曹建生1,,,
阳辉1,
朱春雨1
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2018YFC0406501-02
国家自然基金项目41877170
河北省重点研发计划项目20324203D
河北省创新能力提升计划项目20536001D
详细信息
作者简介:司梦可, 主要研究方向为山地生态水文过程研究。E-mail:13253671220@163.com
通讯作者:曹建生, 主要从事山地生态水文过程与降水资源调控机制研究。 E-mail:caojs@sjziam.ac.cn
中图分类号:S157.2计量
文章访问数:163
HTML全文浏览量:9
PDF下载量:121
被引次数:0
出版历程
收稿日期:2020-03-08
录用日期:2020-07-21
刊出日期:2020-11-01
Soil water variation of different vegetation community in Taihang Mountain Area
SI Mengke1, 2,,CAO Jiansheng1,,,
YANG Hui1,
ZHU Chunyu1
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: National Key Research and Development Project of China2018YFC0406501-02
National Natural Science Foundation of China41877170
Key Research and Development Project of Hebei Province, China20324203D
Pro-motion Project of Creation Ability of Hebei Province, China20536001D
More Information
Corresponding author:CAO Jiansheng, E-mail:caojs@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了解太行山区主要植被类型的土壤水分状况,选取太行山区4种典型植被——小麦/玉米(农作物)、黄背草(草本)、荆条(灌木)和核桃(乔木),利用大型称重式蒸渗仪,监测了4种植被2018年和2019年生长季(4—10月)的土壤水分、深层渗漏和蒸散发要素,并利用数理统计方法分析了土壤含水量的变化特征。结果表明,2018年小麦/玉米、黄背草、荆条和核桃地平均土壤含水量分别为0.30 cm3·cm-3、0.35 cm3·cm-3、0.32 cm3·cm-3和0.36 cm3·cm-3,而2019年平均土壤含水量分别为0.28 cm3·cm-3、0.26 cm3·cm-3、0.23 cm3·cm-3和0.31 cm3×cm-3,相比于2017年生长季末(11月)土壤含水量,2018年小麦/玉米、黄背草、荆条和核桃地土壤含水量下降幅度分别为0.05 cm3·cm-3、0.04 cm3·cm-3、0.09 cm3·cm-3和0.05 cm3·cm-3,2019年下降幅度分别为0.07 cm3·cm-3、0.13 cm3·cm-3、0.18 cm3·cm-3和0.10 cm3·cm-3,荆条地土壤水分的下降幅度最大,小麦/玉米地下降幅度最小。在垂直方向上,4种植被土壤水分变化趋势一致,随着土层深度的增加土壤含水量逐渐降低,但对土壤水分的获取深度有所差异。土壤水分获取深度小麦/玉米主要为45~100 cm,黄背草和核桃主要为100~150 cm,荆条主要为150~180 cm。形成这一结果的原因可能是根系分布的差异,小麦/玉米和黄背草为禾本科植物,根系分布在浅层土壤,虽然核桃为乔木,但其为浅根植物,而荆条在主根周围分布有丰富的侧根,且主根延伸到土层深部,能够获取深层土壤水分。这表明荆条是该地区主要耗水物种,在太行山区绿化植被的选取和生态系统的管理和修复中,应尽量减少荆条的覆盖面积。
关键词:太行山区/
蒸渗仪测量/
土壤水分/
根系分布/
植被类型
Abstract:Soil water storage and movement are highly heterogeneous across ecosystems. However, variation characteristics of soil moisture are not well understood at present, due to the high heterogeneity of environmental conditions. The Taihang Mountain region is an important water collection area of the North China Plain, and a functional area for water conservation in the national Beijing-Tianjin-Hebei coordinated development strategy. However, little is known about the soil water regime of the main plant species that inhabit this region. In this study, the soil water content for four representative vegetation types, Triticum aestivum/Zea mays, Themeda triandra var. Japonica, Vitex negundo var. heterophylla and Juglans regia, that are widely distributed in the semi-arid area of the Taihang Mountain, were observed using large scale weighing lysimeters, during the growing season (April to October) in 2018 and 2019. Weighing lysimeters systematically measured the soil water content, seepage, and evapotranspiration among different vegetation communities, and the collected data on the variation characteristic of soil moisture content for four vegetation types were analyzed by means of statistical analysis. The results showed that average soil water content for T. aestivum/Z. mays, T. triandra, V. negundo, and J. regia were 0.30 cm3·cm-3, 0.35 cm3·cm-3, 0.32 cm3·cm-3 and 0.36 cm3·cm-3 in 2018, and 0.28 cm3×cm-3, 0.26 cm3·cm-3, 0.23 cm3·cm-3 and 0.31 cm3·cm-3 in 2019, respectively. Similarly, the decrease of soil water content for T. aestivum/Z. mays, T. triandra, V. negundo, and J. regia were 0.05 cm3×cm-3, 0.04 cm3·cm-3, 0.09 cm3·cm-3, and 0.05 cm3·cm-3 in 2018, and 0.07 cm3×cm-3, 0.13 cm3·cm-3, 