删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

生态补偿标准对农户生产行为的影响——以云南省红河县哈尼稻作梯田为例

本站小编 Free考研考试/2022-01-01

刘某承1,,,
白云霄1, 2,
杨伦1,
焦雯珺1
1.中国科学院地理科学与资源研究所 北京 100101
2.中国科学院大学 北京 100049
基金项目: 农业农村部国际交流合作项目12200020

详细信息
作者简介:刘某承, 主要研究方向为生态经济与农业生态。E-mail:liumc@igsnrr.ac.cn
中图分类号:F062.2

计量

文章访问数:252
HTML全文浏览量:11
PDF下载量:174
被引次数:0
出版历程

收稿日期:2020-03-31
录用日期:2020-05-27
刊出日期:2020-09-01

Impacts of eco-compensation on the farmers' production behavior of Hani Rice Terraces in China

LIU Moucheng1,,,
BAI Yunxiao1, 2,
YANG Lun1,
JIAO Wenjun1
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the International Cooperation Project of Ministry of Agriculture and Rural Affairs of the People's Republic of China12200020

More Information
Corresponding author:LIU Moucheng, E-mail: liumc@igsnrr.ac.cn


摘要
HTML全文
(5)(5)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:设计和制定针对农田面源污染的生态补偿机制,可以有效促进农田环境治理与保护。但补偿政策的效果如何,取决于农户对政策的接受程度、响应情况和实施力度。为研究不同的生态补偿标准对优化农户生产行为的影响,本文以中国云南省哈尼稻作梯田为例,将农户分为高、低海拔两个小组,建立农户多目标生产决策模型,通过设定不同补偿标准,对农户生产行为进行预测,分析了不同补偿标准对农户种植决策和福利的影响。结果表明,生态补偿激发了农户的农业生产热情,农户倾向选择更为复杂但收益更高的种植结构。随着生态补偿标准的提高,农户的种植决策对标准的敏感性逐渐降低;同时高海拔组对标准的敏感性高于低海拔组,其种植结构变化的幅度也明显高于低海拔组,其化肥农药投入强度的削减幅度大于低海拔组。当生态补偿标准达到3 000元·hm-2时,水稻、玉米、套种大豆、套种玉米的面积比分别为60%、4%、18%、18%,化肥农药分别减少37%、49%、37%、44%。生态补偿标准通过改变农户的种植决策和化学品投入,最终对农户的收入产生影响:高海拔组,随补偿标准的提高,农户总收益先降后升,当补偿标准为1 650元·hm-2时,收益到达拐点;当生态补偿标准超过1 650元·hm-2时,不仅能达到农户减施化肥农药的效果,也能保障农户的收益。但低海拔组,随补偿标准的提高,水稻、单作玉米、玉米套种大豆的总收益持续下降,农药化肥减施对总收益的影响较大,农户对生态补偿的响应也较低。总之,生态补偿对农户生产行为有明显影响,且此影响与生产环境相关。
关键词:生态补偿/
农户行为/
种植决策/
化肥农药减施/
全球重要农业文化遗产/
哈尼稻作梯田
Abstract:Designing and formulating an ecological compensation mechanism for farmland non-point source pollution can effectively promote the environmental management and protection of farmland. However, the efficacy of compensation policies depends on the levels of acceptance, response, and implementation of such policies by farmers. In order to study the influence of different ecological compensation standards on the optimization of farmers' production behavior, we examined the case of the Hani Rice Terraces in Yunnan Province, China. We divided the farmers into two groups who cultivate at high and low altitudes respectively, and built a multi-objective production decision model based on the multi-objective utility model. By increasing the compensation amount in the profit function and setting different compensation standards, we simulated the production behavior of farmers in two groups under different compensation standards and analyzed the impact of different compensation standards on farmers' planting decisions and welfare. The results showed that although the policy of ecological compensation was aimed at reducing the use of fertilizers and pesticides, the additional income thus generated had stimulated farmers' enthusiasm for agricultural production. Driven by the pursuit of economic benefits, farmers invested more in terms of labor, tended to adopt more complex but higher-yielding planting structures. With an increase in the ecological compensation standard, the sensitivity of farmers' planting decision to the standard gradually decreased. In this regard, however, the high-altitude group was found to be more sensitive to the standard than the low-altitude group, and their planting structure changed to a significantly greater extent than that of the the low-altitude group. Furthermore, the intensity of fertilizer and pesticide input of the high-altitude group decreased to a greater extent than that of the low-altitude group. When the ecological compensation rate reached 3 000 ¥·hm-2, the area ratios of rice, maize, intercopped soybean, and intercropped maize were 60%, 4%, 18%, and 18%, respectively; and fertilizer and pesticide usage was reduced by 37%, 49%, 37%, and 44%, respectively. Ecological compensation standards ultimately impacted farmers' incomes by changing their cropping decisions and chemical inputs. In the high-altitude group, the total benefits of farmers initially decreased but subsequently increased with an increase in the compensation rate. When the ecological compensation rate was 1 650 ¥·hm-2, the benefits reached an inflection point. When the rate exceeded 1 650 ¥·hm-2, not only did the farmers reduce the use of chemical fertilizers and pesticides, they also got a relative higher income. However, for the low-altitude group, the total yields of rice, maize monoculture, and maize intercropped with soybean continued to decline, and the reduction in pesticide and fertilizer application had a more pronounced impact on the total yields. Moreover, the response of farmers in this group to ecological compensation was also less positive. In this study, we demonstrated that agro-ecological compensation policies aimed at limiting chemical inputs would incentivize farmers to change their cropping decisions to compensate for the losses caused by a reduction in chemical inputs. Despite such reductions, changes in cropping patterns gave rise to uncertainty regarding total chemical inputs and farm household welfare. The results of this study accordingly highlight the importance of paying attention to changes in farmers' behavior in different environment during the implementation of ecological compensation policies. Ecological compensation has a significant effect on farmers' production behavior, and this effect is related to the production environment.
Key words:Eco-compensation/
Farmer behavior/
Planting decision/
Reduction of chemical fertilizer and pesticides/
Globally Important Agricultural Heritage Systems (GIAHS)/
Hani Rice Terraces

