纪荣婷2,
王霞3,
陈可伟4,
徐建陶5,
潘云枫6,
陆志新7,
路广7,
王远1,
施卫明1,,
1.中国科学院南京土壤研究所/土壤与农业可持续发展国家重点实验室 南京 210008
2.生态环境部南京环境科学研究所 南京 210042
3.江苏省环境监测中心 南京 210036
4.宜兴市农业技术推广中心 宜兴 214206
5.宜兴市茶果指导站 宜兴 214206
6.宜兴市土肥站 宜兴 214206
7.宜兴市蔬菜办公室 宜兴 214206
基金项目: 江苏省太湖水环境综合治理科研课题TH2018305
江苏省农业科技自主创新资金项目CX(18)1005
山东省重大科技创新工程项目2019JZZY010701
详细信息
作者简介:闵炬, 从事农田养分循环与面源污染防控研究。E-mail:jmin@issas.ac.cn
通讯作者:施卫明, 主要研究方向为土壤-植物营养学等。E-mail:wmshi@issas.ac.cn
中图分类号:X524计量
文章访问数:296
HTML全文浏览量:6
PDF下载量:184
被引次数:0
出版历程
收稿日期:2020-03-02
录用日期:2020-04-26
刊出日期:2020-08-01
Changes in planting structure and nitrogen and phosphorus loss loads of farmland in Taihu Lake region
MIN Ju1,,JI Rongting2,
WANG Xia3,
CHEN Kewei4,
XU Jiantao5,
PAN Yunfeng6,
LU Zhixin7,
LU Guang7,
WANG Yuan1,
SHI Weiming1,,
1. Institute of Soil Science, Chinese Academy of Sciences/State Key Laboratory of Soil and Sustainable Agriculture, Nanjing 210008, China
2. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
3. Jiangsu Environmental Monitoring Center, Nanjing 210036, China
4. Agricultural Technology Popularization Center in Yixing, Yixing 214206, China
5. The Tea and Fruit Technical Guidance Station in Yixing, Yixing 214206, China
6. Yixing Soil and Fertilizer Station, Yixing 214206, China
7. Yixing Vegetable Office, Yixing 214206, China
Funds: the Scientific Research on Comprehensive Treatment of Taihu Lake Water Environment in Jiangsu ProvinceTH2018305
the Independent Innovation Fund Project of Agricultural Science and Technology in Jiangsu ProvinceCX(18)1005
Shandong Provincial Key Research and Development Program2019JZZY010701
More Information
Corresponding author:SHI Weiming, E-mail:wmshi@issas.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:太湖地区是我国农业最发达区域,近年来随着经济利益的驱动,太湖地区稻田改为果园、菜地、茶园现象突出,该地区种植结构的变化趋势和分布特征以及种植结构改变前后的氮(N)、磷(P)肥投入量、径流流失负荷量尚缺乏研究。本研究基于农业统计年鉴和文献调研数据,通过2002—2017年太湖地区主要城市(常州、无锡、苏州、湖州)果菜茶和水稻种植面积、N和P养分投入量、农田N和P流失负荷研究分析,为该地区农业面源污染防治和治理提供科学依据。得出如下结论:2002—2017年太湖地区果菜茶种植面积显著增加,尤其是果园(增加2.852×104 hm2)和茶园(增加1.892×104 hm2),而稻田种植面积下降显著(下降1.985×105 hm2);2002—2010年间种植结构变化速率远高于2010—2017年,且果菜茶种植面积增加主要集中在武进、南浔、宜兴、苏州市区、长兴等临湖地区。2002—2017年太湖地区N、P肥投入量分别降低25.26%和9.59%,N流失量显著下降34.66%,P流失量仅下降1.84%。现今太湖地区稻田、果园、菜园和茶园的N流失负荷分别为10 200 t、670 t和10 100 t、250 t,P流失负荷估算量分别为290 t、400 t、3 000 t和50 t。随着种植结构的改变,太湖地区稻田种植体系已不是农田N、P流失的最大来源,果菜茶来源的N、P流失总和已排在第一位,成为了目前农田N、P流失的优先控制对象。建议下一阶段太湖地区农业面源污染防治应侧重于优化果菜茶与水稻种植结构,同时强化P污染防治技术研究,最终实现太湖地区种植业的清洁可持续发展。
关键词:太湖地区/
稻田/
果园、菜地和茶园/
种植面积/
氮磷投入量/
径流损失
Abstract:The Taihu Lake region is the most developed agricultural region in China. In recent years, driven by economic interests, the transformation of rice paddy into orchard, vegetable field and tea garden in Taihu Lake region has become prominent. The changes in the trend and distribution characteristics of planting structure, as well as the N and P fertilizer inputs and runoff loads (before and after the change in planting structure) are still not studied. Based on the Agricultural Statistical Yearbook and survey data of literatures, through the analysis on planting areas of rice paddy, orchard, vegetable field, and tea garden in major cities in Taihu region (Changzhou, Wuxi, Suzhou, and Huzhou) from 2002 to 2017, nutrient