0.18 cm3·cm-3, and 0.10 cm3·cm-3 in 2019, respectively, compared to the soil water content at the end of growing season (December) of 2017. The decrease of the soil water content for V. negundo was greatest, and that for T. aestivum/Z. mays was the smallest, among the four vegetation types. The direction of vertical gradient of soil water content was consistent among the four vegetation types, with the soil water content decreasing as the depth of soil increased. However, the depth of water uptake from soil was discrepant. In T. aestivum/Z. mays fields, the main depth was between 45-100 cm. In T. triandra and J. regia fields, the main soil depth was between 100-150 cm. In V. negundo fields, the main soil depth was between 150-180 cm. These results may be due to differences in root distribution. T. aestivum/Z. mays and T. triandra are from Gramineae family, and their root systems are distributed in shallow soil. Although J. regia is arboreal, it has shallow-rooted plants. V. exnegundo has lateral roots radiating out from the main root crown, one or more deeply penetrating tap (sinker) roots, and can uptake water from deep soil. This indicated that V. exnegundo was the species with the greatest water consumption. The pattern of plant water consumption needs to be considered in plant species selection, ecological management, and restoration of semi-arid ecosystems in the Taihang Mountain region.
Key words:Taihang Mountain/
Lysimeter measure/
Soil water content/
Root distribution/
Vegetation type
HTML全文
图1多年平均降雨(1987—2019年)及2018年和2019年月降雨与气温分布图
Figure1.Monthly variation of multi-year precipitation (1987–2019), and temperature and precipitation in 2018 and 2019
下载: 全尺寸图片幻灯片
图22018年和2019年生长季(4—10月)不同植被覆盖条件下土壤含水量季节变化
Figure2.Seasonal variations of soil water contents under different vegetation covers in the growth seasons (April October) of 2018 and 2019
下载: 全尺寸图片幻灯片
图32018年和2019年生长季不同植被类型0~180 cm土层土壤储水量变化
Figure3.Change characteristics of soil water storage in 0 180 cm soil layer under different vegetation covers in the growth seasons of 2018 and 2019
下载: 全尺寸图片幻灯片
图42018年和2019年生长季不同植被类型0~72.5 cm和72.5~200 cm土层土壤水分亏缺度
Figure4.Variation of soil water deficit of the soil depths of 0 72.5 cm and 72.5 200 cm under different vegetation covers in the growth seasons of 2018 and 2019
下载: 全尺寸图片幻灯片
图52018年和2019年生长季不同植被类型蒸散发量分布状况
Figure5.Monthly evapotranspiration under different vegetation covers in the growth seasons of 2018 and 2019
下载: 全尺寸图片幻灯片
图6对荆条灌丛管理与利用以改善区域土壤水分状况的流程图
Figure6.Flow chart of measures of management and utilization of Vitex negundo to improve water conservation
下载: 全尺寸图片幻灯片
图7坡地孔隙开挖剖面图
Figure7.Profile of slope pore excavation
下载: 全尺寸图片幻灯片
图8坡地孔隙开挖方式俯视图
Figure8.Vertical view of pore excavation on slope
下载: 全尺寸图片幻灯片
表1蒸渗仪内植被生长状况
Table1.Vegetative growth status in the lysimeter
年份 Year | 植被种类 Type of vegetation | 盖度 Cover degree (%) | 株高 Plant height (cm) | 茎秆直径 Stem diameter (cm) |
2018 | 小麦 Triticum aestivum | 95 | 40 | — |
玉米 Zea mays | 85 | 180 | — | |
黄背草 Themeda japonica | 90 | 50 | — | |
荆条 Vitex negundo | 85 | 70 | 1.3±0.35 | |
核桃 Juglans regia | 50 | 230 | 4.1 | |
2019 | 小麦 Triticum aestivum | 93 | 35 | — |
玉米 Zea mays | 83 | 165 | — | |
黄背草 Themeda japonica | 90 | 52 | — | |
荆条 Vitex negundo | 87 | 65 | 1.32±0.40 | |
核桃 Juglans regia | 50 | 235 | 4.2 |
下载: 导出CSV
表22018年和2019年研究区不同植被类型0~200 cm土层年平均土壤含水量
Table2.Average annual soil water content in 0 200 cm soil layer under different vegetation covers in the study area in 2018 and 2019?