HTML全文


图1研究区和问卷调查地点
Figure1.Study area and questionnaire sites


下载: 全尺寸图片幻灯片


图2不同生态补偿标准下高海拔地区农户组(a)、低海拔地区农户组(b)和研究区所有农户(c)的种植结构变化
Figure2.Areas of different crops of farmers groups in high altitude area (a), low altitude area (b) and all farmers in the study area (c) under different standards of eco-compensation


下载: 全尺寸图片幻灯片


图3不同生态补偿标准下高海拔地区农户组(a)、低海拔地区农户组(b)和研究区所有农户(c)的化肥农药投入变化
Figure3.Inputs of fertilizers and pesticides of different crops of farmers groups in high altitude area (a), low altitude area (b) and all farmers in the study area (c) under different standards of eco-compensation


下载: 全尺寸图片幻灯片


图4不同生态补偿标准下高海拔地区农户组(a)和低海拔地区农户组(b)的作物种植的收益
Figure4.Planting income of different crops of farmers groups in high altitude area (a) and low altitude area (b) under different standards of eco-compensation


下载: 全尺寸图片幻灯片


图5不同生态补偿标准下高海拔地区农户组(a)和低海拔地区农户组(b)总收入的变化
Figure5.Total income of farmers groups in high altitude area (a) and low altitude area (b) under different standards of eco-compensation


下载: 全尺寸图片幻灯片

表12017年不同海拔地区农户组的种植结构
Table1.Planting areas of different crops of farmers groups in different altitude areas in Hani Rice Terraces?hm2?household–1
作物
Crop
高海拔地区农户组
Farmers in high altitude area
低海拔地区农户组
Farmers in low altitude area
水稻Rice0.230.16
玉米Maize0.120.05
玉米大豆套种
Maize/soybean intercropping
0.090.07
合计Total0.440.28


下载: 导出CSV
表22017年不同海拔地区农户组的不同作物投入产出情况
Table2.Input and yield of different crops of farmers groups in different altitude areas in Hani Rice Terraces in 2017
作物
Crop
单产
Yield
(kg?hm–2)
劳动力投入
Labor input
(persons?hm–2)
化肥农药资金投入
Chemical input
(¥?hm–2)
其他生产资料资金投入
Other input
(¥?hm–2)
A组
Group A
B组
Group B
A组
Group A
B组
Group B
A组
Group A
B组
Group B
A组
Group A
B组
Group B
水稻Rice10 170.012 766.5324.0297.02 191.53 052.52 028.02 086.5
玉米Maize7 863.08 652.0139.5123.01 905.02 208.01 122.01 216.5
套种大豆Intercropped soybean2 001.02 395.560.051.0502.5687.0630.0795.0
套种玉米Intercropped maize7 623.08 275.5127.5112.51 689.01 930.51 051.51 138.5
A组:高海拔地区农户组; B组:低海拔地区农户组。Group A: farmers in high altitude area; Group B: farmers in low altitude area.


