徐萍1,
郭海谦3,
张正斌1, 4,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
3.石家庄市农产品质量检测中心 石家庄 050021
4.中国科学院种子创新研究院 北京 100101
基金项目: 国家重点研发计划项目2016YFD0300105
河北省重点研发计划项目20326403D
中国科学院种子创新研究院项目Y905023208
详细信息
作者简介:吴芬, 主要研究方向为粮食丰产增效科技创新。E-mail:wufen17@mails.ucas.ac.cn
通讯作者:张正斌, 主要研究方向为黄淮海现代农业。E-mail:zzb@sjziam.ac.cn
中图分类号:S3-33计量
文章访问数:652
HTML全文浏览量:5
PDF下载量:208
被引次数:0
出版历程
收稿日期:2020-03-11
录用日期:2020-05-19
刊出日期:2020-10-01
Advances in research regarding the yield gap and resource use efficiency of winter wheat cultivation and the related regulatory approaches
WU Fen1, 2,,XU Ping1,
GUO Haiqian3,
ZHANG Zhengbin1, 4,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-saving Agriculture, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Shijiazhuang Agricultural Product Quality Testing Center, Shijiazhuang 050021, China
4. Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
Funds: the National Key Research and Development Program of China2016YFD0300105
the Key Research and Development Program of Hebei Province20326403D
the Project of Innovative Academy of Seed Design of Chinese Academy of SciencesY905023208
More Information
Corresponding author:ZHANG Zhengbin, E-mail:zzb@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:缩减作物实际产量与潜在产量之间的差距是当前作物科学研究的热点之一,对保障国家粮食安全有重要意义。研究冬小麦产量差和资源利用效率差形成机制及缩差增效途径,是大面积持续提高冬小麦现实生产力的迫切需求。本文概述了国内外作物产量差和效率差及调控技术途径的研究进展,重点综述了冬小麦产量差和资源利用效率差异及调控途径研究进展。指出造成冬小麦产量差和效率差的五大因素为:品种因素、气候因素、土壤因素、人为管理措施和技术因素以及农户决策因素。最后提出了我国冬小麦产量差和资源利用效率差异及调控技术途径的发展方向:建立基于云数据分析的区域化冬小麦产量差和资源利用效率差异智慧调控途径;拓展冬小麦轮作系统下产量差和资源利用效率差异及调控途径的研究;创建区域模式化简化冬小麦缩差增效技术途径。冬小麦产量差和资源利用效率差异缩减技术创建是我国农业通向精准农业、绿色农业、均衡农业、高产高效农业的必由之路。以上研究进展为我国冬小麦缩差增效提供了理论依据和技术支撑。
Abstract:Reducing the gaps between actual yield and potential yield of crops is one of the current topics in crop science research, and is of great significance in ensuring food security. It is essential to explore the mechanisms underlying the gaps in grain yield and differences in resource utilization efficiency of winter wheat cultivation, to establish the strategies to reduce these gaps, and sustainably meet the requirements of increased total productivity of winter wheat worldwide. In this paper, the overall progress of research regarding the gaps in crop yield, differences in resource use efficiency, and the regulatory technology approaches at home and abroad are summarized first, and then placed in the context of winter wheat cultivation. The five major factors that lead to large gaps in yield and resource use efficiency differences in winter wheat are variety, climate, soil, human management technical factors, and farmers' decision-making. Finally, the following development directions to address these issues in China are proposed: a region-wise control approach based on cloud data analysis should be established; and research on yield gaps, resource use efficiency, and the regulatory approaches under various winter wheat rotation systems should be expanded. Technology approaches involving simplified models for different winter wheat production regions should be developed. Designing technological solutions to bridge the gaps in grain yield and resource use efficiency in winter wheat is inevitable means by which China can lead in the fields of precision agriculture, green agriculture, balanced agriculture, and high-yield and high-efficiency agriculture. The research progress discussed herein provides a theoretical basis and technical support for reducing these differences and enhancing the yield and efficiency of winter wheat in China.
