李清华,
林诚,
何春梅
福建省农业科学院土壤肥料研究所 福州 350013
基金项目: 国家重点研发计划子课题2018YFD02003035
闽侯农田生态系统福建省野外科学观测研究站MIN KE JI (2018)17
福建省属公益类科研院所基本科研专项2016R1021-2
详细信息
作者简介:王飞, 主要从事土壤资源评价与持续利用研究。E-mail:fjwangfei@163.com
中图分类号:S158.5;S143.2计量
文章访问数:473
HTML全文浏览量:3
PDF下载量:253
被引次数:0
出版历程
收稿日期:2020-02-02
录用日期:2020-03-19
刊出日期:2020-07-01
Yellow-mud paddy soil productivity and phosphorus fractions under long-term different phosphorus supply levels in southern China
WANG Fei,,LI Qinghua,
LIN Cheng,
HE Chunmei
Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
Funds: the National Key Research and Development Program of China2018YFD02003035
the Fund of Minhou Field Scientific Observation and Research Station for Farmland Ecosystem in FujianMIN KE JI (2018)17
the Special Fund for Basic-Scientific Research in the Provincial Public Interest of Research Institutes of Fujian2016R1021-2
More Information
Corresponding author:WANG Fei, E-mail:fjwangfei@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:红壤性水稻土磷素易受铁、铝等固定而有效性低,过量施用磷肥则产生磷素淋失风险,研究不同供磷水平下黄泥田生产力、磷库平衡及磷组分特征,可为磷素高效管理提供依据。本研究基于福建黄泥田连续30年的供磷定位试验,研究连续30年3个供磷水平下[不施磷肥(CK)、30 kg(P2O5)·hm-2(P1)、60 kg(P2O5)·hm-2(P2)]水稻(1987—2004年为双季稻,2005年始种植单季稻)产量演变规律,并于试验的第31年分析土壤有效磷、全磷、无机磷库与有机磷库组分变化。结果表明,连续30年施用磷肥,与CK相比,早稻、晚稻与单季稻历年平均产量P1处理分别提高64.9%、37.0%与19.9%,P2处理分别提高67.0%、41.2%与20.4%,差异均显著。不同稻作制度下黄泥田磷肥的增产效果为早稻>晚稻>单季稻。与P1处理相比,P2处理第31年土壤有效磷含量提高190.5%,全磷含量提高32.4%,差异均显著;Al-P、Fe-P、Ca-P含量与无机磷含量均显著提高,Al-P、Fe-P占无机磷比重分别提高2.12个百分点与4.40个百分点,但O-P比重降低9.45个百分点,差异均显著。施磷肥总体提高了活性有机磷(LOP)与中等活性有机磷(MLOP)含量,降低了高稳定性有机磷(HSOP)含量,P2处理表现尤为明显;增施磷肥,LOP与MLOP占有机磷比重增加,HSOP比重降低。籽粒或秸秆产量与Al-P、Fe-P、Ca-P、MLOP、LOP含量呈显著正相关。综上,黄泥田连续30年施磷肥增产效果明显,P1与P2处理的产量无显著差异,但P1处理呈现磷表观亏缺。增施磷肥提高了无机磷Al-P、Fe-P、Ca-P比重,有机磷组分呈现由活性较低的形态向活性较高的形态转化趋势。每茬60 kg(P2O5)·hm-2可维持磷素养分表观平衡并保持适宜的有效磷水平。
关键词:长期施磷肥/
黄泥田/
水稻/
土壤磷组分/
磷平衡/
产量
Abstract:Phosphorus (P) in red paddy soil is easily fixed by iron and aluminum, resulting in low P availability. Excessive phosphate fertilizer applications increase the risk of P leaching. The soil productivity, P pool balance, and characteristics of the P fractions at different levels of phosphate supply were studied in order to provide a basis for the efficient management of P in paddy fields across southern China. The study was based on a 30-year experiment in Fujian yellow-mud paddy fields. The experiment consisted of three P supply treatments in each season: control with no phosphate fertilizer (CK), 30 kg·hm-2 P2O5 (P1), and 60 kg·hm-2 P2O5 (P2). Double-cropping rice was planted from 1987 to 2004, and single-cropping rice was planted from 2005 onwards. The rice yields and P fractions changes under different P supply treatments over 30 consecutive years were studied. The results showed that the average grain yields of the early-season rice, late-season rice, and single-cropping rice significantly increased by 64.9%, 37.0%, and 19.9% in P1 treatment, and 67.0%, 41.2%, and 20.4% in P2 treatment, respectively. Early rice showed the highest increase in yield, followed by late rice and single-cropping rice. Under P2 treatments, in the 31st year, the soil available P and total P contents in