刘本生1,
许俊香1,
李吉进1,
郎乾乾1,
乔玉辉2,
孙钦平1,,
1.北京市农林科学院植物营养与资源研究所 北京 100097
2.北京市生物多样性与有机农业重点实验室/中国农业大学资源与环境学院 北京 100193
基金项目: 北京市农林科学院科技创新能力建设专项KJCX20180708
北京市农林科学院青年科研基金项目QNJJ202004
北京市优秀人才-青年骨干个人项目2016000020060G128
奶牛产业技术体系北京市创新团队项目BAIC06-2020
北京市生物多样性与有机农业重点实验室开放课题BOF201906
国家重点研发计划项目2016YFD0800602
国家重点研发计划项目2018YFD0800106-04
详细信息
作者简介:李钰飞, 主要研究方向为土壤生态学。E-mail:liyf15@163.com
通讯作者:孙钦平, 主要研究方向为有机废弃物循环利用与植物营养。E-mail:sunqp@126.com
中图分类号:S436.412计量
文章访问数:261
HTML全文浏览量:6
PDF下载量:219
被引次数:0
出版历程
收稿日期:2020-02-18
录用日期:2020-03-27
刊出日期:2020-08-01
Effects of soil flooding of biogas slurry on root-knot nematode (Meloidogyne spp.) and soil nematode community
LI Yufei1,,LIU Bensheng1,
XU Junxiang1,
LI Jijin1,
LANG Qianqian1,
QIAO Yuhui2,
SUN Qinping1,,
1. Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. Beijing Key Laboratory for Biodiversity and Organic Farming/College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Funds: the Special Project for Building Scientific and Technological Innovation Capacity of Beijing Academy of Agriculture and Forestry SciencesKJCX20180708
the Youth Foundation of Beijing Academy of Agriculture and Forestry SciencesQNJJ202004
Beijing Excellent Talents Project2016000020060G128
Beijing Innovation Team of Technology System in Dairy IndustryBAIC06-2020
Beijing Key Laboratory of Biodiversity and Organic FarmingBOF201906
the National Key Research and Development Project of China2016YFD0800602
the National Key Research and Development Project of China2018YFD0800106-04
More Information
Corresponding author:SUN Qinping, E-mail:sunqp@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探索沼液抑制根结线虫的效果,本研究通过盆栽试验,以番茄为试供作物,对比了种植前沼液淹没土壤(BSS)、种植期间浇灌沼液(BS)和加热(HE)3种方法对根结线虫的防控效果。结果表明,与不采取任何措施的对照(CK)处理相比,BSS处理抑制根结线虫效果最为明显,防效高达97.1%,根结指数分别比HE和BS处理降低96.9%和92.9%。HE处理尽管在处理土壤后显著降低了根结线虫数量,但在最后破坏性取样时(结束试验)出现反弹,根结线虫数量甚至高于CK处理。对于土壤线虫群落,CK处理中以植食性线虫为主(81.8%);两个沼液处理中食细菌线虫占优势(平均78.3%),且其中的杂食捕食性线虫在土壤前处理后消失,在试验结束时又重新出现,但所占比例依然非常低。沼液淹水方式的高效防控效果揭示了利用沼液防控根结线虫的关键期在于线虫入侵到植物根部之前的幼虫期。然而,在盆栽系统中,沼液淹水的方式也对作物生长表现出了一定的抑制趋势。高量沼液施用防控病害的同时引发的植物毒害作用以及环境污染风险,需要进一步开展田间研究。
关键词:根结线虫/
沼液/
淹水/
土壤线虫群落/
土壤食物网
Abstract:Root-knot nematodes (RKN, Meloidogyne spp.) cause soil-borne diseases in food crops, and can lead to a huge crop damage worldwide. It has been demonstrated that application of biogas slurry during planting is an effective method to control diseases caused by RKN. We explored the inhibition effect of biogas slurry on RKN by a soil flooding method to provide scientific basis for a new idea to prevent and control soil-borne diseases. A pot experiment was conducted using soil infected with RKN from a vegetable greenhouse. Four treatments were set: 1) biogas slurry was routinely applied to soil three times during the planting period (BS), with an application rate of NH4+ 50 mg·kg-1; 2) soil was pretreated by flooding with 70% biogas slurry twice before planting (BSS); 3) soil was covered with mulching films and heated to 45 ℃ (HE) to simulate a conventional smothering process and, 4) soil was untreated (CK). The most obvious inhibition of RKN was BSS treatment, with a control effect of 97.1%. The root-knot index in BSS treatment decreased by 96.9% and 92.9%, respectively, compared with that of HE and BS. However, this method showed a small trend of inhibiting crop