下载: 导出CSV
表32017年不同海拔地区农户组的粮食自留情况
Table3.Amount of grain retained by farmers groups in different altitude areas in Hani Rice Terraces in 2017?kg?hm–2
作物
Crop
高海拔地区农户组
Farmers in high altitude area
低海拔地区农户组
Farmers in low altitude area
水稻Rice4 006.51 087.5
玉米Maize1 648.52 224.5
套种大豆
Intercropped soybean
1 104.0426.0
套种玉米
Intercropped maize
2 718.02 356.5


下载: 导出CSV
表4不同海拔地区农户组的种植决策目标的权重
Table4.Weights of the objectives in the decision-making of farmers groups in different altitude areas in Hani Rice Terraces
决策目标
Objective
观测数据估计
Estimated with measured data
2017年观测数据估计
Estimated with measured data in 2017
20152017高海拔地区农户组
Farmers in high altitude area
低海拔地区农户组
Farmers in low altitude area
利润Profit0.400.430.390.48
风险Risk0.180.170.140.20
自留Grain retaining0.420.400.460.32


下载: 导出CSV
表52017年不同海拔地区农户组的生产函数的各项参数
Table5.Parameters of the production function of farmers groups in different altitude areas in Hani Rice Terraces
参数
Parameter
水稻
Rice
玉米
Maize
套种大豆
Intercropped soybean
套种玉米
Intercropped maize
A组
Group A
B组
Group B
A组
Group A
B组
Group B
A组
Group A
B组
Group B
A组
Group A
B组
Group B
A74.8472.8857.7431.5854.8550.0869.1440.14
βlab0.370.270.310.250.210.150.290.24
βchemcap0.150.260.250.420.100.190.230.38
βnonchemcap0.070.050.070.070.060.070.070.07
$\sum {{\beta _j}} $0.590.590.630.730.380.400.590.69
A组:高海拔地区农户组; B组:低海拔地区农户组。Aβ为生产函数${y_i}({\bar x_i})$的参数。βlab为劳动力的参数; βchemcap为购买化学品资金的参数; βnonchemcap为购买其他生产资料资金的参数。Group A: farmers in high altitude area; Group B: farmers in low altitude area. A and β are parameters of the production function ${y_i}({\bar x_i}).$ βlab is the parameter of labor. βchemcap is the parameter of capital for purchase of chemicals. βnonchemcap is the parameter of capital for purchase of other production.