input and N and P loads in farmland were studied to provide scientific basis for prevention and treatment of agricultural non-point source pollution in the area. The main results were summarized as follows: from 2002 to 2017, the planting areas of orchard, vegetable field, and tea garden significantly increased; especially for orchard (increased by 2.852×104 hm2) and tea garden (increased by 1.892×104 hm2). However, the area of rice paddy was decreased by 1.985×105 hm2; the change in rate of planting structure from 2002 to 2010 was much higher than that of 2010 to 2017. The increased planting areas of orchard, vegetable field, and tea garden were mainly concentrated in the lakeside districts, such as Wujin, Nanxun, Yixing, Suzhou urban area, and Changxing. The total N and P fertilizer inputs were decreased by 25.26% and 9.59%, respectively, from 2002 to 2017. The risk of total N runoff reduced significantly by 34.66%, while the total P loss amount remained stable (overall decline by 1.84%). In 2017, the estimated N loss loads from the sources of rice paddy, orchard, vegetable field, and tea garden were 10 200 t, 670 t, 10 100 t and 250 t respectively, and the P loss loads were 290 t, 400 t, 3 000 t and 50 t, respectively, in the Taihu Lake region. With the change in planting structure, rice paddy was no longer the largest source of N and P loss in the farmland, but the total N and P loss from orchard, vegetable field, and tea garden was the largest; these are currently the priority control objects of N and P loss in farmland of the Taihu Lake region. It is suggested that in the next stage, the prevention and control of agricultural non-point source pollution should focus on the optimization of planting structure, and strengthen research on the prevention and control technology of P pollution, in order to achieve clean and sustainable development of the planting industry in the Taihu Lake region.
Key words:Taihu Lake region/
Rice paddy/
Orchard, vegetable field and tea garden/
Planting area/
N, P nutrient input/
Runoff loss
HTML全文
图12002—2017年太湖地区稻田及果菜茶种植面积变化(a)及果园、菜地和茶园各类型种植面积变化(b)
Figure1.Changes of planting area of rice paddy and total area of orchard-vegetable field-tea garden (a) and planting areas of orchard, vegetable field and tea garden (b) from 2002 to 2017 in Taihu Lake region
下载: 全尺寸图片幻灯片
图22002—2017年太湖地区主要城市果菜茶种植面积变化
Figure2.Changes of planting area of orchard-vegetable field-tea garden in major cities of Taihu Lake region from 2002 to 2017
下载: 全尺寸图片幻灯片
图32002—2010年(a)和2010—2017年(b)太湖地区主要县市稻田和及果园、菜地和茶园种果菜茶种植面积变化动态度(K值)变化
Figure3.Changes in dynamic degree (K value) of rice paddy, orchard, vegetable field and tea garden planting areas from 2002 to 2010 (a) and from 2010 to 2017 (b) in major counties and cities in Taihu Lake region
下载: 全尺寸图片幻灯片
图4不同年份太湖地区稻田及果园、菜地和茶园和果菜茶的N肥(a)和P(b)肥投入量变化
Figure4.Changes of N (a) and P (b) fertilizers inputs of rice paddy, orchard, vegetable field and tea garden in different years in Taihu Lake region
下载: 全尺寸图片幻灯片
表1不同年份太湖地区稻田及果园、菜地和茶园和果菜茶的N、P投入量
Table1.N and P input rates of rice paddy, orchard, vegetable field and tea garden in different years in Taihu Lake region ?