growth. Although HE significantly reduced the number of RKN compared with CK, the RKN number rebounded at the later stage (60 d after treatment), and even was higher than that of CK. Taken together, the proportion of herbivores nematode was the highest in CK (mean 81.8%), while bacterivores dominated in the two biogas slurry treatments, BS and BSS (mean 78.3%). Omnivores and carnivores nematode disappeared in soil flooded with biogas slurry, although they reappeared at the destructive sampling period, the relative abundance was still very low. In the pot system, soil flooding with biogas slurry before planting significantly improved the inhibition effect on RKN compared with the application of biogas slurry during planting. This result revealed that the critical period of using biogas slurry to prevent and control RKN is at the larval stage: that is, before nematodes invade plant roots. Further studies are needed under field conditions to study the toxic effects of biogas slurry flooding in plants, and the potential risk of environmental pollution.
Key words:Root-knot nematode/
Biogas slurry/
Soil flooding/
Soil nematode community/
Soil food web
HTML全文
图1不同沼液利用方式对植株生长的影响
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure1.Effects of different utilization methods of biogas slurry on plant growth
CK: control; HE: soil was heated to 45 ℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period. Different lowercase letters represent significant differences among different treatments at P < 0.05 level.
下载: 全尺寸图片幻灯片
图2不同沼液利用方式下根结线虫防效比较
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。
Figure2.Root-knot index and control efficiency of different utilization methods of biogas slurry
CK: control; HE: soil was heated to 45℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period.
下载: 全尺寸图片幻灯片
图3不同沼液利用方式对线虫总数、根结线虫数量和比例的影响
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure3.Effects of different utilization methods of biogas slurry on the nematode abundance, root-knot nematode abundance, and proportion of root-knot nematode
CK: control; HE: soil was heated to 45 ℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period. Different lowercase letters represent significant differences among different treatments at P < 0.05 level.
下载: 全尺寸图片幻灯片
图4不同沼液利用方式对线虫多样性指标的影响
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure4.Effects of different utilization methods of biogas slurry on nematode diversity indices
CK: control; HE: soil was heated to 45 ℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period. Different lowercase letters represent significant differences among different treatments at P < 0.05 level.
下载: 全尺寸图片幻灯片
图5不同沼液利用方式土壤线虫各营养类群相对丰度
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。
Figure5.Relative abundance of nematode trophic groups of soil under different utilization methods of biogas slurry
CK: control; HE: soil was heated to 45 ℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period.
下载: 全尺寸图片幻灯片
图6土壤前处理后(A)和试验结束时(B)线虫群落PCA分析
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。
Figure6.Principal component analysis for nematode communities after soil pretreatment (A) and at the end of the test (B)
CK: control; HE: soil was heated to 45 ℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period.