P2 treatment significantly increased by 190.5% and 32.4%, respectively, compared to P1 treatment. The Al-P, Fe-P, Ca-P, and total inorganic P contents also significantly increased, and the Al-P, and Fe-P fraction proportions significantly improved by 2.12 and 4.40 percentage points, respectively. However, the O-P fraction proportion significantly decreased by 9.45 percent points. Phosphate fertilizer applications generally increased the labile organic P (LOP) and medium labile organic phosphorus (MLOP) contents, but decreased the highly stable organic phosphorus (HSOP) content, especially in P2 treatment. Increasing the phosphate fertilizer application rate led to a rise in the proportion of LOP and MLOP to organic P, but it reduced the proportion of HSOP to organic P. Rice grain or straw yields were significantly positively correlated with Al-P, Fe-P, Ca-P, MLOP, and LOP contents. In conclusion, continuous applications of phosphate fertilizer significantly increased the grain yield in yellow-mud paddy soil over 30 consecutive years, but there was no significant difference in the grain yield between P1 and P2 treatments. However, apparent P deficiency was observed in P1 treatment. Increasing phosphate application rate led to a rise in the Al-P, Fe-P, and Ca-P proportions. The results showed that organic P fractions with lower activity changed into fractions with higher activity as the phosphate fertilizer application rate increased. The application of 60 kg(P2O5)·hm-2 phosphate fertilizer per cropping season achieved the optimum apparent balance among P nutrients and maintained an appropriate level of available P.
Key words:Long-term P fertilization/
Yellow-mud paddy field/
Rice/
Soil phosphorus fraction/
Phosphorus balance/
Yield
HTML全文
表1长期不同供磷水平的水稻籽粒产量
Table1.The yields of rice grains under different long-term phosphorus supply levels
稻作 Rice farming | 供磷水平 Phosphorus level [kg(P2O5)·hm–2] | 籽粒产量Grain yield (kg·hm-2) | ||||
1987—1992 | 1993—1998 | 1999—2004 | 2005—2010 | 2011—2017 | ||
早稻 Early season rice | 0 (CK) | 4 277±1 137b | 2 947±578b | 2 247±825b | / | / |
30 (P1) | 6 100±308a | 4 974±664a | 4 383±638a | / | / | |
60 (P2) | 6 232±480a | 5 072±696a | 4 359±705a | / | / | |
晚稻 Late season rice | 0 (CK) | 5 547±855b | 3 203±910b | 3 066±1 889b | / | / |
30 (P1) | 6 223±847ab | 5 488±722a | 4 613±1 219a | / | / | |
60 (P2) | 6 638±450a | 5 445±599a | 4 738±1 234a | / | / | |
单季稻 Single- cropping rice | 0 (CK) | / | / | / | 6 282±1268b | 6 142±491b |
30 (P1) | / | / | / | 7 607±1372a | 7 302±679a | |
60 (P2) | / | / | / | 7 733±1359a | 7 253±846a | |
同一稻作同列数据后不同小写字母表示不同供磷水平在P < 0.05水平差异显著。Values of the same farming followed by different lowercase letters in a column are significantly different at P < 0.05 level. |
下载: 导出CSV
表2长期不同供磷水平黄泥田土壤磷含量
Table2.The contents of soil phosphorus of yellow-mud paddy under different long-term phosphorus supply levels
供磷水平 Phosphorus level [kg(P2O5)·hm–2] | 2013 | 2017 | |||||
有效磷 Available P (mg·kg–1) | 全磷 Total P (g·kg–1) | 土壤磷活化系数 P activation coefficient (%) | 有效磷 Available P (mg·kg–1) | 全磷 Total P (g·kg–1) | 土壤磷活化系数 P activation coefficient (%) | ||
