删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

矿区复垦土壤碳组分对外源碳输入的响应特征

本站小编 Free考研考试/2022-01-01

张云龙1,,
郜春花2,
刘靓1,
靳东升2,
卢晋晶2,
李建华2,,
1.山西大学生物工程学院 太原 030006
2.山西农业大学(山西省农业科学院)农业环境与资源研究所 太原 030006
基金项目: 国家自然科学基金重点联合基金项目U1710255
山西省科技成果转化引导专项项目201804D131049
山西省农业科学院农业科技创新研究课题YCX2018DZYS02

详细信息
作者简介:张云龙, 主要研究方向为矿区复垦土壤修复研究。E-mail:339397495@qq.com
通讯作者:李建华, 主要研究方向为矿区复垦土壤质量修复研究。E-mail:jianhua0119@163.com
中图分类号:S151.9

计量

文章访问数:271
HTML全文浏览量:11
PDF下载量:148
被引次数:0
出版历程

收稿日期:2019-12-30
录用日期:2020-03-25
刊出日期:2020-08-01

Response of soil organic carbon fractions to exogenous carbon input in mine reclamation

ZHANG Yunlong1,,
GAO Chunhua2,
LIU Liang1,
JIN Dongsheng2,
LU Jinjing2,
LI Jianhua2,,
1. College of Biological Engineering, Shanxi University, Taiyuan 030006, China
2. Institute of Agricultural Environment and Resources, Shanxi Agricultural University(Shanxi Academy of Agricultural Sciences), Taiyuan 030006, China
Funds: the National Natural Science Foundation of ChinaU1710255
the Special Projects of Transformation and Guidance of Scientific and Technological Achievements of Shanxi Province201804D131049
the Innovation Research Topic on Agricultural Science and Technology of Shanxi Academy of Agricultural SciencesYCX2018DZYS02

More Information
Corresponding author:LI Jianhua, E-mail:jianhua0119@163.com


摘要
HTML全文
(6)(2)
参考文献(52)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:研究外源碳输入对复垦土壤有机碳及组分的影响,对于深入探究矿区复垦土壤有机碳提升及培肥管理具有重要意义。本文依托山西省襄垣县采煤沉陷复垦区的长期定位试验,研究了矿区复垦土壤碳组分对不同外源碳(生物炭、堆肥、沼渣、牛粪与秸秆)输入的响应特征。分别在2011年与2016年对矿区复垦土壤样品进行采集,测定0~20 cm土层土壤有机碳、易氧化有机碳、活性碳库Ⅰ、Ⅱ的含量。结果表明,生物炭处理的土壤有机碳增长率和年变化量较对照(CK,无外源碳添加)分别增加101.80%和0.56 g·kg-1·a-1,且均显著高于其他有机物料处理;生物炭、牛粪处理土壤0~20 cm土层固碳量较CK分别提高100.52%和91.52%,二者间差异不显著,均显著高于其他有机物料处理,堆肥、沼渣和秸秆处理间对土壤固碳量的提升作用不显著。添加有机物料均能显著增加复垦土壤易氧化有机碳的增长率和年变化量,均表现为堆肥处理最高,较CK分别增加12.37%和0.16 g·kg-1·a-1。复垦土壤活性碳库Ⅰ、Ⅱ的增长率和年变化量均为牛粪处理显著高于其他有机物料处理。有机物料添加均能提高土壤稳定性有机碳含量,与CK相比,生物炭和牛粪处理的提高幅度最大,显著高于其他有机物料,而牛粪与生物碳之间差异不显著。生物炭处理碳库管理指数最高,分别较堆肥、沼渣、牛粪、秸秆处理提高36.30%、52.23%、41.50%、52.02%。施用生物炭、堆肥、沼渣、牛粪与秸秆都能显著提升复垦土壤各碳组分含量和碳库管理指数,施用生物炭的效果最优,因此施用生物炭可作为矿区复垦土壤有机碳提升的有效管理措施。
关键词:复垦土壤/
有机物料/
有机碳/
碳组分/
碳库管理指数
Abstract:Studying the effects of exogenous carbon input on soil organic carbon fractions is important for understanding changes in soil organic carbon and fertilization management in the reclamation of mining areas. Based on a long-term experiment in a coal mining subsidence reclamation area in Xiangyuan County, Shanxi Province, China, this paper explored the response characteristics of the carbon fractions of reclaimed soil to the input of different exogenous carbon sources (biochar, compost, biogas residue, cow manure, and straw). Reclamation soil samples (0-20 cm) were collected in 2011 and 2016. The organic carbon, easily oxidized organic carbon, and labile carbon pool Ⅰ/Ⅱ in soil were measured. The results showed that the growth rate and the annual change of soil organic carbon with the biochar treatment increased by 101.80% and 0.56 g·kg-1·a-1, respectively, compared with the no-addition control (CK), and the increases with biochar were significantly higher than those with other organic material treatments. Compared with CK, the amounts of carbon sequestration in the biochar and cow manure treatments increased by 100.52% and 91.52% in the 0-20 cm soil layer, respectively; and the amounts of carbon sequestration in the biochar and cow manure treatments were significantly higher than those of other organic material treatments. There were no significant differences among composting, biogas residue, and straw treatments in promoting soil carbon sequestration. The addition of organic materials significantly increased the growth rate and annual change of easily oxidized organic carbon in reclaimed soil; the highest value was observed in the compost treatment, with an increase of 12.37% and 0.16 g·kg-1·a-1, respectively, compared with CK. The addition of cow dung significantly increased the growth rate and annual change of the labile carbon pool Ⅰ/Ⅱ, with a greater effect than other organic materials in reclaimed soil. The addition of organic materials also improved the stable organic carbon content of the soil. Compared with CK, the biochar and cow manure treatments showed the greatest improvement in the stable organic carbon content, with a significantly higher contribution than those of other organic material treatments. However, there was no significant difference between cow manure and biochar treatments. The carbon management index of biochar treatment was 36.30%, 52.23%, 41.50%, and 52.02% higher than that of composting, biogas residue, cow manure, and straw treatments, respectively. The application of all the exogenous carbon sources significantly improved the content of carbon fractions and the carbon management index of reclaimed soil. The application of biochar had the best effect. This indicates that biochar can be used as an effective management measure to improve the soil organic carbon of reclaimed mining areas.
Key words:Reclaimed soil/
Organic materials/
Organic carbon/
Carbon fractions/
Carbon pool management index