下载: 全尺寸图片幻灯片
表1不同沼液利用方式对土壤理化性状的影响
Table1.Effects of different utilization methods of biogas slurry on soil physical and chemical properties
处理 Treatment | pH | 电导率 Electrical conductivity (μS·cm-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) |
CK | 7.2±0.04a | 198.6±26.0c | 601.6±2.7b | 859.4±27.1b | 46.6±0.5a | 2.89±0.08a |
HE | 7.0±0.05a | 322.5±19.4b | 598.8±4.0b | 1 493.5±302.0a | 47.5±0.9a | 2.87±0.09a |
BSS | 6.4±0.03c | 1 049.3±49.6a | 634.3±2.0a | 2 032.8±12.6a | 47.2±0.4a | 3.01±0.07a |
BS | 6.9±0.09b | 252.2±18.0bc | 570.8±8.2c | 847.1±17.0b | 46.6±0.2a | 3.08±0.23a |
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。同列不同小写字母表示不同处理间差异显著(P < 0.05)。CK: control; HE: soil was heated to 45 ℃; BSS: soil was flooded with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period. Different lowercase letters in the same column represent significant differences among different treatments at P < 0.05 level. |
下载: 导出CSV
表2不同沼液利用方式对土壤线虫群落组成的影响
Table2.Effects of different utilization methods of biogas slurry on soil nematode communities composition ?
营养类群 Trophic group | 线虫属 Genus | 土壤前处理后After soil pretreatment | 试验结束时At the end of the test | ||||||
CK | HE | BSS | CK | HE | BSS | BS | |||
食细菌线虫 Bacterivores | 原杆属Protorhabditis | 5.8 | 33.9 | 67.2 | 0.2 | 9.1 | 12.1 | ||
小杆属Rhabditis | 2.4 | 0.7 | 5.6 | 8.5 | 4.2 | 11.5 | 23.5 | ||
拟杆属Rhabditoides | 0.2 | ||||||||
三等齿属Peladera | 0.2 | ||||||||
盆咽属Panagrolaimus | 0.2 | 3.5 | |||||||
丽突属Acrobeles | 0.2 | 0.5 | |||||||
板唇属Chiloplacus | 2.4 | 0.2 | 1.7 | 0.2 | 1.7 | 1.2 | |||
拟丽突属Acrobeloides | 0.7 | 1.9 | 1.2 | 8.6 | 19.4 | 51.6 | 18.1 | ||
头叶属Cephalobus | 1.0 | 4.2 | 5.7 | 14.2 | 11.9 | ||||
棱咽属Prismatolaimus | 0.2 | ||||||||
食真菌线虫Fungivores | 滑刃属Aphelenchoides | 0.2 | 0.5 | 0.3 | |||||
植食性线虫 Herbivores | 根结属Meloidogyne | 87.4 | 62.1 | 24.2 | 76.2 | 69.4 | 8.3 | 28.1 | |
巴兹尔属Basiria | 1.8 | 0.3 | |||||||
短体属Pratylenchus | 0.5 | ||||||||
杂食捕食性线虫 Omnivore-Carnivores | 真矛线属Eudorylaimus | 0.2 | 1.1 | 0.2 | 0.2 | ||||
孔咽属Aporcelaimus | 0.5 | 0.2 | 1.8 | ||||||
CK:对照; HE:加热; BSS:沼液淹水; BS:沼液常规施用。CK: control; HE: soil was heated to 45 ℃; BSS: soil was pretreated by flooding with biogas slurry before planting; BS: biogas slurry was routinely applied to soil three times during the planting period. |
下载: 导出CSV
参考文献
[1] | KARSSEN G, MOENS M. Root-knot Nematodes[M]//PERRY R N, MOENS M. Plant Nematology. London, UK: CAB International, 2006: 60-90 |
[2] | ZHOU D M, FENG H, SCHUELKE T, et al. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection[J]. Microbial Ecology, 2019, 78(2):470-481 doi: 10.1007/s00248-019-01319-5 |
[3] | 喻景权, 杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报, 2000, 31(1):124-126 doi: 10.3969/j.issn.1000-1700.2000.01.035 YU J Q, DU Y S. Soil-sickness problem in the sustainable development for the protected production of vegetables[J]. Journal of Shenyang Agricultural University, 2000, 31(1):124-126 doi: 10.3969/j.issn.1000-1700.2000.01.035 |
[4] | 王晓云, 王秀峰, 魏珉, 等.土元粪及浸提液对番茄根结线虫的防治作用[J].应用生态学报, 2015, 26(8):2511-2517 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201508033 WANG X Y, WANG X F, WEI M, et al. Eupolyphaga frass and its extracts protected tomato from Meloidogyne incognita infestation[J]. Chinese Journal of Applied Ecology, 2015, 26(8):2511-2517 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201508033 |
