删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

秸秆还田条件下腐熟剂对不同质地土壤真菌多样性的影响

本站小编 Free考研考试/2022-01-01

萨如拉1,,,
杨恒山1,
邰继承1,
高聚林2,
李媛媛1
1.内蒙古民族大学农学院/内蒙古自治区饲用作物工程技术研究中心 通辽 028042
2.内蒙古农业大学 呼和浩特 010018
基金项目: 国家重点研发计划课题2017YFD0300805
国家自然科学基金项目31960383
内蒙古自然科学基金面上项目2018MS03059

详细信息
作者简介:萨如拉, 主要从事资源高效利用研究。E-mail:625968785@qq.com
中图分类号:S342.1

计量

文章访问数:454
HTML全文浏览量:3
PDF下载量:537
被引次数:0
出版历程

收稿日期:2019-12-20
录用日期:2020-02-10
刊出日期:2020-07-01

Effect of straw maturing agents on fungal diversity in soil with different textures under returned straw conditions

SARULA1,,,
YANG Hengshan1,
TAI Jicheng1,
GAO Julin2,
LI Yuanyuan1
1. Agricultural College of Inner Mongolia University for Nationalities/Engineering Research Center of Feed Crops in Inner Mongolia Autonomous Region, Tongliao 028042, China
2. Inner Mongolia Agricultural University, Hohhot 010018, China
Funds: the National Key Research and Development Project of China2017YFD0300805
the National Natural Science Foundation of China31960383
the Natural Science Foundation of Inner Mongolia2018MS03059