HTML全文


图1长期添加不同有机物料对复垦土壤有机碳增长率与年变化量的影响
不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure1.Effects of long-term addition of different organic materials on the growth rate and annual change of organic carbon in reclaimed soil
Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2长期添加不同有机物料对复垦土壤固碳量的影响
不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure2.Effects of long-term addition of different organic materials on carbon sequestration in reclaimed soil
Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图3长期添加不同有机物料对复垦土壤易氧化有机碳增长率和年变化量的影响
不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure3.Effects of long-term addition of different organic materials on the growth rate and annual change of easily oxidized organic carbon in reclaimed soil
Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图4长期添加不同有机物料对复垦土壤活性碳库Ⅰ增长率和年变化量的影响
不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure4.Effects of long-term addition of different organic materials on the growth rate and annual change of labile carbon poolⅠ in reclaimed soil
Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图5长期添加不同有机物料对复垦土壤活性碳库Ⅱ增长率和年变化量的影响
不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure5.Effects of long-term addition of different organic materials on the growth rate and annual change of labile carbon pool Ⅱ in reclaimed soil
Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图6长期添加不同有机物料对复垦土壤稳定性有机碳含量的影响
不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure6.Effects of long-term addition of different organic materials on the content of refractory organic carbon in reclaimed soil
Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1供试有机物料有机碳含量和用量
Table1.The organic carbon contents and application amounts of organic materials used in the experiment
有机物料
Organic material
有机碳含量
Organic carbon content (g·kg-1)
碳投入量
Carbon input [t(C)·hm-2]
用量
Application amount (t·hm-2)
生物炭Biochar324.02.78.3
堆肥Compost245.52.711.0
沼渣Biogas residue352.22.77.7
牛粪Cattle manure337.52.78.0
秸秆Maize stalk405.02.76.7


下载: 导出CSV
表2长期添加不同有机物料对复垦土壤碳库管理指数的影响
Table2.Effects of long-term addition of different organic materials on soil carbon management index in reclaimed soil
指数Index生物炭
Biochar
堆肥
Compost
沼渣
Biogas residue
牛粪
Cow dung
秸秆
Straw
碳库指数Carbon pool index (CPI)1.44±0.02a1.28±0.01c1.25±0.01c1.30±0.01b1.24±0.02c
活度指数Labile index (LI)1.18±0.02a0.98±0.02b0.90±0.01c0.92±0.02c0.92±0.01c
碳库管理指数Carbon management index (CMI)170.64±4.86a125.20±3.25b112.10±1.67c120.60±4.13b112.25±2.29c
同行不同小写字母表示各处理间在P < 0.05水平差异显著。Different lowercase letters in the same line mean significant differences at P < 0.05 level.