下载: 导出CSV

参考文献(36)
[1]LI W H, LIU M C, MIN Q W. China's ecological agriculture:Progress and perspectives[J]. Journal of Resources and Ecology, 2011, 2(1):1-7 doi: 10.3969/j.issn.1674-764x.2011.01.001
[2]MIN Q W, ZHANG Y X, JIAO W J, et al. Responding to common questions on the conservation of agricultural heritage systems in China[J]. Journal of Geographical Sciences, 2016, 26(7):969-982 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb-e201607013
[3]LIU M C, XIONG Y, YUAN Z, et al. Standards of ecological compensation for traditional eco-agriculture:Taking rice-fish system in Hani Terrace as an example[J]. Journal of Mountain Science, 2014, 11(4):1049-1059 doi: 10.1007/s11629-013-2738-x
[4]DONNI O. Collective household labor supply:Nonparticipation and income taxation[J]. Journal of Public Economics, 2003, 87(5/6):1179-1198
[5]秦艳红, 康慕谊.国内外生态补偿现状及其完善措施[J].自然资源学报, 2007, 22(4):557-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200704007
QIN Y H, KANG M Y. A review of ecological compensation and its improvement measures[J]. Journal of Natural Resources, 2007, 22(4):557-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200704007
[6]COASE R H. The problem of social cost[J]. The Journal of Law and Economics, 2013, 56(4):837-877
[7]ZHEN L, OCHIRBAT B, LV Y, et al. Comparing patterns of ecosystem service consumption and perceptions of range management between ethnic herders in Inner Mongolia and Mongolia[J]. Environmental Research Letters, 2010, 5(1):015001 http://www.cabdirect.org/abstracts/20103130599.html
[8]WUNDER S. Payments for environmental services and the poor:Concepts and preliminary evidence[J]. Environment and Development Economics, 2008, 13(3):279-297 http://www.researchgate.net/publication/227391254_Payments_for_environmental_services_and_the_poor_concepts_and_preliminary_evidence
[9]ZHENG H, ROBINSON B E, LIANG Y C, et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program[J]. Proceedings of the National Academy of Science of the United States of America, 2013, 110(41):16681-16686 http://www.ncbi.nlm.nih.gov/pubmed/24003160
[10]李文华, 刘某承.关于中国生态补偿机制建设的几点思考[J].资源科学, 2010, 32(5):790-796 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201005001
LI W H, LIU M C. Several strategic thoughts on China's eco-compensation mechanism[J]. Resources Science, 2010, 32(5):790-796 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201005001
[11]李文华, 刘某承, 张丹.用生态价值观权衡传统农业与常规农业的效益——以稻鱼共作模式为例[J].资源科学, 2009, 31(6):899-904 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200906001
LI W H, LIU M C, ZHANG D. Tradeoff analysis on comprehensive valuation of traditional agriculture and rice monocropping in Zhejiang[J]. Resources Science, 2009, 31(6):899-904 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200906001
[12]KRAWCZYK M. Testing for hypothetical bias in willingness to support a reforestation program[J]. Journal of Forest Economics, 2012, 18(4):282-289 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=904f811f0ee8bfc5efc48129a0d1207e
[13]LIU M C, YANG L, MIN Q W. Establishment of an eco-compensation fund based on eco-services consumption[J]. Journal of Environmental Management, 2018, 211:306-312 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a486b15043450fd420f188dfbe18d1e
[14]张永勋, 刘某承, 闵庆文, 等.农业文化遗产地有机生产转换期农产品价格补偿测算——以云南省红河县哈尼梯田稻作系统为例[J].自然资源学报, 2015, 30(3):374-383 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201503002
ZHANG Y X, LIU M C, MIN Q W, et al. Calculation of price compensation of agriculture products in the period of organic conversion in agricultural heritage sites-Taking paddy rice of Hani terrace in Honghe County of Yunnan Province as an example[J]. Journal of Natural Resources, 2015, 30(3):374-383 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201503002
[15]BERWECK S, KOOHAFKAN P, CRUZ M J R D, et al. Conceptual framework for economic evaluation of Globally Important Agricultural Heritage Systems (GIAHS):Case of rice-fish co-culture in China[J]. Journal of Resources and Ecology, 2013, 4(3):202-211 http://en.cnki.com.cn/Article_en/CJFDTOTAL-JORE201303004.htm
[16]任静, 尹昌斌, 段志龙.基于果农受偿意愿的绿肥种植生态补偿标准探讨[J].中国生态农业学报(中英文), 2020, 28(3):448-457 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0315&flag=1
REN J, YIN C B, DUAN Z L. Discussion on the ecological compensation standard of green manure planting based on the willingness of fruit farmers to accept[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3):448-457 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0315&flag=1
[17]刘某承, 伦飞, 张灿强, 等.传统地区稻田生态补偿标准的确定——以云南哈尼梯田为例[J].中国生态农业学报, 2012, 20(6):703-709 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201206008
LIU M C, LUN F, ZHANG C Q, et al. Standards of payments for paddy ecosystem services:Using Hani Terrace as case study[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6):703-709 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201206008
[18]ZHEN L, LI F, YAN H M, et al. Herders' willingness to accept versus the public sector's willingness to pay for grassland restoration in the Xilingol League of Inner Mongolia, China[J]. Environmental Research Letters, 2014, 9(4):045003 http://www.researchgate.net/publication/262998921_Herders_willingness_to_accept_versus_the_public_sectors_willingness_to_pay_for_grassland_restoration_in_the_Xilingol_League_of_Inner_Mongolia_China?ev=auth_pub