More Information
Corresponding author:SARULA, E-mail: 625968785@qq.com


摘要
HTML全文
(6)(3)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为因地制宜鉴选适宜的秸秆腐熟剂,在西辽河平原灌区选择秸秆还田的砂壤土和中壤土连作玉米地,分别配施中农绿康腐熟剂、人元腐熟剂和农富康腐熟剂(简称中农、人元、农富康),以秸秆还田不施腐熟剂为对照,在玉米吐丝期取0~15 cm、15~30 cm、30~45 cm土层样品,采用高通量测序技术,研究不同质地土壤秸秆还田配施腐熟剂情况下土壤真菌群落结构的多样性。结果表明,砂壤土秸秆还田配施腐熟剂处理特有OTU(operational taxonomic units)数均比对照多,中壤土则相反。所有处理土壤中被孢霉门(Mortierellomycota)、子囊菌门(Ascomycota)、担子菌门(Basidiomycota)相对丰度较高;优势属均为被孢霉属(Mortierella)和低温酵母(Guehomyces)。不同腐熟剂对土壤质地产生不同影响,中壤土秸秆还田配施中农和农富康对土壤真菌组成及丰度无显著影响,而配施人元显著改变中壤土真菌组成及丰度;砂壤土秸秆还田配施中农和人元显著增加土壤真菌组成及丰度。LEfSe分析可知,砂壤土秸秆还田配施中农、中壤土秸秆还田配施人元和农富康3个处理土壤真菌多样性存在差异,对真菌多样性差异发挥显著性作用的门为担子菌门、子囊菌门,纲为伞菌纲(Agaricomycetes),目为腔菌目(Pleosporales)和伞菌目(Agaricales),种为Mortierella fimbricystis。这种响应差异也体现在同一腐熟剂对中壤土和砂壤土不同土层真菌的影响;随土层的下移,砂壤土和中壤土对照中被孢霉属相对丰度先增加后下降,低温酵母相对丰度下降;施用腐熟剂后(中壤土农富康除外),深层土壤低温酵母相对丰度比表层土壤高。砂壤土秸秆还田配施中农后0~15 cm土层中上述2个优势菌属相对丰度显著提高;而中壤土秸秆还田配施人元增加0~15 cm土层低温酵母相对丰度和15~30 cm、30~45 cm土层被孢霉属相对丰度。由此可见,秸秆还田条件下腐熟剂与土壤质地间响应不同,所以秸秆腐熟剂配施应因地制宜。
关键词:中壤土/
砂壤土/
玉米秸秆还田/
秸秆腐熟剂/
真菌多样性
Abstract:In order to select a straw maturing agent suited to local conditions, straw return on medium and sandy loam were investigated in a continuous maize crop in the West Liaohe Plain irrigation area. Straw returned to the field was treated with Zhongnonglvkang, Renyuan, or Nongfukang maturing agent, or without maturing agent as a control. The diversity and community structure of soil fungi was studied using a high-throughput sequencing technique in 0-15 cm, 15-30 cm and 30-45 cm soil layers during the maize silking stage. The results showed that the number of OUT (operational taxonomic units) in sandy loam treated with returned straw and maturing agent was higher than that of control. However, in medium loam, the results were opposite. The relative abundance of Mortierellomycota, Ascomycota, and Basidiomycota for all treatments was higher than in the control, the dominant genera being Mortierella and Guehomyces. Different straw maturing agents and soil textures resulted in different fungi responses. The composition and abundance of soil fungi in medium loam were not significantly affected by returning straw with Zhongnong and Nongfukang application, although applying Renyuan led to significant changes. Significant composition changes and an increase in soil fungi abundance were identified in sandy loam when returned straw was treated with Zhongnong and Renyuan. The results of Linear discriminant analysis Effect Size (LEfSe) analysis showed that soil fungi diversity differed among three treatments. For sandy loam with Zhongnong application, medium loam with Renyuan, and medium loam with Nongfukang, the most significant fungal classifications were phyla Basidiomycota and Ascomycota, class Agaricomycetes, orders Pleosporales and Agaricales, and species Mortierella fimbricystis. The difference in treatment response was also reflected in the maturing agent effects on fungi in different layers of medium and sandy loam. With increased depths, the relative abundance of Mortierella spp. first increased and then decreased, while the relative abundance of Guehomyces spp. decreased. The relative abundance of Guehomyces spp. in deep soil was higher than that in surface soil after the application of straw maturing agent (except for Nongfukang in medium loam). The relative abundance of these two dominant genera in the 0-15 cm soil layer was significantly increased in sandy loam by returning straw and applying Zhongnong. In medium loam, returning straw and applying Renyuan increased the relative abundance of Guehomyces spp. in the 0-15 cm soil layer and the relative abundance of Mortierella spp. in the 15-45 cm soil layer. Under returned straw conditions, effects of straw maturing agent varied with soil texture; therefore, the combined application of straw and straw decomposing agents should be adapted according to local conditions.
Key words:Medium loam/
Sandy loam/
Maize straw returning to field/
Straw maturing agent/
Fungal diversity

HTML全文


图1不同组土壤样品中独有和共有真菌OTU数量的韦恩图
分组和编号代表的处理如表 2所示。
Figure1.Venn diagrams showing the number of shared and exclusive fungal OTU in different groups of the tested soil samples
The meanings of letters and numbers outside circles in the figure 1 are shown in the table 2.


下载: 全尺寸图片幻灯片


图2不同组试验样品真菌门、种水平分类学组成和分布
分组字母的意义如表 2所示。
Figure2.Taxonomic composition and distribution of soil fungi on the phylum and species levels in different groups of the tested soil
The groups in the figure 2 are shown in the table 2.


下载: 全尺寸图片幻灯片


图3不同组试验样品真菌属聚类树及相对丰度
分组和编号代表的处理如表 2所示。
Figure3.Horizontal clustering tree and relative abundance of fungi genus the tested soil samples
The meanings of letters and numbers in the figure 3 are shown in the table 2.


下载: 全尺寸图片幻灯片


图4不同试验样品真菌差异物种相对丰度热图
分组和编号代表的处理如表 2所示。颜色越蓝表明丰度越低; 反之, 颜色越红代表丰度越高。
Figure4.Relative abundance heat map of fungi of the tested soil samples
The meanings of letters and numbers in the figure 4 are shown in the table 2. The dark blue means the low abundance, the dark red means the high abundance.


