生夜间和中午前后的冠层环境温度,二者温差最高可达4.9℃;增加了白天冠层相对湿度,二者湿度差最高达21.03%。3)本试验条件下,结荚期冠层环境温度、冠层光照度及饱果期冠层环境温度、冠层光照度均与花生荚果产量呈极显著正相关;冠层环境湿度则与荚果产量呈负相关关系,其中结荚期达到极显著水平。多元线性逐步回归分析得出,影响产量的重要环境因素为结荚期冠层光照度、结荚期冠层相对湿度、饱果期冠层相对湿度。通径分析得出,光照度除了直接影响产量外还有很大部分效应是通过影响冠层环境湿度进而影响花生荚果产量,说明间作条件下协调好光照度和冠层湿度的关系可提高光照度对产量的正面影响效应。本试验条件下,间作花生冠层光照度、透光率下降,冠层相对湿度升高,是限制花生荚果产量提高的主要气候生态因子。建议生产中间作为东西向种植,从而提高间作花生冠层上午9:00-11:00的有效光照度、适当降低冠层相对湿度,以期提高间作花生荚果产量。
关键词:花生/玉米间作/
花生关键生育期/
宽幅间作/
冠层微环境/
花生荚果产量
Abstract:Field trials of the single cropping of peanuts and broad-sown intercropping of maize and peanuts were conducted in 2015 and 2016. Changes in peanut canopy transmittance, light intensity, canopy temperature, and humidity after the podding stage under different planting modes were monitored, and the correlations between them and pod yield were analyzed. Our results showed that, first, compared with a peanut monoculture, maize/peanut intercropping significantly reduced the light intensity of the canopy, the transmittance of the top and middle canopy, and the average temperature of the canopy from 9:00 a.m. to 11:00 a.m., and increased the average humidity of the canopy. Second, peanut canopy light intensity exhibited a single peak curve on sunny days, and the canopy light intensity of monocultured peanuts was significantly higher than that of intercropping. The difference in light intensity between a monoculture and intercropping was greater in the morning (when light intensity increased) and the afternoon (when light intensity decreased), while the difference between the two values decreased at noon during the direct-sunlight period. The ambient canopy temperature of peanuts decreased under intercropping in the night and before and after noon, compared with monoculture, with an observed highest difference of 4.9℃. Intercropping increased the relative humidity of the canopy during daytime, with a recorded highest difference of 21.03%. Third, under experimental conditions, the canopy environmental temperature and illumination at the podding stage were positively correlated with peanut pod yield, while the canopy environmental humidity was negatively correlated with pod yield, especially at the podding stage. Multivariate linear stepwise regression analysis showed that the most important environmental factors affecting peanut yield were canopy illumination and circumferential humidity at podding stage, and canopy circumferential humidity at the full-fruit stage. Path analysis showed that, besides directly affecting yield, illumination had a high impact on peanut pod yield by affecting canopy environmental humidity, indicating that the positive effect of illumination on yield can be improved by coordinating the relationship between illumination and humidity under intercropping conditions. In this experiment, the decrease in canopy light intensity and transmittance of intercropping and the increase in canopy relative humidity of intercropping were the main climatic factors limiting pod yield. It is possible that the yield of intercropped peanuts could be increased by planting them from east to west, which will increase the effective illuminance of the canopy at 9:00-11:00 a.m. and reduce the relative humidity.
Key words:Maize/peanut intercropping/
Key growth stages of peanut/
Wide row-spacing intercropping/
Canopy micro-environment/
Peanut pod yield

HTML全文


图1玉米/花生间作3:4模式田间种植布局图
Figure1.Field layout of maize/peanut intercropping with 3/4 lines ratio


下载: 全尺寸图片幻灯片


图22015年和2016年玉米/花生宽幅间作对花生关键生育期冠层光照强度日变化的影响
MP表示单作花生, IP表示间作花生。MP is mono-cropping peanut, IP is intercropping peanut.
Figure2.Effect of maize and peanut intercropping with 3/4 lines ratio on diurnal variation of canopy light intensity of peanut at key growth stages in 2015 and 2016