HTML全文
图1产量水平、潜在产量和产量差层次示意图
Figure1.Conceptual view of yield levels, potential yields (YP) and yield gaps (YG)
下载: 全尺寸图片幻灯片
图2冬小麦产量差和资源利用效率差异研究路径和关系图
Figure2.Research route and relations of yield gap and resource use efficiency of winter wheat
下载: 全尺寸图片幻灯片
表1国内外冬小麦产量差研究结果和影响因素及解决对策
Table1.Research results and limiting factors of winter wheat yield gaps and resolution strategies in China and abroad
研究范围 Research scale | 产量差 Yield gap | 研究时间 Time | 研究方法 Research method | 影响因素 Limiting factor | 解决对策 Resolution strategy | 文献来源 Reference |
全球 World | 0~24%1) | 1961— 2017 | 数据统计分析 Data statistical analysis | 年际间气候变异 Inter-annual climate variation | 改善生产系统的气候适应性 Production system improvement for climate resilience | [31] |
全球 World | 16%~80% | 1981— 2010 | 作物模型 Crop model | 资源投入、科技水平、气候变化 Resource input, technology level, climate change | 气候预测以优化资源投入 Climate prediction to optimize resource input | [28] |
欧洲 Europe | 3.5~5.2 t·hm-2 | 1981— 2010 | Sirius模型 Sirius Model | 品种 Variety | 理想型开发 Ideotype development | [1] |
欧洲 Europe | 0.2~6.9 t·hm-2 | 1992— 2015 | GYGA方法 GYGA method | 小麦氮素吸收 Nitrogen uptake of wheat | 提高小麦氮素吸收 Improving nitrogen uptake by wheat | [7] |
加拿大亚伯达省 Alberta, Canada | 1.48 t·hm-2 | 2005— 2014 | 试验数据统计分析 Experiment data statistical analysis | 管理措施、品种 Management, variety | 品种选择结合优化管理 Variety selection and management optimization | [24] |
澳大利亚 Australia | 2.0 t·hm-2 | 1996— 2010 | GYGA方法 GYGA method | 降雨量、气候、技术采纳 Rainfall, climate, technology adoption | 促进农户决策与风险应对 Facilitating farmer decision- making and risk response | [27] |
澳大利亚 Australia | 3.42 t·hm-2 | 1972— 2015 | APSIM模型与田间试验 APSIM model and field experiment | 肥料、耕作、杂草、播量、播期等 Fertilizer, tillage, weeds, seeding rate and date, etc. | 采取最优管理措施 Adopting optimized management measures | [29] |
俄罗斯西伯利亚 Siberian, Russia | 2.3 t·hm-2 | 2012— 2016 | 贝叶斯网络 Bayesian network | 肥料、新设备应用、政策、 土壤等 Fertilizer, new equipment application, policy, soil, etc. | 气候智慧农业、农民教育 Climate-smart agriculture, farmer education | [30] |
伊朗 Iran | 5.2 t·hm-2 | 1987— 2011 | APSIM模型 APSIM model | 氮肥因素、水分因素 Nitrogen fertilizer, water | 优化施肥等管理措施 Optimization of management measures such as fertilization | [25] |
非洲南部 South Africa | 1.58~3.13 t·hm-2 | 2009— 2016 | 田间试验数据统计分析 Field experiment data statistical analysis | 耕作、土壤 Tillage, soil | 改善保护性耕作 Conservation tillage improvement | [26] |
埃塞俄比亚 Ethiopian | 14.2%~ 90.4% | 2011— 2013 | 农户调研、GIS和遥感等 Farm household research, GIS and remote sensing, etc. | 管理技术、气候、政策等 Management technique, climate, policy, etc. | 田间调查结合空间数据确定管理优先措施 Identify management measure priority by field survey and spatial data | [21] |
中国 China | 23.2 t·hm-2 | 2000— 2010 | 逐级修正模型和GIS技术 Gradually descending model and GIS technology | 热量资源 Thermal resource | 利用气候资源构建冬小麦生产计划 Using climatic resource to develop winter wheat production plan | [36] |
中国 China | 53~3 124 kg·hm-2 | 1990— 2015 | DSSAT模型和气象、土壤等数据 DSSAT model and data on meteorology, soil, etc. | 氮肥量、播期、土壤养分、播量等 Nitrogen amount, sowing date, soil nutrient, sowing rate, etc. | 调整氮肥和播期 Nitrogen and sowing date adjustment | [38] |