下载: 全尺寸图片幻灯片


图5不同组试验样品真菌非度量多维尺度分析
分组字母的意义如表 2所示。
Figure5.Nonmetric multidimensional scale analysis of soil fungi in different groups of the tested soil samples
The meanings of letters in the figure are shown in the table 2.


下载: 全尺寸图片幻灯片


图6不同组试验样品真菌LDA值分布和系统发育树(LDA阈值4.0)
左图中柱的长度代表差异物种的影响大小(即为LDA score), 不同颜色表示不同组(a、f、g)的物种。系统发育树中黄色显示物种丰度无显著差异, 有显著变化的类群按照不同组进行着色, 丰度大小与圆圈的直径大小相称; 不同颜色的节点表示在该颜色所代表的组中起到重要作用的微生物群。
Figure6.LDA value distribution and cladogram of soil fungi in different groups of the tested soil samples (LAD score=4.0)
In the left figure, the length of histogram represents the influence of different species (LDA score) and different colors represent different groups (a, f, g). In the right figure, the yellow means no significant difference in species abundance in cladogram; the groups with significant changes were colored according to different groups, and the abundance size was proportional to the diameter of the circle, nodes of different colors represent the microflora that plays an important role in the group represented by the color.


下载: 全尺寸图片幻灯片

表1试验地耕层土壤养分含量
Table1.Nutrients contents of tillage layer of the test soil
土壤质地
Soil texture
有机质
Organic matter
(g?kg-1)
碱解氮
Alkaline nitrogen
(mg?kg-1)
速效磷
Available phosphorus
(mg?kg-1)
速效钾
Available potassium
(mg?kg-1)
pH
中壤土Medium loamy soil 15.92 53.27 10.23 97.61 8.5
砂壤土Sandy loamy soil 15.34 51.88 8.87 101.21 8.2


下载: 导出CSV
表2不同质地土壤秸秆还田配施腐熟剂土壤样品编号
Table2.Number of soil samples of different soils with different straw decomposing agents
土层
Soil layer
(cm)
砂壤土Sandy loam 中壤土Middle loam
a b c d e f g h
中农绿康秸秆腐熟剂
Zhongnong- lvkang decomposing agent
人元秸秆腐熟剂
Renyuan decomposing agent
农富康秸秆腐熟剂
Nongfukang decomposing agent
无腐熟剂
No Decom- posing agent
中农绿康秸秆腐熟剂
Zhongnong- lvkang decomposing agent
人元秸秆腐熟剂
Renyuan decomposing agent
农富康秸秆腐熟剂
Nongfukang decomposing agent
无腐熟剂
No decomposing agent
0~15 SR111 SR211 SR311 SR411 ZR111 ZR211 ZR311 ZR411
15~30 SR112 SR212 SR312 SR412 ZR112 ZR212 ZR312 ZR412
30~45 SR113 SR213 SR313 SR413 ZR113 ZR213 ZR313 ZR413


下载: 导出CSV
表3不同组试验样品各等级OTU物种统计结果
Table3.Statistical results of OTU at different levels in different groups of the tested soil samples
样品Sample 界Kindom 门Phylum 纲Class 目Order 科Family 属Genus 种Species
SR111 5 13 30 61 117 166 143
SR112 4 12 28 54 103 135 114
SR113 4 13 29 55 105 151 125
SR211 4 15 31 60 115 155 127
SR212 3 14 31 53 100 139 122
SR213 3 13 31 59 111 148 124
SR311 5 12 31 53 98 134 119
SR312 4 14 30 58 100 129 109
SR313 4 11 31 58 107 138 116
SR411 5 16 35 62 123 157 125
SR412 3 13 30 56 99 133 111
SR413 3 14 31 58 89 122 102
ZR111 4 15 33 62 115 168 137
ZR112 4 16 33 57 104 141 117
ZR113 4 14 33 59 100 135 116
ZR211 5 11 29 56 111 158 145
ZR212 3 14 31 55 104 142 119
ZR213 4 14 32 56 101 133 114
ZR311 5 14 32 55 101 139 110
ZR312 4 13 30 57 103 137 119
ZR313 3 13 30 60 98 143 120
ZR411 5 12 29 59 112 161 146
ZR412 4 13 31 56 99 135 112
ZR413 4 14 30 55 111 153 122
分组和编号代表的处理如表 2所示。The meanings of letters and numbers of samples are shown in the table 2.