年份 Year | 小麦/玉米 Triticum aestivum / Zea mays | 黄背草 Themeda japonica | 荆条 Vitex negundo | 核桃 Juglans regia |
2018 | 0.30 | 0.35 | 0.32 | 0.36 |
2019 | 0.28 | 0.26 | 0.23 | 0.31 |
下载: 导出CSV
表33 2018和2019年4种植被类型各土层深度土壤含水量变化
Table3.Soil moisture content and variation in depth of each soil layer in different plots of 2018 and 2019
年份 Year | 土层深度 Soil depth (cm) | 土壤含水量Soil water content (cm3·cm–3) | |||
小麦/玉米 Triticum aestivum / Zea mays | 黄背草 Themeda japonica | 荆条 Vitex negundo | 核桃 Juglans regia | ||
2018 | 5 | 0.24 | 0.24 | 0.18 | 0.19 |
2019 | 0.24 | 0.21 | 0.19 | 0.19 | |
2018 | 15 | 0.20 | 0.26 | 0.17 | 0.28 |
2019 | 0.20 | 0.23 | 0.19 | 0.25 | |
2018 | 45 | 0.25 | 0.32 | 0.26 | 0.37 |
2019 | 0.22 | 0.22 | 0.21 | 0.32 | |
2018 | 100 | 0.31 | 0.38 | 0.29 | 0.40 |
2019 | 0.28 | 0.25 | 0.24 | 0.33 | |
2018 | 150 | 0.36 | 0.45 | 0.34 | 0.46 |
2019 | 0.34 | 0.33 | 0.25 | 0.38 | |
2018 | 180 | 0.43 | 0.45 | 0.33 | 0.45 |
2019 | 0.41 | 0.36 | 0.23 | 0.39 |
下载: 导出CSV
参考文献
[1] | ASBJORNSEN H, SHEPHERD G, HELMERS M, et al. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S.[J]. Plant and Soil, 2008, 308(1):69-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e27102d9dc0ec7003939e62c0e6aa8a8 |
[2] | CHEN L D, HUANG Z L, GONG J, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China[J]. CATENA, 2007, 70(2):200-208 doi: 10.1016/j.catena.2006.08.007 |
[3] | 崔向慧.干旱半干旱沙区人工植被与土壤水分环境相互作用关系研究进展[J].世界林业研究, 2010, 23(6):50-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjlyyj201006010 CUI X H. Research advances in the interaction relationships between artificial vegetations and soil moisture in arid and semi-arid sandy regions of China[J]. World Forestry Research, 2010, 23(6):50-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjlyyj201006010 |
[4] | DAWSON T E, MAMBELLI S, PLAMBOECK A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 2002, 33(1):507-559 doi: 10.1146/annurev.ecolsys.33.020602.095451 |
[5] | EGGEMEYER K D, AWADA T, HARVEY F E, et al. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland[J]. Tree Physiology, 2009, 29(2):157-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=260e8bb47f34a0b7742fad012b67f32c |
[6] | EVARISTO J, MCDONNELL J J, CLEMENS J. Plant source water apportionment using stable isotopes:A comparison of simple linear, two-compartment mixing model approaches[J]. Hydrological Processes, 2017, 31(21):3750-3758 doi: 10.1002/hyp.11233 |
[7] | GROSSIORD C, SEVANTO S, DAWSON T E, et al. Warming combined with more extreme precipitation regimes modifies the water sources used by trees[J]. New Phytologist, 2017, 213(2):584-596 doi: 10.1111/nph.14192 |
[8] | WANG J, FU B J, LU N, et al. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau[J]. Science of the Total Environment, 2017, 609:27-37 doi: 10.1016/j.scitotenv.2017.07.133 |
[9] | YANG B, WEN X F, SUN X M. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region[J]. Agricultural and Forest Meteorology, 2015, 201:218-228 doi: 10.1016/j.agrformet.2014.11.020 |
[10] | 杨磊, 卫伟, 陈利顶, 等.半干旱黄土丘陵区人工植被深层土壤干化效应[J].地理研究, 2012, 31(1):71-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201201008 YANG L, WEI W, CHEN L D, et al. Soil desiccation in deep soil layers under different vegetation types in the semi-arid loess hilly region[J]. Geographical Research, 2012, 31(1):71-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201201008 |