下载: 全尺寸图片幻灯片


图32015年和2016年玉米/花生宽幅间作对花生关键生育期冠层温度日变化的影响
MP表示单作花生, IP表示间作花生。MP is mono-cropping peanut, IP is intercropping peanut.
Figure3.Effect of maize and peanut intercropping with 3/4 lines ratio on diurnal variation of canopy temperature of peanut canopy at key growth stages in 2015 and 2016


下载: 全尺寸图片幻灯片


图42015年和2016年玉米/花生宽幅间作对花生关键生育期冠层相对湿度日变化的影响
Figure4.Effect of maize and peanut intercropping with 3/4 lines ratio on diurnal variation of canopy relative humidity of peanut at key growth stages in 2015 and 2016


下载: 全尺寸图片幻灯片

表1玉米/花生宽幅间作对花生关键生育期冠层透光率的影响
Table1.Effect of maize and peanut intercropping with 3/4 lines ratio on canopy light transmittance rate of peanut at key growth stages ?%
部位
Position
种植模式
Planting pattern
结荚期
Pod-setting stage
饱果期
Pod-filling stage
冠层顶部Canopy top 单作花生
Mono-cropping peanut
100.00±0.69a 100.00±5.69a
间作花生
Intercropping peanut
61.43±6.70b 66.00±4.91b
冠层中部Mid canopy 单作花生
Mono-cropping peanut
28.78±2.23a 28.33±6.53a
间作花生
Intercropping peanut
22.46±1.23b 10.29±2.42b
冠层下部Lower canopy 单作花生
Mono-cropping peanut
7.35±1.43a 9.37±4.02a
间作花生
Intercropping peanut
4.62±1.12a 3.17±0.97a
不同小写字母单作和间作间差异显著(P < 0.05)。Different lowercase letters mean significant differences between intercropping and mono-cropping at 0.05 level.


下载: 导出CSV
表22015年和2016年玉米/花生宽幅间作对花生关键生育期冠层光照强度的影响
Table2.Effect of maize and peanut intercropping with 3/4 lines ratio on light intensities of peanut canopy at key growth stages in 2015 and 2016 ?Lux
年份
Year
种植模式
Planting pattern
结荚期
Pod-setting stage
饱果期
Pod-filling stage
成熟期
Maturation stage
2015 单作花生Mono-cropping peanut 60 631.7±1 105.4a 53 600.3±1 665.0a 52 146.3±6 465.5a
间作花生Intercropping peanut 42 029.7±2 924.0b 35 792.0±872.6b 28 233.0±1 704.9b
2016 单作花生Mono-cropping peanut 62 178.0±310.6a 51 628.3±1 361.3a 46 179.7±962.7a
间作花生Intercropping peanut 48 369.7±2 071.8b 34 383.7±1 220.1b 30 536.7±1 348.1b
不同小写字母单作和间作间差异显著(P < 0.05)。Different lowercase letters mean significant differences between intercropping and mono-cropping at 0.05 level.


下载: 导出CSV
表32015年和2016年玉米/花生宽幅间作对花生关键生育期冠层温度的影响
Table3.Effect of maize and peanut intercropping with 3/4 lines ratio on canopy temperature of peanut at key growth stages in 2015 and 2016 ?
年份
Year
种植模式
Planting pattern
结荚期
Pod-setting stage
饱果期
Pod-filling stage
成熟期
Maturation stage
2015 单作花生
Mono-cropping peanut
28.79±0.63a 29.42±0.53a 26.61±0.49a
间作花生
Intercropping peanut
26.78±0.37b 27.45±0.31b 24.92±0.74b
2016 单作花生
Mono-cropping peanut
26.77±0.55a 29.19±0.29a 22.81±0.19a
间作花生
Intercropping peanut
25.24±0.67b 27.80±0.24b 20.92±0.26b
不同小写字母单作和间作间差异显著(P < 0.05)。Different lowercase letters mean significant differences between intercropping and mono-cropping at 0.05 level.