0 (CK) | 3.9±0.7b | 0.28±0.01c | 1.37b | 5.3±1.0b | 0.27±0.01c | 1.95b | |
30 (P1) | 6.0±1.5b | 0.39±0.01b | 1.54b | 6.3±0.5b | 0.37±0.03b | 1.70b | |
60 (P2) | 14.8±1.9a | 0.57±0.02a | 2.58a | 18.3±0.3a | 0.49±0.05a | 3.75a | |
同列数据后不同小写字母表示不同供磷水平在P < 0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P < 0.05 level. |
下载: 导出CSV
表3长期不同供磷水平黄泥田土壤无机磷组分含量和比重(2017年)
Table3.The contents and proportions of inorganic phosphorus fractions of yellow-mud paddy under different long-term phosphorus supply levels in 2017
供磷水平 Phosphorus level [kg(P2O5)·hm–2] | Al-P | Fe-P | O-P | Ca-P | 无机磷总量 Total inorganic phosphorus (mg·kg–1) | |||||||
含量 Content (mg·kg–1) | 比重 Proportion (%) | 含量 Content (mg·kg–1) | 比重 Proportion (%) | 含量 Content (mg·kg–1) | 比重 Proportion (%) | 含量 Content (mg·kg–1) | 比重 Proportion (%) | |||||
0 (CK) | 6.97±1.06c | 6.93b | 32.08±0.87c | 31.97c | 41.53±3.05a | 41.45a | 19.76±4.09c | 19.65b | 100.34±2.65c | |||
30 (P1) | 12.35±2.22b | 7.90b | 53.74±4.15b | 34.47b | 39.62±12.24a | 25.47b | 50.06±10.94b | 32.16a | 155.77±6.71b | |||
60 (P2) | 26.50±4.36a | 10.02a | 102.37±9.93a | 38.87a | 42.00±5.48a | 16.02c | 92.57±11.57a | 35.09a | 263.44±26.91a | |||
同列数据后不同小写字母表示不同供磷水平在P < 0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P < 0.05 level. |
下载: 导出CSV
表4长期不同供磷水平黄泥田土壤有机磷组分含量(2017年)
Table4.The contents and proportions of organic phosphorus fractions of yellow-mud paddy under different long-term phosphorus supply levels in 2017
供磷水平 Phosphorus level [kg(P2O5)· hm–2] | 活性有机磷 Labile organic phosphorus | 中等活性有机磷 Medium labile organic phosphorus | 中等稳定性有机磷 Medium stable organic phosphorus | 高稳定性有机磷 High stable organic phosphorus | 有机磷总量 Total organic phosphorus (mg·kg–1) | |||||||
含量 Content (mg·kg–1) | 比重 Proportion (%) | 含量 Content (mg·kg–1) | 比重 Proportion (%) | 含量 Content (mg·kg–1) | 比重 Proportion (%) | 含量 Content (mg·kg–1) | 比重 Proportion (%) | |||||
0 (CK) | 5.31±2.00b | 3.99b | 57.92±17.72b | 41.72b | 27.32±3.39a | 20.27a | 46.10±8.72a | 34.01a | 136.65±14.31b | |||
30 (P1) | 7.93±3.19ab | 5.16ab | 76.35±10.28ab | 48.46ab | 28.95±3.63a | 18.56a | 44.02±10.15a | 27.82ab | 157.25±13.09ab | |||
60 (P2) | 12.44±3.31a | 7.66a | 90.86±19.07a | 54.92a | 29.48±2.57a | 18.05a | 31.41±2.12b | 19.37b | 164.19±21.36a | |||
同列数据后不同小写字母表示不同供磷水平在P < 0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P < 0.05 level. |
下载: 导出CSV
表5土壤磷库组成与有效磷及产量的相关系数(r)
Table5.The correlation coefficients of phosphorus pool fractions with soil available phosphorus content and rice grain and straw yields
土壤有效磷 Soil available phosphorus | 籽粒产量 Grain yield | 秸秆产量 Straw yield | |
有效磷Available phosphorus | — | 0.609* | 0.749** |
全磷Total phosphorus | 0.866** | 0.775** | 0.698** |
无机磷总量Total inorganic phosphorus | 0.494 | 0.766** | 0.785** |
Al-P | 0.932** | 0.719** | 0.750** |
Fe-P | 0.951** | 0.743** | 0.785** |
O-P | 0.094 | -0.020 | -0.084 |
Ca-P | 0.898** | 0.798** | 0.807** |
有机磷组分总量Total organic phosphorus | 0.939** | 0.612* | 0.229 |
活性有机磷Labile organic phosphorus | 0.719** | 0.563 | 0.759** |
中等活性有机磷Medium labile organic phosphorus | 0.640* | 0.675* | 0.361 |