[11] | 冉津江.我国干旱半干旱区温度和降水的时空分布特征[D].兰州: 兰州大学, 2014 RAN J J. The spatial and temporal characteristics of temperature and precipitation in arid and semi-arid regions of China[D]. Lanzhou: Lanzhou University, 2014 |
[12] | 张军涛, 李哲.近45年来中温带半湿润-半干旱区水分条件的时空分布格局[C].全球变化的区域响应与自然地理学创新学术研讨会, 2007 ZHANG J T, LI Z. The spatial and temporal distribution pattern of moisture conditions in the semi-humid to semi-arid temperate zone in recent 45 years[C]. Symposium on Regional Response to Global Change and Physical Geography Innovation. 2007 |
[13] | EWE S M L, DA S. L, STERNBERG L, et al. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone[J]. Oecologia, 2007, 152(4):607-616 doi: 10.1007/s00442-007-0699-x |
[14] | SHARON M L, EWE, LEONEL DA S L S. Water uptake patterns of an invasive exotic plant in coastal saline habitats[J]. Journal of Coastal Research, 2007, 2007(231):255-264 http://www.onacademic.com/detail/journal_1000036516575110_8d57.html |
[15] | CHEN Y P, WANG K B, LIN Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 8(10):739-741 doi: 10.1038/ngeo2544 |
[16] | BUSCH D E, SMITH S D. Mechanisms associated with decline of woody species in riparian ecosystems of the southwestern U.S.[J]. Ecological Monographs, 1995, 65(3):347-370 doi: 10.2307/2937064 |
[17] | JACKSON P C, CAVELIER J, GOLDSTEIN G, et al. Partitioning of water resources among plants of a lowland tropical forest[J]. Oecologia, 1995, 101(2):197-203 doi: 10.1007/BF00317284 |
[18] | LE ROUX X, BARIAC T, MARIOTTI A. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna[J]. Oecologia, 1995, 104(2):147-155 doi: 10.1007/BF00328579 |
[19] | STRATTON L C, GOLDSTEIN G, MEINZER F C. Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest[J]. Oecologia, 2000, 124(3):309-317 doi: 10.1007/s004420000384 |
[20] | PRECHSL U E, BURRI S, GILGEN A K, et al. No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C3-grasslands in Switzerland[J]. Oecologia, 2015, 177(1):97-111 doi: 10.1007/s00442-014-3092-6 |
[21] | PRIYADARSHINI K V R, PRINS H H T, DE BIE S, et al. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions[J]. Ecohydrology, 2016, 9(2):218-228 doi: 10.1002/eco.1624 |
[22] | MCCOLE A A, STERN L A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water[J]. Journal of Hydrology, 2007, 342(3/4):238-248 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d53d8609f66ede30e460ae335856d72 |
[23] | WU H W, LI X Y, JIANG Z Y, et al. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2016, 542:182-191 doi: 10.1016/j.scitotenv.2015.10.121 |
[24] | DAWSON T E, PATE J S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology:a stable isotope investigation[J]. Oecologia, 1996, 107(1):13-20 doi: 10.1007/BF00582230 |
[25] | 刘洪升.明清滥伐森林对海河流域生态环境的影响[J].河北学刊, 2005, 25(5):134-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbxk200505024 LIU H S. Influence of denudation forest to the ecological environment of the Haihe River valley in the Ming & Qing[J]. Hebei Academic Journal, 2005, 25(5):134-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbxk200505024 |
[26] | FENG X M, FU B J, PIAO S L, et al. Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11):1019-1022 doi: 10.1038/nclimate3092 |
[27] | MENGISTU D K. The influence of soil water deficit imposed during various developmental phases on physiological processes of tef (Eragrostis tef)[J]. Agriculture, Ecosystems & Environment, 2009, 132(3/4):283-289 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a39f996a21bc4f5574ecb0e829788005 |