下载: 导出CSV
表42015年和2016年玉米花生宽幅间作对花生关键生育期冠层相对湿度的影响
Table4.Effect of maize and peanut intercropping with 3/4 lines ratio on canopy relative humidity of peanut at key growth stages in 2015 and 2016 ?%
年份
Year
种植模式
Planting pattern
结荚期
Pod-setting stage
饱果期
Pod-filling stage
成熟期
Maturation stage
2015 单作花生
Mono-cropping peanut
65.95±2.54b 63.66±2.79b 62.93±2.11b
间作花生
Intercropping peanut
79.21±1.56a 70.67±2.79a 68.10±2.18a
2016 单作花生
Mono-cropping peanut
61.33±2.58b 59.80±1.28b 48.61±1.47b
间作花生
Intercropping peanut
71.04±1.82a 68.52±0.71a 55.51±1.81a
不同小写字母单作和间作间差异显著(P < 0.05)。Different lowercase letters mean significant differences between intercropping and mono-cropping at 0.05 level.


下载: 导出CSV
表52015年和2016年玉米/花生宽幅间作的花生产量和构成因素及其相关性
Table5.Effect of maize and peanut intercropping with 3/4 lines ratio on yield and its components of peanut in 2015 and 2016, and correlation among yield and its components
年份
Year
种植模式
Planting pattern
株数
Plant density (×104plants?hm-2)
单株饱果数
Full pod number per plant
百果重
100-berry weight (g)
百仁重
100-kernel weight (g)
出仁率
Kernel rate (%)
荚果产量
Pod yield (kg·hm-2)
2015 MP 21.57±0.55a 14.58±0.90a 155.56±2.74b 66.61±2.11a 68.78±0.61a 4 691.67±212.61a
ERIP 20.59±1.39a 10.83±0.85b 162.80±7.97ab 68.45±3.74a 69.74±0.25a 3 376.47±176.00b
MRIP 21.58±0.81a 11.08±0.34b 169.84±4.42a 70.72±2.22a 70.07±1.18a 3 592.16±219.87b
2016 MP 21.86±0.40a 13.67±1.01a 161.20±1.94a 67.09±1.46a 69.53±0.61a 4 593.14±253.22a
ERIP 20.98±1.60a 10.25±0.59b 165.83±3.49a 69.09±2.03a 70.14±0.24a 3 400.00±225.58b
MRIP 21.76±1.05a 10.75±0.59b 168.92±5.72a 70.36±1.27a 71.00±1.23a 3 622.55±223.98b
单作相关性分析
Relevance analysis of mono-cropping
株数Plant number 1.000
单株饱果数Full pod number per plant -0.582 1.000
百果重100-berry weight -0.113 -0.365 1.000
百仁重100-kernel weight 0.795 -0.750 -0.113 1.000
出仁率Kernel rate 0.415 -0.242 0.603 0.064 1.000
荚果产量Pod yield -0.582 0.945** -0.160 -0.685 -0.183 1.000
间作相关性分析
Relevance analysis of intercropping
株数Plant number 1.000
单株饱果数Full pod number per plant -0.713** 1.000
百果重100-berry weight 0.552 -0.263 1.000
百仁重
100-kernel weight
-0.183 0.454 -0.206 1.000
出仁率Kernel rate 0.073 0.157 0.692* -0.028 1.000
荚果产量Pod yield 0.406 0.027 0.809** 0.047 0.768** 1.000
不同小写字母单作和间作间差异显著(P < 0.05)。**和*分别表示相关性极显著水平(P < 0.01)和显著水平(P < 0.05)。MP表示单作花生, ERIP表示间作边行花生, MRIP表示间作中间行花生。Different lowercase letters mean significant differences between intercropping and mono-cropping at 0.05 level. ** and * mean significant correlation at 0.01 and 0.05 levels, respectively. MP is mono-cropping peanut, ERIP is edge row of intercropping peanut, MRIP is middle row of intercropping peanut.