中等稳定性有机磷Medium stable organic phosphorus | 0.243 | 0.439 | 0.058 |
高稳定性有机磷High stable organic phosphorus | -0.717** | -0.556 | -0.622* |
*P < 0.05; **P < 0.01. |
下载: 导出CSV
表6长期不同供磷水平土壤磷素(P2O5)表观盈亏
Table6.Apparent balance of phosphorus (P2O5) in soils under different long-term phosphorus supply levels
供磷水平 Phosphorus level [kg(P2O5)·hm–2] | 磷输出Phosphorus output (kg·hm–2) | 磷素表观平衡 Phosphorus apparent balance (kg·hm–2) | |||||||
2013 | 2017 | 平均 Average | |||||||
籽粒 Grain | 秸秆 Straw | 合计 Sum | 籽粒 Grain | 秸秆 Straw | 合计 Sum | ||||
0 (CK) | 23.02±1.10b | 4.09±0.76c | 27.11±1.77c | 20.65±0.72b | 9.77±0.06b | 30.42±0.69b | 28.77 | -28.77 | |
30 (P1) | 42.62±3.58a | 9.08±1.17b | 51.70±3.97b | 48.80±3.10a | 19.95±4.50a | 68.75±6.05a | 60.22 | -30.22 | |
60 (P2) | 44.37±2.15a | 15.72±0.46a | 60.09±1.83a | 42.64±0.80a | 18.18±0.24ab | 60.82±0.75a | 60.46 | -0.46 | |
同列数据后不同小写字母表示不同供磷水平在P < 0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P < 0.05 level. |
下载: 导出CSV
参考文献
[1] | 张宝贵, 李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报, 1998, 35(1):104-111 http://www.cnki.com.cn/Article/CJFDTotal-TRXB199801014.htm ZHANG B G, LI G T. Roles of soil organisms on the enhancement of plant availability of soil phosphorus[J]. Acta Pedologica Sinica, 1998, 35(1):104-111 http://www.cnki.com.cn/Article/CJFDTotal-TRXB199801014.htm |
[2] | 朱文彬, 汪玉, 王慎强, 等.太湖流域典型稻麦轮作农田稻季不施磷的农学及环境效应探究[J].农业环境科学学报, 2016, 35(6):1129-1135 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201606015 ZHU W B, WANG Y, WANG S Q, et al. Agronomic and environmental effects of P fertilization reduction in rice-wheat rotation field in Taihu Lake Region of Southeast China[J]. Journal of Agro-Environment Science, 2016, 35(6):1129-1135 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201606015 |
[3] | 鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥, 2003, 18(1):4-8 doi: 10.3969/j.issn.1007-6220.2003.01.002 LU R K. The phosphorus level of soil and environmental protection of water body[J]. Phosphate & Compound Fertilizer, 2003, 18(1):4-8 doi: 10.3969/j.issn.1007-6220.2003.01.002 |
[4] | 中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2017 National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing:China Statistics Press, 2017 |
[5] | 王伟妮, 鲁剑巍, 鲁明星, 等.湖北省早、中、晚稻施磷增产效应及磷肥利用率研究[J].植物营养与肥料学报, 2011, 17(4):795-802 WANG W N, LU J W, LU M X, et al. Effect of phosphorus fertilizer application and phosphorus use efficiency of early, middle and late rice in Hubei Province[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4):795-802 |
[6] | 冀宏杰, 张怀志, 张维理, 等.我国农田磷养分平衡研究进展[J].中国生态农业学报, 2015, 23(1):1-8 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2015101&journal_id=zgstny JI H J, ZHANG H Z, ZHANG W L, et al. Research progress on cropland phosphorus balance in China[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1):1-8 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2015101&journal_id=zgstny |
[7] | 鲁如坤, 时正元, 施建平.我国南方6省农田养分平衡现状评价和动态变化研究[J].中国农业科学, 2000, 33(2):63-67 doi: 10.3321/j.issn:0578-1752.2000.02.010 LU R K, SHI Z Y, SHI J P. Nutrient balance of agroecosystem in six provinces in southern China[J]. Scientia Agricultura Sinica, 2000, 33(2):63-67 doi: 10.3321/j.issn:0578-1752.2000.02.010 |