[5] | YüCEL S, ?ZARSLANDAN A, ?OLAK A, et al. Effect of solarization and fumigant applications on soilborne pathogens and root-knot nematodes in greenhouse-grown tomato in turkey[J]. Phytoparasitica, 2007, 35(5):450-456 doi: 10.1007/BF03020603 |
[6] | 陈志杰, 张淑莲, 张锋, 等.设施蔬菜根结线虫防治基础与技术[M].北京:科学出版社, 2013:106-190 CHEN Z J, ZHANG S L, ZHANG F, et al. Control Basis and Techniques of Root-knot Nematode in Protected Vegetables[M]. Beijing:Science Press, 2013:106-190 |
[7] | ABAD P, GOUZY J, AURY J M, et al. Genome sequence of the metazoan plant-parasitic nematode meloidogyne incognita[J]. Nature Biotechnology, 2008, 26(8):909-915 doi: 10.1038/nbt.1482 |
[8] | OKA Y. Mechanisms of nematode suppression by organic soil amendments-A review[J]. Applied Soil Ecology, 2010, 44(2):101-115 doi: 10.1016/j.apsoil.2009.11.003 |
[9] | REN?O M. Organic amendments of soil as useful tools of plant parasitic nematodes control[J]. Helminthologia, 2013, 50(1):3-14 doi: 10.2478/s11687-013-0101-y |
[10] | CHITWOOD D J. Phytochemical based strategies for nematode control[J]. Annual Review of Phytopathology, 2002, 40(1):221-249 doi: 10.1146/annurev.phyto.40.032602.130045 |
[11] | DOCHERTY P A, SNIDER M D. Effects of hypertonic and sodium-free medium on transport of a membrane glycoprotein along the secretory pathway in cultured mammalian cells[J]. Journal of Cellular Physiology, 1991, 146(1):34-42 https://www.ncbi.nlm.nih.gov/pubmed/1990018 |
[12] | SAYRE R M, PATRICK Z A, THORPE H J. Identification of a selective nematicidal component in extracts of plant residues decomposing in soil[J]. Nematologica, 1965, 11(2):263-268 doi: 10.1163/187529265X00168 |
[13] | LI Y F, LI J, ZHENG C Y, et al. Effects of organic, low input, conventional management practices on soil nematode community under greenhouse conditions[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2015, 64(4):360-371 doi: 10.1080/09064710.2014.911953 |
[14] | SáNCHEZ-MORENO S, FERRIS H. Suppressive service of the soil food web:Effects of environmental management[J]. Agriculture, Ecosystems & Environment, 2007, 119(1/2):75-87 |
[15] | CAO Y, WANG J D, WU H S, et al. Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression[J]. Applied Soil Ecology, 2016, 107:116-123 doi: 10.1016/j.apsoil.2016.05.010 |
[16] | XU M, XIAN Y, WU J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19(5):2534-2542 doi: 10.1007/s11368-019-02258-x |
[17] | M?LLER K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review[J]. Agronomy for Sustainable Development, 2015, 35(3):1021-1041 doi: 10.1007/s13593-015-0284-3 |
[18] | CONN K L, LAZAROVITS G. Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations[J]. Canadian Journal of Plant Pathology, 1999, 21(1):81-92 doi: 10.1080/07060661.1999.10600089 |
[19] | JOTHI G, PUGALENDHI S, POORNIMA K, et al. Management of root-knot nematode in tomato Lycopersicon esculentum, mill., with biogas slurry[J]. Bioresource Technology, 2003, 89(2):169-170 doi: 10.1016/S0960-8524(03)00047-6 |
[20] | MIN Y Y, SATO E, SHIRAKASHI T, et al. Suppressive effect of anaerobically digested slurry on the root lesion nematode Pratylenchus penetrans and its potential mechanisms[J]. Japanese Journal of Nematology, 2007, 37(2):93-100 doi: 10.3725/jjn.37.93 |