下载: 导出CSV

参考文献(32)
[1]DILLY O, MUNCH J C. Ratios between estimates of microbial biomass content and microbial activity in soils[J]. Biology and Fertility of Soils, 1998, 27(4):374-379
[2]RIFFALDI R, LEVI-MINZI R, SAVIOZZI A, et al. Adsorption on soil of dissolved organic carbon from farmyard manure[J]. Agriculture, Ecosystems & Environment, 1998, 69(2):113-119 doi: 10.1016-S0167-8809(98)00097-8/
[3]黄丹莲.堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理研究[D].长沙: 湖南大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10532-1012483405.htm
HUANG D L. Microbial community succession and the mechanisms of solid waste composting by ligninolytic microorganism[D]. Changsha: Hunan University, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10532-1012483405.htm
[4]张红, 曹莹菲, 徐温新, 等.植物秸秆腐解特性与微生物群落变化的响应[J].土壤学报, 2019, 56(6):1482-1492 http://d.old.wanfangdata.com.cn/Periodical/trxb201906019
ZHANG H, CAO Y F, XU W X, et al. Decomposition of plant straws and accompanying variation of microbial communities[J]. Acta Pedologica Sinica, 2019, 56(6):1482-1492 http://d.old.wanfangdata.com.cn/Periodical/trxb201906019
[5]张红, 吕家珑, 曹莹菲, 等.不同植物秸秆腐解特性与土壤微生物功能多样性研究[J].土壤学报, 2014, 51(4):743-752 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201404008
ZHANG H, LYU J L, CAO Y F, et al. Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica, 2014, 51(4):743-752 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201404008
[6]李鹏, 李永春, 史加亮, 等.水稻秸秆还田时间对土壤真菌群落结构的影响[J].生态学报, 2017, 37(13):4309-4317 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201713002.htm
LI P, LI Y C, SHI J L, et al. Rice straw return of different decomposition days altered soil fungal community structure[J]. Acta Ecologica Sinica, 2017, 37(13):4309-4317 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201713002.htm
[7]喻曼, 曾光明, 陈耀宁, 等. PLFA法研究稻草固态发酵中的微生物群落结构变化[J].环境科学, 2007, 28(11):2603-2608 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200711034
YU M, ZENG G M, CHEN Y N, et al. Microbial community changes during the degradation of straw using phospholipid fatty acid analysis[J]. Environmental Science, 2007, 28(11):2603-2608 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200711034
[8]辛励, 陈延玲, 刘树堂, 等.长期定位秸秆还田对土壤真菌群落的影响[J].华北农学报, 2016, 31(5):186-192 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201605036
XIN L, CHEN Y L, LIU S T, et al. Fungal community development of long-term straw returning soil[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(5):186-192 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201605036
[9]BANERJEE S, KIRKBY C A, SCHMUTTER D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology and Biochemistry, 2016, 97:188-198 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dcbbdd6bcbe8e17bad646bfcb53e642
[10]张国青, 赵盼, 董彦旭, 等.高通量测序分析环保肥料增效剂对马铃薯根际土壤真菌多样性变化影响[J].微生物学通报, 2017, 44(11):2644-2651 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201711016
ZHANG G Q, ZHAO P, DONG Y X, et al. Effects of a novel fertilizer synergist on fungi diversity from potato rhizosphere soil[J]. Microbiology China, 2017, 44(11):2644-2651 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201711016
[11]江长胜, 杨剑虹, 谢德体, 等.有机物料在紫色母岩风化碎屑中的腐解及调控[J].西南农业大学学报, 2001, 23(5):463-467 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb200105025