[8] | 何园球, 李成亮, 刘晓利, 等.水分和施磷量对简育水耕人为土中磷素形态的影响[J].土壤学报, 2008, 45(6):1081-1086 doi: 10.3321/j.issn:0564-3929.2008.06.010 HE Y Q, LI C L, LIU X L, et al. Effects of soil moisture content and phosphorus application rate on form of soil inorganic phosphorus in red paddy soil[J]. Acta Pedologica Sinica, 2008, 45(6):1081-1086 doi: 10.3321/j.issn:0564-3929.2008.06.010 |
[9] | 李杰, 石元亮, 陈智文.我国南方红壤磷素研究概况[J].土壤通报, 2011, 42(3):763-768 http://d.old.wanfangdata.com.cn/Periodical/trtb201103048 LI J, SHI Y L, CHEN Z W. Research on phosphorus in southern red soils of in China[J]. Chinese Journal of Soil Science, 2011, 42(3):763-768 http://d.old.wanfangdata.com.cn/Periodical/trtb201103048 |
[10] | 张鼎华, 沈乒松, 林开淼.福建山地红壤土壤磷素资源的研究[J].土壤通报, 2014, 45(1):130-134 http://d.old.wanfangdata.com.cn/Periodical/trtb201401021 ZHANG D H, SHEN P S, LIN K M. A research on the phosphorus resources of red soils in Fujian mountainous region[J]. Chinese Journal of Soil Science, 2014, 45(1):130-134 http://d.old.wanfangdata.com.cn/Periodical/trtb201401021 |
[11] | 黄庆海, 赖涛, 吴强, 等.长期施肥对红壤性水稻土有机磷组分的影响[J].植物营养与肥料学报, 2003, 9(1):63-66 doi: 10.3321/j.issn:1008-505X.2003.01.011 HUANG Q H, LAI T, WU Q, et al. Effect of long-term fertilization on the forms of organic phosphorus in paddy soil derived from red earth[J]. Plant Nutrition and Fertilizer Science, 2003, 9(1):63-66 doi: 10.3321/j.issn:1008-505X.2003.01.011 |
[12] | 冯跃华, 张杨珠, 黄运湘.湖南稻田土壤有机磷组分的施磷效应、季节变化及生物有效性研究[J].植物营养与肥料学报, 2010, 16(3):634-641 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201003017 FENG Y H, ZHANG Y Z, HUANG Y X. Effects of phosphatezation on organic phosphorus fractions and their seasonal variations and bioavailabilities of paddy soils in Hunan Province[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3):634-641 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201003017 |
[13] | 杜伟, 赵秉强, 林治安, 等.有机复混磷肥对石灰性土壤无机磷形态组成及其变化的影响[J].植物营养与肥料学报, 2011, 17(6):1388-1394 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201106014.htm DU W, ZHAO B Q, LIN Z A, et al. Effects of organic and inorganic phosphorus compound fertilizer on transformation of inorganic phosphorus pool in lime soils[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6):1388-1394 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201106014.htm |
[14] | 史静, 张誉方, 张乃明, 等.长期施磷对山原红壤磷库组成及有效性的影响[J].土壤学报, 2014, 51(2):351-359 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201402017 SHI J, ZHANG Y F, ZHANG N M, et al. Effects of long-term fertilization on forms and availability of phosphorus in mountain red soil[J]. Acta Pedologica Sinica, 2014, 51(2):351-359 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201402017 |
[15] | 林诚, 王飞, 李清华, 等.不同施肥制度对黄泥田土壤酶活性及养分的影响[J].中国土壤与肥料, 2009, (6):24-27 doi: 10.3969/j.issn.1673-6257.2009.06.005 LIN C, WANG F, LI Q H, et al. Effects of different fertilizer application strategies on nutrients and enzymatic activities in yellow clayey soil[J]. Soils and Fertilizers Sciences in China, 2009, (6):24-27 doi: 10.3969/j.issn.1673-6257.2009.06.005 |