年份 Year | 稻田Rice paddy | 果园Orchard | 菜地Vegetable field | 茶园Tea garden | ||||||||||
N | P | N | P | N | P | N | P | |||||||
2002 | 461.9 | 100.2 | 661.1 | 325.1 | 852.5 | 472.2 | 319.8 | 84.091 | ||||||
2010 | 477.6 | 101.6 | 674.8 | 330.7 | 881.6 | 487.4 | 303.0 | 137.6 | ||||||
2017 | 446.5 | 108.0 | 647.3 | 314.3 | 847.0 | 458.6 | 291.0 | 131.3 | ||||||
表中数据来源于宜兴市农业部门年度统计数据, 调研结果为1年施肥量。稻田施肥量按太湖地区常见水稻-油菜(Brassica napus)轮作模式下年施肥量计算, 菜地种植茬数按太湖地区平均复种指数200%计算。The data in the table are from the annual statistics of Yixing Agricultural Department. The research result is the amount of fertilizer applied in one year. The fertilizer application rate of rice paddy is calculated based on the common rice-oilseed rape (Brassica napus) rotation system, and the vegetable multiple-cropping index is 200% according to the average of Taihu Lake region. |
下载: 导出CSV
表2太湖地区稻田及果园、菜地和茶园和果菜茶的N、P径流流失系数
Table2.N and P runoff loss coefficients of rice paddy, orchard, vegetable field and tea garden in Taihu Lake region
N流失系数 N runoff loss coefficient (%) | P流失系数 P runoff loss coefficient (%) | |
稻田Rice paddy[18, 21-22] | 9.954 | 1.152 |
果园Orchard[23-27] | 2.114 | 2.640 |
菜地Vegetable field [28] | 6.243 | 3.416 |
茶园Tea garden[23, 29] | 2.089 | 0.860 |
表中数据通过分析不同文献中N、P径流流失系数计算得出。The data are calculated by analyzing N and P runoff loss coefficients in different references. |
下载: 导出CSV
表3不同年份太湖地区稻田及果园、菜地和茶园和果菜茶的N、P径流流失量
Table3.N and P runoff losses of rice paddy, orchard, vegetable field and tea garden in Taihu Lake region
2002 | 2010 | 2017 | ||||||
氮流失量 N runoff loss (×103 t) | 磷流失量 P runoff loss (×103 t) | 氮流失量 N runoff loss (×103 t) | 磷流失量 P runoff loss (×103 t) | 氮流失量 N runoff loss (×103 t) | 磷流失量 P runoff loss (×103 t) | |||
稻田Rice paddy | 22.10 | 0.55 | 15.40 | 0.38 | 10.20 | 0.29 | ||
果园Orchard | 0.28 | 0.17 | 0.61 | 0.37 | 0.67 | 0.40 | ||
菜地Vegetable field | 10.10 | 3.06 | 10.20 | 3.08 | 10.10 | 3.00 | ||
茶园Tea garden | 0.14 | 0.02 | 0.21 | 0.04 | 0.25 | 0.05 | ||
合计Total | 32.62 | 3.801 | 26.3642 | 3.87 | 21.322 | 3.74 |
下载: 导出CSV
参考文献
[1] | 熊正琴, 邢光熹, 沈光裕, 等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境, 2002, 18(2):29-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj200202007 XIONG Z Q, XING G X, SHEN G Y, et al. Non-point source N pollution of lakes, rivers and wells in the Taihu Lake region[J]. Rural Eco-Environment, 2002, 18(2):29-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj200202007 |
[2] | 周杨, 司友斌, 赵旭, 等.太湖流域稻麦轮作农田氮肥施用状况、问题和对策[J].土壤, 2012, 44(3):510-514 doi: 10.3969/j.issn.0253-9829.2012.03.024 ZHOU Y, SI Y B, ZHAO X, et al. Situation, problems and countermeasures in nitrogen fertilization in rice/wheat rotation paddy field of Taihu Lake Watershed, China[J]. Soils, 2012, 44(3):510-514 doi: 10.3969/j.issn.0253-9829.2012.03.024 |
[3] | 冀宏杰, 张认连, 武淑霞, 等.太湖流域农田肥料投入与养分平衡状况分析[J].中国土壤与肥料, 2008, (5):70-75 doi: 10.3969/j.issn.1673-6257.2008.05.016 JI H J, ZHANG R L, WU S X, et al. Analysis of fertilizer input and nutrient balance of farmland in Taihu Watershed[J]. Soils and Fertilizers Sciences in China, 2008, (5):70-75 doi: 10.3969/j.issn.1673-6257.2008.05.016 |
[4] | 施卫明, 杨林章, 薛利红, 等.农田种植业污染防治课题将成果谱写在田野上[N].中国环境报, 2016-08-25 SHI W M, YANG L Z, XUE L H, et al. The project of pollution prevention and control of farmland cultivation will be written on the field[N]. China Environment News, 2016-08-25 |
[5] | YAO Z S, ZHENG X H, LIU C Y, et al. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 248:386-396 doi: 10.1016/j.agrformet.2017.10.020 |