下载: 导出CSV
表6单作和间作花生荚果产量与关键生育期冠层微环境因子的相关性分析
Table6.Correlation analysis between pod yield of mono-cropping and intercropping peanut and canopy microenvironment factors at key growth stages
种植模式
Planting pattern
环境因子
Environmental factor
结荚期Pod-setting stage 饱果期Pod-filling stage
温度
Temperature
相对湿度
Relative humidity
光照强度
Light intensity
荚果产量
Pod yield
温度
Temperature
相对湿度
Relative humidity
光照强度
Light intensity
荚果产量
Pod yield
单作花生
Mono-cropping peanut
温度
Temperature
1.000 1.000
相对湿度
Relative humidity
-0.607 1.000 -0.345 1.000
光照强度
Light intensity
0.087 -0.425 1.000 0.259 0.257 1.000
荚果产量
Pod yield
0.495 -0.958** 0.331 1.000 0.148 0.750 0.099 1.000
间作花生
Intercropping peanut
温度Temperature 1.000 1.000
相对湿度
Relative humidity
-0.960** 1.000 -0.268 1.000
光照强度
Light intensity
0.481 -0.505 1.000 -0.705 -0.468 1.000
荚果产量
Pod yield
0.872* -0.965** 0.370 1.000 -0.562 0.288 0.337 1.000
综合
Comprehensive
温度
Temperature
1.000 1.000
相对湿度
Relative humidity
-0.819** 1.000 -0.709** 1.000
光照强度
Light intensity
0.620* -0.788** 1.000 0.738** -0.670* 1.000
荚果产量
Pod yield
0.714** -0.903** 0.939** 1.000 0.721** -0.569 0.905** 1.000
**和*分别表示相关性极显著水平(P < 0.01)和显著水平(P < 0.05)。** and * mean significant correlation at 0.01 and 0.05 levels, respectively.


下载: 导出CSV
表7单作和间作花生荚果产量与冠层环境因子回归模型系数
Table7.Coefficient of regression models between pod yield of mono-cropping and intercropping peanut and canopy environmental factors
种植模式
Planting pattern
模型
Model
非标准化系数
Un-standardized coefficient
标准系数
Standardized coefficient
B Std. error Beta t Sig.
单作花生
Mono-cropping peanut
常量Constant 7 093.231 370.474 19.146 0.000
结荚期冠层湿度(X2) Relative humidity at pod-setting stage (X2) -40.505 6.101 -0.958 -6.640 0.003
间作花生
Intercropping peanut
常量Constant 7 253.638 354.157 20.481 0.000
饱果期冠层湿度(X2) Relative humidity at pod-setting stage (X2) ?40.645 2.611 -1.109 -15.568 0.001
饱果期冠层湿度(X2) Relative humidity at pod-filling stage (X2) ?12.424 3.149 -0.281 -3.946 0.029
综合
Comprehensive
常量Constant 8 474.331 1 145.321 7.399 0.000
结荚期冠层光照度(X3) Light intensity at pod-setting stage (X3) 0.011 0.004 0.327 2.429 0.041
结荚期冠层湿度(X2) Relative humidity at pod-setting stage (X2) -50.344 9.197 -0.593 -5.474 0.001
饱果期冠层湿度(X5) Relative humidity at pod-filling stage (X5) -22.447 8.133 -0.234 -2.760 0.025
因变量为荚果产量(Y)。Dependent variable is pod yield.


下载: 导出CSV
表8不同冠层微环境因子与花生荚果产量的通径系数
Table8.Path coefficients of different canopy microenvironment factors and peanut pod yield
自变量
Variable
综合作用
Comprehensive effect
通径系数(直接作用)
Path coefficient (direct effect)
间接通径系数(间接作用)Indirect effect
X2 X3 X5 合计Total
结荚期冠层湿度(X2) Relative humidity at pod-setting stage (X2) -0.902 7 -0.592 9 -0.257 5 -0.052 3 -0.309 8
结荚期冠层光照度(X3) Light intensity at pod-setting stage (X3) 0.939 1 0.326 6 0.467 5 0.145 0 0.612 5
饱果期冠层湿度(X5) Relative humidity at pod-filling stage (X5) -0.568 8 -0.234 2 -0.132 4 -0.202 2 -0.334 6