下载: 导出CSV

参考文献(52)
[1]王必英.山西采煤塌陷对土地的破坏及防治对策探讨[J].环境与可持续发展, 2013, 38(5):97-99 doi: 10.3969/j.issn.1673-288X.2013.05.028
WANG B Y. Study on the land destruction by mining subsidence and prevention countermeasures in Shanxi Province[J]. Environment and Sustainable Development, 2013, 38(5):97-99 doi: 10.3969/j.issn.1673-288X.2013.05.028
[2]胡振琪, 魏忠义.煤矿区采动与复垦土壤存在的问题与对策[J].能源环境保护, 2003, 17(3):3-7 doi: 10.3969/j.issn.1006-8759.2003.03.001
HU Z Q, WEI Z Y. Existing problems and countermeasures on mining and land reclamation in mine area[J]. Energy Environmental Protection, 2003, 17(3):3-7 doi: 10.3969/j.issn.1006-8759.2003.03.001
[3]刘耀宗, 张经元.山西土壤[M].北京:科学出版社, 1992:14-17
LIU Y Z, ZHANG J Y. Soil in Shanxi[M]. Beijing:Science Press, 1992:14-17
[4]李博, 王金满, 王洪丹, 等.煤矿区土壤有机碳含量测算与影响因素研究进展[J].土壤, 2016, 48(3):434-441 http://www.cnki.com.cn/Article/CJFDTotal-TURA201603003.htm
LI B, WANG J M, WANG H D, et al. Progress on measurement and factors of soil organic carbon in mineral area[J]. Soils, 2016, 48(3):434-441 http://www.cnki.com.cn/Article/CJFDTotal-TURA201603003.htm
[5]尹宁宁, 王丽萍.复垦矿区土壤有机碳和微生物活性变化及其解析[J].环境科技, 2014, 27(6):5-8 doi: 10.3969/j.issn.1674-4829.2014.06.002
YIN N N, WANG L P. The changes and analysis of organic carbon and microbial activity in reclaimed soil in mine area[J]. Environmental Science and Technology, 2014, 27(6):5-8 doi: 10.3969/j.issn.1674-4829.2014.06.002
[6]李奇超, 李新举.不同利用方式下复垦土壤的有机碳组分空间分布特征[J].水土保持学报, 2018, 32(2):204-209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201802030
LI Q C, LI X J. The spatial distribution of organic carbon components in reclaimed soil under different utilization modes[J]. Journal of Soil and Water Conservation, 2008, 32(2):204-209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201802030
[7]LAIK R, KUMAR K, DAS D K, et al. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations[J]. Applied Soil Ecology, 2009, 42(2):71-78 doi: 10.1016/j.apsoil.2009.02.004
[8]KUMAR S, SINGH A K, GHOSH P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition[J]. Science of the Total Environment, 2018, 625:1341-1350 doi: 10.1016/j.scitotenv.2018.01.061
[9]ROVIRA P, VALLEJO V R. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils[J]. Soil Biology and Biochemistry, 2007, 39(1):202-215 doi: 10.1016/j.soilbio.2006.07.021
[10]林洪羽, 周明华, 张博文, 等.生物炭及秸秆长期施用对紫色土坡耕地土壤团聚体有机碳的影响[J].中国生态农业学报(中英文), 2020, 28(1):96-103 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2020-0111&journal_id=zgstny
LIN H Y, ZHOU M H, ZHANG B W, et al. Effect of long-term application of biochar and straw on soil organic carbon in purple soil aggregates of sloping uplands[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1):96-103 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2020-0111&journal_id=zgstny
[11]赵红, 吕贻忠, 杨希, 等.不同配肥方案对黑土有机碳含量及碳库管理指数的影响[J].中国农业科学, 2009, 42(9):3164-3169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200909018
ZHAO H, LYU Y Z, YANG X, et al. Effects of different fertilization proportions on organic carbon content of black soil and carbon pool management index[J]. Scientia Agricultura Sinica, 2009, 42(9):3164-3169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200909018
[12]侯晓娜, 李慧, 朱刘兵, 等.生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J].中国农业科学, 2015, 48(4):705-712 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201504008
HOU X N, LI H, ZHU L B, et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica, 2015, 48(4):705-712 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201504008
[13]戚瑞敏, 赵秉强, 李娟, 等.添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J].农业工程学报, 2016, 32(S2):118-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2016z2016
QI R M, ZHAO B Q, LI J, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2):118-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2016z2016
[14]黎嘉成, 高明, 田冬, 等.秸秆及生物炭还田对土壤有机碳及其活性组分的影响[J].草业学报, 2018, 27(5):39-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201805004