[16] | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000 LU R K. The Analytical Methods for Soil and Agrochemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000 |
[17] | 李寿田, 周健民, 王火焰, 等.不同土壤磷的固定特征及磷释放量和释放率的研究[J].土壤学报, 2003, 40(6):908-914 doi: 10.3321/j.issn:0564-3929.2003.06.016 LI S T, ZHOU J M, WANG H Y, et al. Characteristics of fixation and release of phosphorus in three soils[J]. Acta Pedologica Sinica, 2003, 40(6):908-914 doi: 10.3321/j.issn:0564-3929.2003.06.016 |
[18] | LAN Z M, LIN X J, WANG F, et al. Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization[J]. Biology and Fertility of Soils, 2012, 48(5):579-588 doi: 10.1007/s00374-011-0650-5 |
[19] | 宋春丽, 樊剑波, 何园球, 等.不同母质发育的红壤性水稻土磷素吸附特性及其影响因素的研究[J].土壤学报, 2014, 49(3):607-611 http://d.old.wanfangdata.com.cn/Periodical/trxb201203024 SONG C L, FAN J B, HE Y Q, et al. Phosphorous adsorption characteristics of red paddy soils derived from different parent materials and their influencing factors[J]. Acta Pedologica Sinica, 2014, 49(3):607-611 http://d.old.wanfangdata.com.cn/Periodical/trxb201203024 |
[20] | PHEAV S, BELL R W, WHITE P F, et al. Fate of applied fertilizer phosphorus in a highly weathered sandy soil under lowland rice cropping, and its residual effect[J]. Field Crops Research, 2003, 81(1):1-16 doi: 10.1016/S0378-4290(02)00191-0 |
[21] | 赵其国, 黄国勤, 马艳芹.中国南方红壤生态系统面临的问题及对策[J].生态学报, 2013, 33(24):7615-7622 http://d.old.wanfangdata.com.cn/Periodical/stxb201324001 ZHAO Q G, HUANG G Q, MA Y Q. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24):7615-7622 http://d.old.wanfangdata.com.cn/Periodical/stxb201324001 |
[22] | HIGGS B, JOHNSTON A E, SALTER J L, et al. Some aspects of achieving sustainable phosphorus use in agriculture[J]. Journal of Environmental Quality, 2000, 29(1):80-87 doi: 10.2134-jeq2000.00472425002900010010x/ |
[23] | 卢志红, 嵇素霞, 张美良, 等.长期定位施肥对水稻土磷素形态的影响[J].植物营养与肥料学报, 2009, 15(5):1065-1071 doi: 10.3321/j.issn:1008-505X.2009.05.012 LU Z H, JI S X, ZHANG M L, et al. Influence of long-term localized fertilization on phosphorus forms in paddy soil[J]. Plant Nutrition and Fertilizer Science, 2009, 15(5):1065-1071 doi: 10.3321/j.issn:1008-505X.2009.05.012 |
[24] | 林诚, 王飞, 李清华, 等.长期不同施肥下南方黄泥田有效磷对磷盈亏的响应特征[J].植物营养与肥料学报, 2017, 23(5):1175-1183 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201705006 LIN C, WANG F, LI Q H, et al. Response characteristics of Olsen-P to P balance in yellow paddy fields of southern China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5):1175-1183 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201705006 |
[25] | JUGSUJINDA A, KRAIRAPANOND A, PATRICK W H. Influence of extractable iron, aluminium, and manganese on P-sorption in flooded acid sulfate soils[J]. Biology and Fertility of Soils, 1995, 20:118-124 doi: 10.1007/BF00336590 |
[26] | ARAI Y, SPARKS D L. Phosphate reaction dynamics in soils and soil components:a multiscale approach[J]. Advances in Agronomy, 2007, 94(6):135-179 doi: 10.1016-S0065-2113(06)94003-6/ |