下载: 导出CSV

参考文献(22)
[1]张雯丽, 李想, 李淞淋.中国花生供需现状及未来10年展望[J].农业展望, 2015, 11(9):7-11 doi: 10.3969/j.issn.1673-3908.2015.09.002
ZHANG W L, LI X, LI S L. Status quo of China's peanut supply and demand and its prospect for the next decade[J]. Agricultural Outlook, 2015, 11(9):7-11 doi: 10.3969/j.issn.1673-3908.2015.09.002
[2]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201604001
LI L. Intercropping enhances agroecosystem services and functioning:Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4):403-415 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201604001
[3]DAI C C, CHEN Y, WANG X X, et al. Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China[J]. Agroforestry Systems, 2013, 87(2):417-426 doi: 10.1007/s10457-012-9563-z
[4]HAGE-AHMED K, KRAMMER J, STEINKELLNER S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f.sp. lycopersici interactions in tomato[J]. Mycorrhiza, 2013, 23(7):543-550 doi: 10.1007/s00572-013-0495-x
[5]TANWAR S P S, RAO S S, REGAR P L, et al. Improving water and land use efficiency of fallow-wheat system in shallow Lithic Calciorthid soils of arid region:Introduction of bed planting and rainy season sorghum-legume intercropping[J]. Soil and Tillage Research, 2014, 138:44-55 doi: 10.1016/j.still.2013.12.005
[6]孟维伟, 高华鑫, 张正, 等.不同玉米花生间作模式对系统产量及土地当量比的影响[J].山东农业科学, 2016, 48(12):32-36 http://d.old.wanfangdata.com.cn/Periodical/shandnykx201612007
MENG W W, GAO H X, ZHANG Z, et al. Effects of different maize-peanut intercropping modes on system yield and land equivalent ratio[J]. Shandong Agricultural Sciences, 2016, 48(12):32-36 http://d.old.wanfangdata.com.cn/Periodical/shandnykx201612007
[7]张毅, 张佳蕾, 郭峰, 等.玉米//花生体系氮素营养研究进展[J].聊城大学学报:自然科学版, 2019, 32(4):53-60
ZHANG Y, ZHANG J L, GUO F, et al. Research progress of nitrogen nutrition in maize//peanut system[J]. Journal of Liaocheng University:Natural Science Edition, 2019, 32(4):53-60
[8]王东, 徐学欣, 张洪波, 等.微喷带灌溉对小麦灌浆期冠层温湿度变化和粒重的影响[J].作物学报, 2015, 41(10):1564-1574 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201510016
WANG D, XU X X, ZHANG H B, et al. Effects of irrigation with micro-sprinkling hoses on canopy temperature and humidity at filling stage and grain weight of wheat[J]. Acta Agronomica Sinica, 2015, 41(10):1564-1574 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201510016
[9]梁晓艳, 郭峰, 张佳蕾, 等.单粒精播对花生冠层微环境、光合特性及产量的影响[J].应用生态学报, 2015, 26(12):3700-3706 http://d.old.wanfangdata.com.cn/Periodical/yystxb201512018
LIANG X Y, GUO F, ZHANG J L, et al. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca)[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3700-3706 http://d.old.wanfangdata.com.cn/Periodical/yystxb201512018
[10]陆樟镳, 黄瑞冬, 魏保权, 等.高粱不同群体类型植株冠层特性与物质生产[J].沈阳农业大学学报, 2011, 42(4):406-410 doi: 10.3969/j.issn.1000-1700.2011.04.004
LU Z B, HUANG R D, WEI B Q, et al. Canopy characteristics and matter production during filling stage in different populations of sorghum[J]. Journal of Shenyang Agricultural University, 2011, 42(4):406-410 doi: 10.3969/j.issn.1000-1700.2011.04.004
[11]张晓娜, 陈平, 杜青, 等.玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响[J].中国生态农业学报(中英文), 2019, 27(8):1183-1194 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0805&flag=1
ZHANG X N, CHEN P, DU Q, et al. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8):1183-1194 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0805&flag=1
[12]焦念元, 李亚辉, 杨潇, 等.玉米/花生间作行比和施磷对玉米光合特性的影响[J].应用生态学报, 2016, 27(9):2959-2967 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201609028
JIAO N Y, LI Y H, YANG X, et al. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize[J]. Chinese Journal of Applied Ecology, 2016, 27(9):2959-2967 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201609028