JIANG C S, YANG J H, XIE D T, et al. Decay of organic materials in newly-weathered purple rock fragments and its adjustment[J]. Journal of Southwest Agricultural University, 2001, 23(5):463-467 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb200105025
[12]YADVINDER-SINGH, GUPTA R K, JAGMOHAN-SINGH, et al. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice-wheat system in northwestern India[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3):471-480 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=faf48dd913d5014eb57d0a8131731edd
[13]HENRIKSEN T M, BRELAND T A. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil[J]. Biology and Fertility of Soils, 2002, 35(1):41-48 doi: 10.1007%2Fs00374-001-0438-0
[14]PASCAULT N, CéCILLON L, MATHIEU O, et al. In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues[J]. Microbial Ecology, 2010, 60(4):816-828 doi: 10.1007-s00248-010-9705-7/
[15]宋志伟, 陈露露, 潘宇, 等. 3种菌剂对水稻秸秆降解性能的影响[J].生态环境学报, 2018, 27(11):2134-2141 http://d.old.wanfangdata.com.cn/Periodical/tryhj201811021
SONG Z W, CHEN L L, PAN Y, et al. Influence of three microbial agents on the degradation performance of rice straw[J]. Ecology and Environmental Sciences, 2018, 27(11):2134-2141 http://d.old.wanfangdata.com.cn/Periodical/tryhj201811021
[16]钱海燕, 杨滨娟, 黄国勤, 等.秸秆还田配施化肥及微生物菌剂对水田土壤酶活性和微生物数量的影响[J].生态环境学报, 2012, 21(3):440-445 http://d.old.wanfangdata.com.cn/Periodical/tryhj201203008
QIAN H Y, YANG B J, HUANG G Q, et al. Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields[J]. Ecology and Environmental Sciences, 2012, 21(3):440-445 http://d.old.wanfangdata.com.cn/Periodical/tryhj201203008
[17]刘增亮, 廖楠, 汪茜, 等.不同土壤类型下甘蔗根系AM真菌多样性及与土壤因子关系[J].基因组学与应用生物学, 2020, 39(1):216-224
LIU Z L, LIAO N, WANG Q, et al. Diversity of arbuscular mycorrhizal fungi in sugarcane roots under different soil types and its relationship with soil factors[J]. Genomics and Applied Biology, 2020, 39(1):216-224
[18]李安英, 张潞生, 高微微, 等.适于变性梯度凝胶电泳(DGGE)分析的草莓根际土壤微生物的DNA模板制备[J].农业生物技术学报, 2009, 17(4):701-706 http://d.old.wanfangdata.com.cn/Periodical/nyswjsxb200904027
LI A Y, ZHANG L S, GAO W W, et al. DNA preparation for analyzing rhizosphere soil microorganism of strawberry by denaturing gradient gel electrophoresis (DGGE)[J]. Journal of Agricultural Biotechnology, 2009, 17(4):701-706 http://d.old.wanfangdata.com.cn/Periodical/nyswjsxb200904027
[19]LOZUPONE C, KNIGHT R. UniFrac:A new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005, 71(12):8228-8235 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3105689
[20]孙倩, 吴宏亮, 陈阜, 等.宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J].微生物学通报, 2019, 46(11):2963-2972 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201911015
SUN Q, WU H L, CHEN F, et al. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11):2963-2972 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201911015
[21]张海波, 梁月明, 冯书珍, 等.土壤类型和树种对根际土丛枝菌根真菌群落及其根系侵染率的影响[J].农业现代化研究, 2016, 37(1):187-194 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201601027
ZHANG H B, LIANG Y M, FENG S Z, et al. The effects of soil types and plant species on arbuscular mycorrhizal fungi community and colonization in the rhizosphere[J]. Research of Agricultural Modernization, 2016, 37(1):187-194 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201601027