LI J C, GAO M, TIAN D, et al. Effects of straw and biochar on soil organic carbon and its active components[J]. Acta Prataculturae Sinica, 2018, 27(5):39-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201805004
[15]山西省统计局, 国家统计局山西调查总队.山西统计年鉴[M].北京:中国统计出版社, 2006:256-259
Shanxi Statistical Bureau, Survey Office of National Bureau Statistical in Shanxi. Shanxi Statistical Yearbook[M]. Beijing:China Statistical Press, 2006:256-259
[16]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2008:28-114
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2008:28-114
[17]LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1):399-402 doi: 10.1007/BF00025067
[18]张影, 刘星, 任秀娟, 等.秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响[J].水土保持学报, 2019, 33(3):153-159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201903023
ZHANG Y, LIU X, REN X J, et al. Effects of straw and biochar on soil carbon pool management index and organic carbon mineralization[J]. Journal of Soil and Water Conservation, 2019, 33(3):153-159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201903023
[19]ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil:An acid hydrolysis approach[J]. Geoderma, 2002, 107(1/2):109-141 https://www.sciencedirect.com/science/article/pii/S0016706101001434
[20]李倩, 马琨, 冶秀香, 等.不同培肥方式对土壤有机碳与微生物群落结构的影响[J].中国生态农业学报, 2018, 26(12):1866-1875 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1212&journal_id=zgstny
LI Q, MA K, YE X X, et al. Effect of fertilization managements on soil organic carbon and microbial community structure[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12):1866-1875 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1212&journal_id=zgstny
[21]YU H Y, DING W X, CHEN Z M, et al. Accumulation of organic C components in soil and aggregates[J]. Scientific Reports, 2015, 5:13804 doi: 10.1038/srep13804
[22]陈源泉, 隋鹏, 严玲玲, 等.有机物料还田对华北小麦玉米两熟农田土壤有机碳及其组分的影响[J].农业工程学报, 2016, 32(S2):94-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2016z2013
CHEN Y Q, SUI P, YAN L L, et al. Effects of different organic wastes incorporation on soil organic carbon and its fraction under wheat-maize cropping system in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2):94-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2016z2013
[23]孙红文.生物炭与环境[M].北京:化学工业出版社, 2013
SUN H W. Biochar and Environment[M]. Beijing:Chemical Industry Press, 2013
[24]尚杰, 耿增超, 陈心想, 等.施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J].农业环境科学学报, 2015, 34(3):509-517 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201503014
SHANG J, GENG Z C, CHEN X X, et al. Effects of biochar on soil organic carbon and nitrogen and their fractions in a rainfed farmland[J]. Journal of Agro-Environment Science, 2015, 34(3):509-517 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201503014
[25]张聪, 慕平, 尚建明.长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响[J].水土保持研究, 2018, 25(1):92-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201801017
ZHANG C, MU P, SHANG J M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait[J]. Research of Soil and Water Conservation, 2018, 25(1):92-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201801017
[26]朱敏, 石云翔, 孙志友, 等.秸秆还田与旋耕对川中土壤物理性状及玉米机播质量的影响[J].中国生态农业学报, 2017, 25(7):1025-1033 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2017710&journal_id=zgstny
ZHU M, SHI Y X, SUN Z Y, et al. Effect of straw return and rotary tillage on soil physical properties and mechanical sowing quality of maize in Central Sichuan[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7):1025-1033 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2017710&journal_id=zgstny
[27]MUNDA S, BHADURI D, MOHANTY S, et al. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar[J]. Biomass and Bioenergy, 2018, 115:1-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be357d2cd7e0a903c0f3c5b9ffca0f4e
[28]SANDERMAN J, BAISDEN W T, FALLON S. Redefining the inert organic carbon pool[J]. Soil Biology and Biochemistry, 2016, 92:149-152 doi: 10.1016/j.soilbio.2015.10.005