[27] | 王光火.红壤在不同pH下对磷的吸附和解吸作用[J].土壤通报, 1989, 20(2):70-72 http://www.cnki.com.cn/Article/CJFDTotal-TRTB198902004.htm WANG G H. Adsorption and desorption of phosphorus in red soil on the condition of different pH[J]. Chinese Journal of Soil Science, 1989, 20(2):70-72 http://www.cnki.com.cn/Article/CJFDTotal-TRTB198902004.htm |
[28] | 鲁艳红, 廖育林, 聂军, 等.长期施肥红壤性水稻土磷素演变特征及对磷盈亏的响应[J].土壤学报, 2017, 54(6):1471-1485 http://d.old.wanfangdata.com.cn/Periodical/trxb201706016 LU Y H, LIAO Y L, NIE J, et al. Evolution of soil phosphorus in reddish paddy soil under long-term fertilization varying in formulation and its response to P balance[J]. Acta Pedologica Sinica, 2017, 54(6):1471-1485 http://d.old.wanfangdata.com.cn/Periodical/trxb201706016 |
[29] | JOHNSTON A E. Soil and Plant Phosphate[M]. Pairs:International Fertilizer Industry Association Press, 2000:27-29 |
[30] | 曹宁, 陈新平, 张福锁, 等.从土壤肥力变化预测中国未来磷肥需求[J].土壤学报, 2007, 44(3):536-543 doi: 10.3321/j.issn:0564-3929.2007.03.022 CAO N, CHEN X P, ZHANG F S, et al. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility[J]. Acta Pedologica Sinica, 2007, 44(3):536-543 doi: 10.3321/j.issn:0564-3929.2007.03.022 |
[31] | 区惠平, 周柳强, 黄美福, 等.不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估[J].植物营养与肥料学报, 2016, 22(1):40-47 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201601008 QU H P, ZHOU L Q, HUANG M F, et al. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(1):40-47 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201601008 |
[32] | 徐新朋, 王秀斌, 李大明, 等.双季稻最佳磷肥和钾肥用量与密度组合研究[J].植物营养与肥料学报, 2016, 22(3):598-608 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201603003 XU X P, WANG X B, LI D M, et al. Optimum combination of phosphorus, potassium and density for double-rice systems[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3):598-608 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201603003 |
[33] | 徐阳春, 沈其荣, 茆泽圣.长期施用有机肥对土壤及不同粒级中有机磷含量与分配的影响[J].土壤学报, 2003, 40(4):593-598 doi: 10.3321/j.issn:0564-3929.2003.04.016 XU Y C, SHEN Q R, MAO Z S. Influences of long-term fertilization on the contents and distributions of forms of organic P in soil and soil particle sizes[J]. Acta Pedologica Sinica, 2003, 40(4):593-598 doi: 10.3321/j.issn:0564-3929.2003.04.016 |
[34] | 龚松贵, 王兴祥, 张桃林, 等.低分子量有机酸对红壤无机磷活化的作用[J].土壤学报, 2010, 47(4):692-697 http://d.old.wanfangdata.com.cn/Periodical/trxb201004014 GONG S G, WANG X X, ZHANG T L, et al. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids[J]. Acta Pedologica Sinica, 2010, 47(4):692-697 http://d.old.wanfangdata.com.cn/Periodical/trxb201004014 |
[35] | 向万胜, 黄敏, 李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报, 2004, 10(6):663-670 doi: 10.3321/j.issn:1008-505X.2004.06.021 XIANG W S, HUANG M, LI X H. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6):663-670 doi: 10.3321/j.issn:1008-505X.2004.06.021 |
[36] | 雷宏军, 刘鑫, 朱端卫.酸性土壤磷分级新方法建立与生物学评价[J].土壤学报, 2007, 44(5):860-866 doi: 10.3321/j.issn:0564-3929.2007.05.013 LEI H J, LIU X, ZHU D W. Development of a new phosphorus fractionation scheme in acid soils and biological evaluation[J]. Acta Pedologica Sinica, 2007, 44(5):860-866 doi: 10.3321/j.issn:0564-3929.2007.05.013 |