[19]ANTLE J M, DIAGANA B, STOORVOGEL J J, et al. Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems[J]. Australian Journal of Agricultural and Resource Economics, 2010, 54(4):601- 617 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a20dd080453c00773f7e041869ccb5b3
[20]BALBI S, DEL PRADO A, GALLEJONES P, et al. Modeling trade-offs among ecosystem services in agricultural production systems[J]. Environmental Modelling & Software, 2015, 72:314-326 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a92b3fe0939fed157a36e5659020392
[21]蔡银莺, 张安录.基于农户受偿意愿的农田生态补偿额度测算——以武汉市的调查为实证[J].自然资源学报, 2011, 26(2):177-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201102001
CAI Y Y, ZHANG A L. Agricultural land's ecological compensation criteria based on the producers' willingness to accept:A case study of farmer households in Wuhan[J]. Journal of Natural Resources, 2011, 26(2):177-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201102001
[22]MJELDE J W, JIN Y H, LEE C K, et al. Development of a bias ratio to examine factors influencing hypothetical bias[J]. Journal of Environmental Management, 2012, 95(1):39-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a5b630b3544b91eee6e68b4b9461e64
[23]LI W H. Agro-ecological Farming Systems in China[M]. New York:The Parthenon Publishing Group, 2001
[24]K?NIG H J, ZHEN L, HELMING K, et al. Assessing the impact of the sloping land conversion programme on rural sustainability in Guyuan, western China[J]. Land Degradation & Development, 2014, 25(4):385-396 http://www.researchgate.net/publication/235640217_ASSESSING_THE_IMPACT_OF_THE_SLOPING_LAND_CONVERSION_PROGRAMME_ON_RURAL_SUSTAINABILITY_IN_GUYUAN_WESTERN_CHINA
[25]张方圆, 赵雪雁.基于农户感知的生态补偿效应分析——以黑河中游张掖市为例[J].中国生态农业学报, 2014, 22(3):349-355 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201403013
ZHANG F Y, ZHAO X Y. Effect of farmers' perception on ecological compensation-A case study of Zhangye Prefecture in the Heihe River Basin[J]. Chinese Journal of Eco-Agriculture, 2014, 22(3):349-355 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201403013
[26]张人千, 魏法杰.基于解析-仿真反馈的动态随机生产决策模型[J].计算机集成制造系统, 2005, 11(12):1651-1658 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt200512001
ZHANG R Q, WEI F J. Dynamic & stochastic production decision-making model based on analytic-simulation feedback[J]. Computer Integrated Manufacturing Systems, 2005, 11(12):1651-1658 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt200512001
[27]YANG L, LIU M C, LUN F, et al. An analysis on crops choice and its driving factors in agricultural heritage systems-A case of Honghe Hani rice terraces system[J]. Sustainability, 2017, 9(7):1162 http://www.researchgate.net/publication/318120743_An_Analysis_on_Crops_Choice_and_Its_Driving_Factors_in_Agricultural_Heritage_Systems-A_Case_of_Honghe_Hani_Rice_Terraces_System
[28]RIESGO L, GóMEZ-LIMóN J A. Multi-criteria policy scenario analysis for public regulation of irrigated agriculture[J]. Agricultural Systems, 2006, 91(1/2):1-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c18dc721f4476105f9e456c2cad96f3
[29]高东, 毛如志, 朱有勇.水稻地方品种与改良品种内部遗传异质性的比较分析[J].分子植物育种, 2010, 8(3):432-438 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201003004
GAO D, MAO R Z, ZHU Y Y. Comparative analysis of intra-varietal heterogeneity between rice landraces and improved varieties[J]. Molecular Plant Breeding, 2010, 8(3):432-438 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201003004
[30]林菁菁, 李进斌, 刘林, 等.云南元阳哈尼梯田稻瘟病菌遗传多样性分析[J].植物病理学报, 2009, 39(1):43-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb200901007
LIN J J, LI J B, LIU L, et al. Genetic diversity of Magnaporthe grisea of Hani terrace from Yuanyang County in Yunnan[J]. Acta Phytopathologica Sinica, 2009, 39(1):43-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb200901007
[31]HEJNOWICZ A P, RAFFAELLI D G, RUDD M A, et al. Evaluating the outcomes of payments for ecosystem services programmes using a capital asset framework[J]. Ecosystem Services, 2014, 9:83-97 http://www.sciencedirect.com/science/article/pii/S2212041614000382
[32]BREMER L L, FARLEY K A, LOPEZ-CARR D, et al. Conservation and livelihood outcomes of payment for ecosystem services in the Ecuadorian Andes:What is the potential for 'win-win'?[J]. Ecosystem Services, 2014, 8:148-165 http://www.sciencedirect.com/science/article/pii/S2212041614000278
[33]BARTOLINI F, BAZZANI G M, GALLERANI V, et al. The impact of water and agriculture policy scenarios on irrigated farming systems in Italy:An analysis based on farm level multi-attribute linear programming models[J]. Agricultural Systems, 2007, 93(1/3):90-114 http://www.sciencedirect.com/science/article/pii/S0308521X06000783
[34]LIU M C, YANG L, MIN Q W. Water-saving irrigation subsidy could increase regional water consumption[J]. Journal of Cleaner Production, 2019, 213:283-288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54a8c5a88bf978cf6dcbb135d749a0f6
[35]MANOS B, BEGUM M A A, KAMRUZZAMAN M, et al. Fertilizer price policy, the environment and farms behavior[J]. Journal of Policy Modeling, 2007, 29(1):87-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6575c3ab21e30c4c1053c7fbc4ac08df
[36]YANO H, SAKAWA M. Interactive fuzzy decision making for multiobjective fuzzy random linear programming problems and its application to a crop planning problem[M]//MADANI K, CORREIA A D, ROSA A, et al. Computational Intelligence. Cham: Springer, 2015: 143-157

相关话题/生态 生产 农业 作物 结构