[29]LIU H F, ZHANG J Y, AI Z M, et al. 16-Year fertilization changes the dynamics of soil oxidizable organic carbon fractions and the stability of soil organic carbon in soybean-corn agroecosystem[J]. Agriculture, Ecosystems & Environment, 2018, 265:320-330 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f4bc10d81279dd6efce7a86a1c18997
[30]LI J, WEN Y C, LI X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the north china plain[J]. Soil and Tillage Research, 2018, 175:281-290 doi: 10.1016/j.still.2017.08.008
[31]徐敏, 伍钧, 张小洪, 等.生物炭施用的固碳减排潜力及农田效应[J].生态学报, 2018, 38(2):393-404 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201802004
XU M, WU J, ZHANG X H, et al. Impact of biochar application on carbon sequestration, soil fertility and crop productivity[J]. Acta Ecologica Sinica, 2018, 38(2):393-404 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201802004
[32]李涛, 何春娥, 葛晓颖, 等.秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响[J].中国生态农业学报, 2016, 24(12):1633-1642 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20161206&journal_id=zgstny
LI T, HE C E, GE X Y, et al. Responses of soil mineral N contents, enzyme activities and crop yield to different C/N ratio mediated by straw retention and N fertilization[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12):1633-1642 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20161206&journal_id=zgstny
[33]代红翠, 陈源泉, 赵影星, 等.不同有机物料还田对华北农田土壤固碳的影响及原因分析[J].农业工程学报, 2016, 32(S2):103-110 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2016z2014
DAI H C, CHEN Y Q, ZHAO Y X, et al. Effects and causes of different organic materials amendment on soil organic carbon in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2):103-110 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb2016z2014
[34]SOON Y K, ARSHAD M A, HAQ A, et al. The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil[J]. Soil and Tillage Research, 2007, 95(1/2):38-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f20f737a19ed8f5b8b88f6cd0c19ded
[35]BIEDERBECK V O, JANZEN H H, CAMPBELL C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry, 1994, 26(12):1647-1656 doi: 10.1016/0038-0717(94)90317-4
[36]罗梅, 田冬, 高明, 等.紫色土壤有机碳活性组分对生物炭施用量的响应[J].环境科学, 2018, 39(9):4327-4337 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201809044
LUO M, TIAN D, GAO M, et al. Soil organic carbon of purple soil as affected by different application of biochar[J]. Environmental Science, 2018, 39(9):4327-4337 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201809044
[37]史康婕, 周怀平, 杨振兴, 等.长期施肥下褐土易氧化有机碳及有机碳库的变化特征[J].中国生态农业学报, 2017, 25(4):542-552 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20170408&journal_id=zgstny
SHI K J, ZHOU H P, YANG Z X, et al. Characteristics of readily oxidizable organic carbon and soil organic carbon pool under long-term fertilization in cinnamon soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4):542-552 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20170408&journal_id=zgstny
[38]李婧, 迟凤琴, 魏丹, 等.不同有机物料还田对黑土活性有机碳组分含量的影响[J].大豆科学, 2016, 35(6):975-980 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddkx201606015
LI J, CHI F Q, WEI D, et al. Effects of different organic materials returning to field on the content of active organic carbon in black soil[J]. Soybean Science, 2016, 35(6):975-980 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddkx201606015
[39]马莉, 吕宁, 冶军, 等.生物碳对灰漠土有机碳及其组分的影响[J].中国生态农业学报, 2012, 20(8):976-981 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2012803&journal_id=zgstny
MA L, LYU N, YE J, et al. Effects of biochar on organic carbon content and fractions of gray desert soil[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8):976-981 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2012803&journal_id=zgstny
[40]张淑香, 张文菊, 徐明岗.土壤活性有机碳的影响因素与综合分析[J].中国农业科学, 2020, 53(6):1178-1179 http://www.cqvip.com/QK/90161X/202006/7101145258.html
ZHANG S X, ZHANG W J, XU M G. Influencing factors and comprehensive analysis of soil active organic carbon[J]. Scientia Agricultura Sinica, 2020, 53(6):1178-1179 http://www.cqvip.com/QK/90161X/202006/7101145258.html