[6] | ZHANG Q, LI Z W, HUANG B, et al. Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates[J]. Environmental Science and Pollution Research, 2017, 24(3):2734-2743 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=724619bdad3f4c827acf50ea65f18dd3 |
[7] | CHENG Y, XIE W, HUANG R, et al. Extremely high N2O but unexpectedly low NO emissions from a highly organic and chemical fertilized peach orchard system in China[J]. Agriculture, Ecosystems & Environment, 2017, 246:202-209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91e34fc175a0174f70e2ac8718bec85c |
[8] | 张维理, 武淑霞, 冀宏杰, 等.中国农业面源污染形势估计及控制对策Ⅰ. 21世纪初期中国农业面源污染的形势估计[J].中国农业科学, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 ZHANG W L, WU S X, JI H J, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅰ. Estimation of agricultural non-point source pollution in China in early 21 century[J]. Scientia Agricultura Sinica, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 |
[9] | 杨林章, 施卫明, 薛利红, 等.农村面源污染治理的"4R"理论与工程实践——总体思路与"4R"治理技术[J].农业环境科学学报, 2013, 32(1):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201301001 YANG L Z, SHI W M, XUE L H, et al. Reduce-retain-reuse-restore technology for the controlling the agricultural non-point source pollution in countryside in China:General countermeasures and technologies[J]. Journal of Agro-Environment Science, 2013, 32(1):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201301001 |
[10] | 闵炬, 孙海军, 陈贵, 等.太湖地区集约化农田氮素减排增效技术实践[J].农业环境科学学报, 2018, 37(11):2418-2426 doi: 10.11654/jaes.2018-1287 MIN J, SUN H J, CHEN G, et al. The practice of technologies for nitrogen emission reduction and efficiency increase in intensive farmland of Tai Lake region[J]. Journal of Agro-Environment Science, 2018, 37(11):2418-2426 doi: 10.11654/jaes.2018-1287 |
[11] | 严成银, 吕伟娅, 李蒙正, 等.太湖流域农业面源污染及控制技术[J].农技服务, 2013, 30(1):76-78 doi: 10.3969/j.issn.1004-8421.2013.01.061 YAN C Y, LV W Y, LI M Z, et al. The agricultural non-point source pollution and control technology research of Taihu basin[J]. Agricultural Technology Service, 2013, 30(1):76-78 doi: 10.3969/j.issn.1004-8421.2013.01.061 |
[12] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046 doi: 10.1073/pnas.0813417106 |
[13] | 闵炬, 陆扣萍, 陆玉芳, 等.太湖地区大棚菜地土壤养分与地下水水质调查[J].土壤, 2012, 44(2):213-217 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201202007 MIN J, LU K P, LU Y F, et al. Investigation of soil fertility and quality of ground water in greenhouse vegetable fields of Tai Lake region[J]. Soils, 2012, 44(2):213-217 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201202007 |
[14] | SHI W M, YAO J, YAN F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in south-eastern China[J]. Nutrient Cycling in Agroecosystems, 2009, 83(1):73-84 doi: 10.1007/s10705-008-9201-3 |
[15] | MIN J, ZHAO X, SHI W M, et al. Nitrogen balance and loss in a greenhouse vegetable system in Southeastern China[J]. Pedosphere, 2011, 21(4):464-472 doi: 10.1016/S1002-0160(11)60148-3 |
[16] | 程谊, 贾云生, 汪玉, 等.太湖竺山湾小流域果园养分投入特征及其土壤肥力状况分析[J].农业环境科学学报, 2014, 33(10):1940-1947 doi: 10.11654/jaes.2014.10.010 CHENG Y, JIA Y S, WANG Y, et al. Nutrient inputs and soil fertility status in orchards of Zhushan Bay in Taihu Lake Watershed[J]. Journal of Agro-Environment Science, 2014, 33(10):1940-1947 doi: 10.11654/jaes.2014.10.010 |
[17] | HAN W Y, XU J M, WEI K, et al. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70(6):2495-2500 doi: 10.1007/s12665-013-2292-4 |