[13]高国治, 王明珠, 张斌.低丘红壤南酸枣-花生复合系统物种间水肥光竞争的研究——Ⅱ.南酸枣与花生利用光能分析[J].中国生态农业学报, 2004, 12(2):92-94 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200402028
GAO G Z, WANG M Z, ZHANG B. Competition of the light, fertilizer and water between Choerospondias axillaris trees and peanut in the red soil of low hilly land Ⅱ.Analysis of using light energy of Choerospondias axillaris trees and peanut[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2):92-94 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200402028
[14]杨萌珂.玉米花生间作功能叶的光合荧光特性及叶绿体超微结构[D].洛阳: 河南科技大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10464-1014078371.htm
YANG M K. Photosynthetic characteristics, fluorescence characteristics and chloroplast ultrastructure of function leaves under maize-peanut intercropping[D]. Louyang: Henan University of Science and Technology, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10464-1014078371.htm
[15]张娜, 张永强, 徐文修, 等.滴灌量对冬小麦田间小气候及产量的影响研究[J].中国生态农业学报, 2016, 24(1):64-73 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201601008
ZHANG N, ZHANG Y Q, XU W X, et al. Effect of different drip irrigation amounts on microclimate and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1):64-73 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201601008
[16]MAROIS J J, WRIGHT D L, WIATRAK P J, et al. Effect of row width and nitrogen on cotton morphology and canopy microclimate[J]. Crop Science, 2004, 44(3):870 doi: 10.2135/cropsci2004.8700
[17]刘铁东, 宋凤斌, 刘胜群.不同种植方式对拔节期玉米冠层微环境的影响评估[J].干旱区研究, 2015, 32(4):748-752 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201504016
LIU T D, SONG F B, LIU S Q. Evaluation on microclimatic environment of maize canopy at elongation stage under different planting patterns[J]. Arid Zone Research, 2015, 32(4):748-752 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201504016
[18]崔亮, 苏本营, 杨峰, 等.带状套作大豆群体冠层光能截获与利用特征[J].中国农业科学, 2015, 48(1):43-54 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501005
CUI L, SU B Y, YANG F, et al. Relationship between light interception and light utilization of soybean canopy in relay strip intercropping system[J]. Scientia Agricultura Sinica, 2015, 48(1):43-54 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501005
[19]杨峰, 崔亮, 武晓玲, 等.不同空间配置套作大豆后期农学参数及光谱特征分析[J].中国油料作物学报, 2012, 34(3):268-272 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201203007
YANG F, CUI L, WU X L, et al. Soybean agronomic and hyperspectral characteristics at later stage under spatial patterns of maize-soybean intercropping[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(3):268-272 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201203007
[20]GUO Z, LIU H J, YUAN H Y, et al. Insect-proof nets affect paddy field microclimate parameters and grain quality of different Japonica rice varieties[J]. Journal of Crop Science and Biotechnology, 2015, 18(2):73-81 doi: 10.1007/s12892-014-0018-0
[21]任学敏, 王长发, 秦晓威, 等.花生群体冠层温度分异现象及其生理特性研究初报[J].西北农林科技大学学报:自然科学版, 2008, 36(6):68-72 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200806014
REN X M, WANG C F, QIN X W, et al. Preliminary study on canopy varieties population and temperature difference of peanut physiological characteristics[J]. Journal of Northwest A & F University:Natural Science Edition, 2008, 36(6):68-72 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200806014
[22]姚远, 刘兆新, 刘妍, 等.花生、玉米不同间作方式对花生生理性状以及产量的影响[J].花生学报, 2017, 46(1):1-7 http://d.old.wanfangdata.com.cn/Periodical/hsxb201701001
YAO Y, LIU Z X, LIU Y, et al. Effect of different peanut-maize intercropping patterns on peanut growth and yield[J]. Journal of Peanut Science, 2017, 46(1):1-7 http://d.old.wanfangdata.com.cn/Periodical/hsxb201701001

相关话题/生育 环境 花生 生理 生态