[41]王芬, 刘会, 冯敬涛, 等.牛粪和生物炭对苹果根系生长、土壤特性和氮素利用的影响[J].中国生态农业学报, 2018, 26(12):1795-1801 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1204&journal_id=zgstny
WANG F, LIU H, FENG J T, et al. Effects of cow dung and biochar on root growth, soil properties and nitrogen utilization of apple[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12):1795-1801 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1204&journal_id=zgstny
[42]李新华, 郭洪海, 朱振林, 等.不同秸秆还田模式对土壤有机碳及其活性组分的影响[J].农业工程学报, 2016, 32(9):130-135 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201609018
LI X H, GUO H H, ZHU Z L, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9):130-135 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201609018
[43]郭军玲, 金辉, 郭彩霞, 等.不同有机物料对苏打盐化土有机碳和活性碳组分的影响[J].植物营养与肥料学报, 2019, 25(8):1290-1299 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201908003
GUO J L, JIN H, GUO C X, et al. Effects of organic materials on soil organic carbon and fractions of active carbon in soda saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8):1290-1299 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201908003
[44]鲁宁.生物炭对华北高产农田土壤碳和作物产量的影响[D].北京: 中国农业科学院, 2014 http://cdmd.cnki.com.cn/Article/CDMD-82101-1014326808.htm
LU N. The effect of biochar application on soil carbon and grain yield in a high yield farmland of the North China Plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014 http://cdmd.cnki.com.cn/Article/CDMD-82101-1014326808.htm
[45]LUO Y Q, WAN S Q, HUI D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856):622-625 doi: 10.1038/35098065
[46]武均, 蔡立群, 张仁陟, 等.耕作措施对旱作农田土壤颗粒态有机碳的影响[J].中国生态农业学报, 2018, 26(5):728-736 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-0511&journal_id=zgstny
WU J, CAI L Q, ZHANG R Z, et al. Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5):728-736 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-0511&journal_id=zgstny
[47]BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7):1459-1466 doi: 10.1071/AR9951459
[48]CONTEH A, BLAIR G J, LEFROY R D B, et al. Soil organic carbon changes in cracking clay soils under cotton production as studied by carbon fractionation[J]. Australian Journal of Agricultural Research, 1997, 48(7):1049-1058 doi: 10.1071/A96177
[49]贺超卉, 董文旭, 胡春胜, 等.生物质炭对土壤N2O消耗的影响及其微生物影响机理[J].中国生态农业学报(中英文), 2019, 27(9):1301-1308 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2019-0901&journal_id=zgstny
HE C H, DONG W X, HU C S, et al. Biochar's effect on soil N2O consumption and the microbial mechanism[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9):1301-1308 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2019-0901&journal_id=zgstny
[50]王月玲, 耿增超, 尚杰, 等.施用生物炭后塿土土壤有机碳、氮及碳库管理指数的变化[J].农业环境科学学报, 2016, 35(3):532-539 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201603018
WANG Y L, GENG Z C, SHANG J, et al. Soil organic carbon and nitrogen and carbon pool management index in Loess soil as influenced by biochar[J]. Journal of Agro-Environment Science, 2016, 35(3):532-539 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201603018
[51]杨旭, 兰宇, 孟军, 等.秸秆不同还田方式对旱地棕壤CO2排放和土壤碳库管理指数的影响[J].生态学杂志, 2015, 34(3):805-809 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201503029
YANG X, LAN Y, MENG J, et al. Effects of different stover-incorporation ways on CO2 emission in dryland brown soil and soil carbon pool management index[J]. Chinese Journal of Ecology, 2015, 34(3):805-809 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201503029
[52]顾美英, 唐光木, 葛春辉, 等.不同秸秆还田方式对和田风沙土土壤微生物多样性的影响[J].中国生态农业学报, 2016, 24(4):489-498 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016409&journal_id=zgstny
GU M Y, TANG G M, GE C H, et al. Effects of straw incorporation modes on microbial activity and functional diversity in sandy soil[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4):489-498 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016409&journal_id=zgstny

相关话题/土壤 生物 管理 图片 农田