[18] | ZHAO X, ZHOU Y, MIN J, et al. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China[J]. Agriculture, Ecosystems & Environment, 2012, 156:1-11 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfc15ec1a4cad48056f1fa9cc442fa5b |
[19] | LIU J, ZUO Q, ZHAI L M, et al. Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications[J]. Journal of Integrative Agriculture, 2016, 15(3):667-677 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx-e201603020 |
[20] | 冉小伟, 邓良基, 潘根兴.华东地区典型县域近20年土地利用动态变化分析——以宜兴市为例[J].中国农学通报, 2009, 25(12):246-251 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200912052 RAN X W, DENG L J, PAN G X. Analyzing of land use change in classical county of east China of region in nearly 20 years-Take Yixing City for example[J]. Chinese Agricultural Science Bulletin, 2009, 25(12):246-251 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200912052 |
[21] | 王桂苓, 马友华, 孙兴旺, 等.巢湖流域麦稻轮作农田径流氮磷流失研究[J].水土保持学报, 2010, 24(2):6-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201002002 WANG G L, MA Y H, SUN X W, et al. Study of nitrogen and phosphorus runoff in wheat-rice rotation farmland in Chao Lake basin[J]. Journal of Soil and Water Conservation, 2010, 24(2):6-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201002002 |
[22] | 陈秋会, 席运官, 王磊, 等.太湖地区稻麦轮作农田有机和常规种植模式下氮磷径流流失特征研究[J].农业环境科学学报, 2016, 35(8):1550-1558 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201608016 CHEN Q H, XI Y G, WANG L, et al. Characteristics of nitrogen and phosphorus runoff losses in organic and conventional rice-wheat rotation farmland in Taihu Lake Region[J]. Journal of Agro-Environment Science, 2016, 35(8):1550-1558 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201608016 |
[23] | 马友华, 谢昕云, 马中文, 等.安徽省园地氮磷径流流失[J].水土保持学报, 2012, 26(3):12-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201203003 MA Y H, XIE X Y, MA Z W, et al. Nitrogen and phosphorus runoff from garden plots in Anhui Province[J]. Journal of Soil and Water Conservation, 2012, 26(3):12-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201203003 |
[24] | 钱晓雍, 沈根祥, 黄丽华, 等.崇明东滩地区砂质旱田氮磷径流流失特征研究[J].水土保持学报, 2010, 24(2):11-14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201002003 QIAN X Y, SHEN G X, HUANG L H, et al. Characteristics of nitrogen and phosphorus losses with rainfall-runoff from sandy dry field in Chongming Dongtan[J]. Journal of Soil and Water Conservation, 2010, 24(2):11-14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201002003 |
[25] | 郭智, 刘红江, 陈留根, 等.太湖流域典型桃园土壤氮素径流流失特征[J].水土保持学报, 2017, 31(4):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201704001 GUO Z, LIU H J, CHEN L G, et al. Characteristics of nitrogen losses by surface runoff in a typical peach orchard field in Taihu Lake basin, China[J]. Journal of Soil and Water Conservation, 2017, 31(4):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201704001 |
[26] | 朱继业, 高超, 朱建国, 等.不同农地利用方式下地表径流中氮的输出特征[J].南京大学学报:自然科学, 2006, 42(6):621-627 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb200606007 ZHU J Y, GAO C, ZHU J G, et al. Nitrogen exports via overland runoff under different land uses and their seasonal pattern[J]. Journal of Nanjing University:Natural Sciences, 2006, 42(6):621-627 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb200606007 |
[27] | 张慧敏, 徐秋桐, 章明奎.水土保持措施降低河网平原区果园地表氮磷铜流失[J].农业工程学报, 2014, 30(2):132-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201402017 ZHANG H M, XU Q T, ZHANG M K. Application of different management measures to reduce runoff losses of nitrogen, phosphorus and copper from orchard in dense river network plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2):132-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201402017 |