[21] | MIN Y Y, TOYOTA K, SATO E, et al. Effects of anaerobically digested slurry on Meloidogyne incognita and Pratylenchus penetrans in tomato and radish production[J]. Applied and Environmental Soil Science, 2011, 2011:528712 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000001209680 |
[22] | VALOCKá B, DUBINSKY P, PAPAJOVá I, et al. Effect of anaerobically digested pig slurry from lagoon on soil and plant nematode communities in experimental conditions[J]. Helminthologia, 2000, 37(1):53-57 https://www.cabdirect.org/cabdirect/abstract/20000806720 |
[23] | 曹云, 马艳, 吴华山, 等.沼液处理对土壤微生物性状及西瓜枯萎病发生的影响[J].中国土壤与肥料, 2016, (1):34-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201601006 CAO Y, MA Y, WU H S, et al. Suppression of fusarium wilt of watermelon by biogas slurry application and its effect on soil microbiological characteristics[J]. Soil and Fertilizer Sciences in China, 2016, (1):34-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201601006 |
[24] | 薛文涛, 孙钦平, 林聪, 等.风速对鸡粪沼液氨挥发特性的影响[J].农业工程学报, 2018, 34(S1):7-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2018z1002 XUE W T, SUN Q P, LIN C, et al. Effect of wind speed on ammonia volatilization characteristics of chicken manure biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1):7-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2018z1002 |
[25] | YEATES G W, BONGERS T, DE GOEDE R G M, et al. Feeding habits in soil nematode families and genera-An outline for soil ecologists[J]. Journal of Nematology, 1993, 25(3):315-331 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2619405/ |
[26] | LI Y F, CAO Z P, HU C, et al. Response of nematodes to agricultural input levels in various reclaimed and unreclaimed habitats[J]. European Journal of Soil Biology, 2014, 60:120-129 doi: 10.1016/j.ejsobi.2013.12.001 |
[27] | ESFAHANI M N. Integration of solar-heating and soil-amendment, an effective control measure against root-knot nematodes in cucumber fields[J]. Pakistan Journal of Nematology, 2008, 26(1):97-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b975d3e7a58367c245d72e71eb51585 |
[28] | 侯茂林.添加石灰氮和有机物进行太阳能加热对温室土壤根结线虫和黄瓜的影响[J].中国生态农业学报, 2008, 16(1):75-79 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20080118&journal_id=zgstny HOU M L. Effect of soil solarization with calcium cyanamid and organic manure amendments on greenhouse root-knot nematodes and cucumber plants[J]. Chinese Journal of Eco-agriculture, 2008, 16(1):75-79 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20080118&journal_id=zgstny |
[29] | LIU M Q, CHEN X Y, GRIFFITHS B S, et al. Dynamics of nematode assemblages and soil function in adjacent restored and degraded soils following disturbance[J]. European Journal of Soil Biology, 2012, 49:37-46 doi: 10.1016/j.ejsobi.2011.09.004 |
[30] | OKA Y, PIVONIA S. Use of ammonia-releasing compounds for control of the root-knot nematode Meloidogyne javanica[J]. Nematology, 2002, 4(1):65-71 doi: 10.1163/156854102760082212 |
[31] | WARREN K S. Ammonia toxicity and pH[J]. Nature, 1962, 195(4836):47-49 doi: 10.1038/195047a0 |
[32] | CHANTIGNY M H, ROCHETTE P, ANGERS D A, et al. Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry[J]. Soil Science Society of America Journal, 2004, 68(1):306-312 doi: 10.2136/sssaj2004.3060 |