[28] | SONG L N, ZHU J J, LI M C, et al. Water utilization of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China[J]. Trees, 2014, 28(4):971-982 doi: 10.1007/s00468-014-1010-5 |
[29] | 赵景波, 李瑜琴.陕西黄土高原土壤干层对植树造林的影响[J].中国沙漠, 2005, 25(3):370-373 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200503011 ZHAO J B, LI Y Q. Effects of soil-drying layer on afforestation in the loess plateau of Shaanxi[J]. Journal of Desert Research, 2005, 25(3):370-373 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200503011 |
[30] | DELZON S, LOUSTAU D. Age-related decline in stand water use:sap flow and transpiration in a pine forest chronosequence[J]. Agricultural and Forest Meteorology, 2005, 129(3/4):105-119 http://europepmc.org/abstract/AGR/IND43702468 |
[31] | XU H, LI Y. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil, 2006, 285(1):5-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad4065e7981c6f9268e67d170b8edc74 |
[32] | ZHANG Z Q, EVARISTO J, LI Z, et al. Tritium analysis shows apple trees may be transpiring water several decades old[J]. Hydrological Processes, 2017, 31(5):1196-1201 doi: 10.1002/hyp.11108 |
[33] | 肖登攀, 韩淑敏, 杨艳敏, 等.太行山低山丘陵区不同地表类型降雨入渗产流规律研究[J].水土保持研究, 2009, 16(5):35-39 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200905007 XIAO D P, HAN S M, YANG Y M, et al. Study on rainfall-infiltration-runoff under typical ground surfaces conditions in the hilly regions of Taihang Mountain[J]. Research of Soil and Water Conservation, 2009, 16(5):35-39 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200905007 |
[34] | LIU X P, ZHANG W J, ZHANG B, et al. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China[J]. Atmospheric Environment, 2016, 125:283-392 doi: 10.1016/j.atmosenv.2015.11.034 |
[35] | 韩晓阳, 刘文兆, 程立平.黄土塬区深剖面土壤水分垂直分布特征及其时间稳定性[J].应用生态学报, 2017, 28(2):430-438 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201702009 HAN X Y, LIU W Z, CHENG L P. Vertical distribution characteristics and temporal stability of soil water in deep profile on the Loess Tableland, Northwest China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):430-438 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201702009 |
[36] | 银敏华, 李援农, 张天乐, 等.集雨模式对农田土壤水热状况与水分利用效率的影响[J].农业机械学报, 2015, 46(12):194-203 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201512026 YIN M H, LI Y N, ZHANG T L, et al. Effects of different rainwater harvesting patterns on soil hydrothermal regimes and water use efficiency of summer maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12):194-203 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201512026 |
[37] | 韩烈保, 王琼, 王晓蓓, 等.不同立地条件下荆条根系分布规律[J].应用基础与工程科学学报, 2009, 17(2):231-237 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjcygckxxb200902008 HAN L B, WANG Q, WANG X B, et al. Researches on root distribution of Vitex negundo var. heterophylla (Franch.) Rehd. on different sites conditions[J]. Journal of Basic Science and Engineering, 2009, 17(2):231-237 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjcygckxxb200902008 |
[38] | 刘荣花, 朱自玺, 方文松, 等.冬小麦根系分布规律[J].生态学杂志, 2008, 27(11):2024-2027 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz200811030 LIU R H, ZHU Z X, FANG W S, et al. Distribution pattern of winter wheat root system[J]. Chinese Journal of Ecology, 2008, 27(11):2024-2027 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz200811030 |