[28] | WANG R, MIN J, KRONZUCKER H J, et al. N and P runoff losses in China's vegetable production systems:Loss characteristics, impact, and management practices[J]. Science of the Total Environment, 2019, 663:971-979 doi: 10.1016/j.scitotenv.2019.01.368 |
[29] | 席运官, 陈瑞冰, 李国平, 等.太湖流域坡地茶园径流流失规律[J].生态与农村环境学报, 2010, 26(4):381-385 doi: 10.3969/j.issn.1673-4831.2010.04.018 XI Y G, CHEN R B, LI G P, et al. Surface runoff in tea gardens on slope land in Taihu Lake region[J]. Journal of Ecology and Rural Environment, 2010, 26(4):381-385 doi: 10.3969/j.issn.1673-4831.2010.04.018 |
[30] | MIN J, SHI W M. Nitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control it[J]. Science of the Total Environment, 2018, 613/614:123-130 doi: 10.1016/j.scitotenv.2017.09.079 |
[31] | 王红营.基于遥感的华北平原农业土地利用时空变化特征及驱动力分析[D].石家庄: 河北师范大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10094-1016060589.htm WANG H Y. Using remote sensing to analyze spatiotemporal variations in farmland utilization and driving force in the North China Plain[D]. Shijiazhuang: Hebei Normal University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10094-1016060589.htm |
[32] | 王志成, 张超, 刘江华.阿克苏河灌区种植结构动态变化与驱动力分析[J].干旱地区农业研究, 2017, 35(3):278-284 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201703043 WANG Z C, ZHANG C, LIU J H. Study on dynamic change of plantation structure and its driving forces in Akesu River Irrigation Area[J]. Agricultural Research in the Arid Areas, 2017, 35(3):278-284 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201703043 |
[33] | 陈晓辉.中国种植业结构演变及其资源环境代价研究[D].北京: 中国农业大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10019-1018065407.htm CHEN X H. Resource and environmental costs of cropping structure change in China[D]. Beijing: China Agricultural University, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10019-1018065407.htm |
[34] | 潘佩佩, 杨桂山, 苏伟忠, 等.太湖流域粮食生产时空格局演变与粮食安全评价[J].自然资源学报, 2013, 28(6):931-943 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201306005 PAN P P, YANG G S, SU W Z, et al. Spatio-temporal structure variation of grain production and the evaluation of grain security in Taihu Lake basin[J]. Journal of Natural Resources, 2013, 28(6):931-943 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201306005 |
[35] | 魏后凯.实施化肥、农药使用减量行动计划[J].中国合作经济, 2018, (3):29 doi: 10.3969/j.issn.1006-6063.2018.03.030 WEI H K. Implement the action plan for reducing the use of chemical fertilizers and pesticides[J]. China Co-operation Economy, 2018, (3):29 doi: 10.3969/j.issn.1006-6063.2018.03.030 |
[36] | MIN J, ZHANG H L, SHI W M. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production[J]. Agricultural Water Management, 2012, 111:53-59 doi: 10.1016/j.agwat.2012.05.003 |
[37] | 于飞, 施卫明.近10年中国大陆主要粮食作物氮肥利用率分析[J].土壤学报, 2015, 52(6):1311-1324 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201506011 YU F, SHI W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6):1311-1324 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201506011 |
[38] | 夏永秋, 杨旺鑫, 施卫明, 等.我国集约化种植业面源氮发生量估算[J].生态与农村环境学报, 2018, 34(9):782-787 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201809003 XIA Y Q, YANG W X, SHI W M, et al. Estimation of non-point source N emission in intensive cropland of China[J]. Journal of Ecology and Rural Environment, 2018, 34(9):782-787 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201809003 |