[33] | RUNIA W T, MOLENDIJK L P G. Physical methods for soil disinfestation in intensive agriculture:Old methods and new approaches[J]. Acta Horticulturae, 2010, (883):249-258 https://core.ac.uk/display/85274297 |
[34] | 石磊, 赵洪海, 李明亮, 等.土壤强还原处理对根结线虫数量、番茄生长及土壤性质的影响[J].生态学杂志, 2018, 37(6):1865-1870 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201806034 SHI L, ZHAO H H, LI M L, et al. Effects of strong reductive approach on root-knot nematodes, the growth of tomato and soil physicochemical properties[J]. Chinese Journal of Ecology, 2018, 37(6):1865-1870 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201806034 |
[35] | MARCATO C E, PINELLI E, POUECH P, et al. Particle size and metal distributions in anaerobically digested pig slurry[J]. Bioresource Technology, 2008, 99(7):2340-2348 doi: 10.1016/j.biortech.2007.05.013 |
[36] | 张丽萍, 刘红江, 盛婧, 等.发酵周期、贮存时间和过滤对沼液养分和理化性状变化的影响[J].农业资源与环境学报, 2018, 35(1):32-39 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802314569 ZHANG L P, LIU H J, SHENG J, et al. Influence of anaerobic fermentation periods, storage time and filtration on the changes of nutrients and physical and chemical properties of biogas slurry[J]. Journal of Agricultural Resources and Environment, 2018, 35(1):32-39 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802314569 |
[37] | 康俊.爪哇根结线虫致病机理及食道腺寄生基因的功能研究[D].厦门: 厦门大学, 2009: 29-37 http://cdmd.cnki.com.cn/Article/CDMD-10384-2009181525.htm KANG J. Pathogenesis and function study of parasitism gene in the esophageal gland of Meloidogyne javanica[D]. Xiamen: Xiamen University, 2009: 29-37 http://cdmd.cnki.com.cn/Article/CDMD-10384-2009181525.htm |
[38] | WENTZEL S, JOERGENSEN R G. Effects of biogas and raw slurries on grass growth and soil microbial indices[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(2):215-222 doi: 10.1002/jpln.201400544 |
[39] | SALMINEN E, RINTALA J, H?RK?NEN J, et al. Anaerobically digested poultry slaughterhouse wastes as fertiliser in agriculture[J]. Bioresource Technology, 2001, 78(1):81-88 doi: 10.1016/S0960-8524(00)00160-7 |
[40] | FERRIS H, BONGERS T. Nematode indicators of organic enrichment[J]. Journal of Nematology, 2006, 38(1):3-12 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586436/ |
[41] | MAHRAN A, TENUTA M, LUMACTUD R A, et al. Response of a soil nematode community to liquid hog manure and its acidification[J]. Applied Soil Ecology, 2009, 43(1):75-82 doi: 10.1016/j.apsoil.2009.06.003 |
[42] | FERRIS H, BONGERS T, DE GOEDE R G M. A framework for soil food web diagnostics:Extension of the nematode faunal analysis concept[J]. Applied Soil Ecology, 2001, 18(1):13-29 doi: 10.1016/S0929-1393(01)00152-4 |
[43] | 李钰飞, 许俊香, 孙钦平, 等.沼渣施用对土壤线虫群落结构的影响[J].中国农业大学学报, 2017, 22(8):64-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201708009 LI Y F, XU J X, SUN Q P, et al. Effects of biogas residue application on soil nematode community structure[J]. Journal of China Agricultural University, 2017, 22(8):64-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201708009 |
[44] | BONGERS T, BONGERS M. Functional diversity of nematodes[J]. Applied Soil Ecology, 1998, 10(3):239-251 doi: 10.1016/S0929-1393(98)00123-1 |