[22]LIAO H, ZHANG Y C, ZUO Q Y, et al. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China[J]. Science of the Total Environment, 2018, 635:784-792 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2d64405cdcdd62aab9bb27f36f938c8
[23]代红翠, 张慧, 薛艳芳, 等.不同耕作和秸秆还田下褐土真菌群落变化特征[J].中国农业科学, 2019, 52(13):2280-2294 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201913008
DAI H C, ZHANG H, XUE Y F, et al. Response of fungal community and function to different tillage and straw returning methods[J]. Scientia Agricultura Sinica, 2019, 52(13):2280-2294 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201913008
[24]KOECHLI C, CAMPBELL A N, PEPE-RANNEY C, et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing[J]. Soil Biology and Biochemistry, 2019, 130:150-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c43a738fd4c015b6c7eacce68aa80455
[25]马琨, 陶媛, 杜茜, 等.不同土壤类型下AM真菌分布多样性及与土壤因子的关系[J].中国生态农业学报, 2011, 19(1):1-7 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110101&flag=1
MA K, TAO Y, DU Q, et al. Arbuscular mycorrhizal fungi diversity and its relationship with soil environmental factors in different soil types[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1):1-7 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110101&flag=1
[26]BEARE M H, HU S, COLEMAN D C, et al. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils[J]. Applied Soil Ecology, 1997, 5(3):211-219 https://www.sciencedirect.com/science/article/abs/pii/S0929139396001424
[27]CLOCCHIATTI A, HANNULA S E, VAN DEN BERG M, et al. The hidden potential of saprotrophic fungi in arable soil:Patterns of short-term stimulation by organic amendments[J]. Applied Soil Ecology, 2020, 147:103434 https://www.sciencedirect.com/science/article/abs/pii/S092913931930976X
[28]尹雪, 许帅, 贾美清, 等.天津海底淤泥中可培养真菌对黑麦草种子萌发和生长的影响[J].河北农业科学, 2018, 22(3):4-8 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201803002
YIN X, XU S, JIA M Q, et al. Effects of fungi isolated from seabed siltin in Tianjin on germination and growth of Lolium perenne[J]. Journal of Hebei Agricultural Sciences, 2018, 22(3):4-8 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201803002
[29]李芳.长期不同施肥条件下黄淮海平原旱作土壤微生物群落结构特征的演变[D].郑州: 河南农业大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10466-1018272024.htm
LI F. Succession of upland soil microbial structure under long-term fertilization in Huang-Huai-Hai Plain[D]. Zhengzhou: Henan Agricultural University, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10466-1018272024.htm
[30]靳冉.枝孢菌Cladosporium sp. Bio-1的木质纤维素降解特性研究[D].长沙: 湖南大学, 2012
JIN R. Study of the lignocelluloses degradation characteristics of a Cladosporium sp. stain Bio-1[D]. Changsha: Hunan University, 2012
[31]梁昌聪, 刘磊, 郭立佳, 等.球囊霉属3种AM真菌对香蕉枯萎病的影响[J].热带作物学报, 2015, 36(4):731-736 http://d.old.wanfangdata.com.cn/Periodical/rdzwxb201504016
LIANG C C, LIU L, GUO L J, et al. Effects of three arbuscular mycorrhizal fungi on fusarium wilt of banana[J]. Chinese Journal of Tropical Crops, 2015, 36(4):731-736 http://d.old.wanfangdata.com.cn/Periodical/rdzwxb201504016
[32]LUCAS S T, D'ANGELO E M, WILLIAMS M A. Improving soil structure by promoting fungal abundance with organic soil amendments[J]. Applied Soil Ecology, 2014, 75:13-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ca2b6239738fde22bbebf59a51f2550

相关话题/土壤 微生物 图片 结构 系统