[39] | 廖荣伟, 刘晶淼, 白月明, 等.玉米生长后期的根系分布研究[J].中国生态农业学报, 2014, 22(3):284-291 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201403005 LIAO R W, LIU J M, BAI Y M, et al. Spatial distribution and temporal variation of maize root in the soil under field conditions[J]. Chinese Journal of Eco-Agriculture, 2014, 22(3):284-291 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201403005 |
[40] | 马长明, 翟明普, 刘春鹏.单作与间作条件下核桃根系分布特征研究[J].北京林业大学学报, 2009, 31(6):181-186 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb200906033 MA C M, ZHAI M P, LIU C P. Root distribution characteristics of Juglans regia in monoculture and intercropping[J]. Journal of Beijing Forestry University, 2009, 31(6):181-186 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb200906033 |
[41] | 唐敏.黄土丘陵区坡地土壤水热特征及其耦合效应研究[D].杨凌: 西北农林科技大学, 2019 TANG M. Characteristics of soil moisture and temperature and their coupling effects on sloping land in loess hilly regin[D]. Yangling: Northwest A & F University, 2019 |
[42] | 杨永辉, 王志平, 佐仓保夫, 等.全球变暖对太行山植被生产力及土壤水分的影响[J].应用生态学报, 2002(6):667-671 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200206006 YANG Y H, WANG Z P, SAKURA Y, et al. Effects of global warming on productivity and soil moisture in Taihang Mountain:a transplant study[J]. Chinese Journal of Applied Ecology, 2002(6):667-671 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200206006 |
[43] | 何春霞, 张劲松, 孟平, 等.太行山南麓3种常见灌木的水分利用特性[J].林业科学, 2018, 54(9):137-146 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201809016 HE C X, ZHANG J S, MENG P, et al. Water use strategies of three native shrubs in the southern Taihang Mountain[J]. Scientia Silvae Sinicae, 2018, 54(9):137-146 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201809016 |
[44] | 田恬, 宋献方, 杨丽虎, 等.太行山丘陵区降水时空分布特征及影响因素分析——以崇陵流域为例[J].资源科学, 2016, 38(6):1192-1202 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201606018 TIAN T, SONG X F, YANG L H, et al. Spatial-temporal variation and factors affecting precipitation in the hilly area of Taihang Mountain[J]. Resources Science, 2016, 38(6):1192-1202 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201606018 |
[45] | 王鹏, 宋献方, 侯士彬.太行山区典型植被对土壤水势动态的影响研究[J].自然资源学报, 2009, 24(8):1467-1476 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200908016 WANG P, SONG X F, HOU S B. A study of representative vegetation effects on soil water potential in Taihang Mountainous Region[J]. Journal of Natural Resources, 2009, 24(8):1467-1476 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200908016 |
[46] | ZHENG W B, WANG S Q, SPRENGER M, et al. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain[J]. Journal of Hydrology, 2019, 576:466-477 doi: 10.1016/j.jhydrol.2019.06.071 |
[47] | 孙吉定, 郝铁山, 张金香.太行山花岗片麻岩区加速封山后森林植被恢复技术研究[J].北京林业大学学报, 1996, 18(S3):55-61 http://www.cnki.com.cn/Article/CJFDTotal-BJLY1996S3009.htm SUN J D, HAO T S, ZHANG J X. Research on forest vegetation restoration after accelerated closure in granite gneiss region of Taihang Mountain[J]. Journal of Beijing Forestry University, 1996, 18(S3):55-61 http://www.cnki.com.cn/Article/CJFDTotal-BJLY1996S3009.htm |
[48] | 徐学华, 张金柱, 张慧, 等.太行山片麻岩区植被恢复过程中物种多样性与土壤水分效益分析[J].水土保持学报, 2007, 21(2):133-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb200702034 XU X H, ZHANG J Z, ZHANG H, et al. Analysis on species diversity of vegetation in restoration and efficiency of water in with gneissose of Taihangshan Mountian Region[J]. Journal of Soil and Water Conservation, 2007, 21(2):133-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb200702034 |