中国 China | 382~7 515 kg·hm-2 | 1998— 2008 | WheatGrow和CERES模型以及GIS技术 WheatGrow, CERES models and GIS technology | 日照时数、灌溉 Sunshine hour, irrigation | 提高灌溉水利用效率 Increasing irrigation use efficiency | [35] |
中国 China | 41% | 1980— 2010 | APSIM模型和气象数据 APSIM model and meteorology data | 农艺措施 Agricultural measures | 优化农艺措施, 增加低产地区投资 Optimizing agricultural measure, adding input on low yield area | [8] |
华北 North China | 1.14~6.81 t·hm-2 | 1981— 2010 | ASPIM模型 APSIM model | 品种、肥料 Variety, fertilizer | 品种更新 Variety refresh | [32] |
华北 North China | 0.5~1.5 t·hm-2 | 1981— 2008 | MCWLA模型 MCWLA model | 管理、科技进步 Management, technology advance | 采纳先进管理措施 Adopting advanced management measures | [33] |
河北 Hebei | 814~2 493 kg·hm-2 | 2014— 2016 | 边界直线法和路径分析法 Boundary line approach and path analysis | 播期、基施氮肥和播量等 Sowing date, basal nitrogen fertilizer and sowing rate | 优化播期播量和养分管理 Optimizing sowing date and rate, and nutrient management | [41] |
河北 Hebei | 3.86 t·hm-2 | 2006— 2013 | 田间试验数据统计分析 Field experiment data statistical analyze | 肥料 Fertilizer | 配方施肥 Formulated fertilizer | [12] |
山东 Shandong | 5 445.5 kg·hm-2 | 1981— 2015 | 逐级订正法 Step-by-step correction method | 品种、栽培管理措施 Variety, cultivation management | 品种更替 Variety turnover | [40] |
河南 Henan | 3.06~5.58 t·hm-2 | 1961— 2013 | AEZ模型 AEZ model | 种植区光温时空分布 Spato-temporal light and temperature distribution | 在各种植区采取不同农学措施 Adopting different agricultural measures | [37] |
黄土高原 Loess Plateau | 32%~57% | 2014— 2016 | 农户调查与取样分析 Farmer survey and sampling analysis | 养分吸收 Nutrient uptake | 优化肥料投入 Optimizing fertilizer input | [34] |
黄土高原 Loess Plateau | 3 430 kg·hm-2 | 1961— 2016 | APSIM模型和ArcGIS方法 APSIM model and ArcGIS method | 氮肥、水分 Nitrogen fertilizer, water | 提高氮肥利用效率 Improving nitrogen use efficiency | [39] |
1)%表示产量差大小为占潜在产量的百分比。1) “%” indicates the proportion of yield gap value in potential yield. |
下载: 导出CSV
表2冬小麦光能利用效率或辐射利用效率研究结果与影响因素
Table2.Research results and limiting factors of light use efficiency (LUE) or radiation use efficiency (RUE) of winter wheat
研究区域 Research location | 研究时间 Research period | 光能利用效率或辐射利用效率 Light use efficiency (LUE) or radiation use efficiency (RUE) | 影响因素 Influencing factor | 参考文献 Reference |
美国 United States | 2004—2006 | RUE 3.35~3.78 g·MJ-1 | 播种管理?Sowing management | [52] |
北京 Beijing | 2014—2016 | RUE 1.42~2.00 g·MJ-1 | 播种模式?Sowing pattern | [49] |
河北 Hebei | 2008—2009 | 籽粒?LUE 0.51%~0.75%;生物量?LUE 1.16%~1.35% Grain LUE 0.51%-0.75%; biomass LUE 1.16%-1.35% | 种植密度?Plant density | [50] |
河南 Henan | 1983—2007 | 籽粒?LUE 0.21%~0.55% Grain LUE 0.21%-0.55% | 积温等气候变化 Change of climate such as accumulated temperature | [43] |
河南 Henan | 1981—2016 | 籽粒?LUE 0.20%~0.31% Grain LUE 0.20%-0.31% | 积温、降水等气候因素 Climate factors such as accumulated temperature, precipitation, etc. | [53] |
河南 Henan | 2013—2014 | 籽粒?LUE 0.59%~0.89%;生物量?LUE 2.03%~2.75% Grain LUE 0.59%-0.89%; biomass LUE 2.03%-2.75% | 品种?Variety | [46] |
河南 Henan | 2011—2015 | 籽粒?LUE 0.70%~0.74%;生物量?LUE 1.49%~1.62% Grain LUE 0.70%-0.74%; biomass LUE 1.49%-1.62% | 种植模式?Planting pattern | [45] |
陕西?Shaanxi | 2015—2017 | RUE 2.76~3.55 g·MJ-1 | 水分?Water | [48] |
陕西?Shaanxi | 2015—2017 | RUE 0.2~2.4 g·MJ-1 | 耕作方式、灌溉管理?Tillage, irrigation management | [47] |
下载: 导出CSV
表3我国冬小麦氮肥偏生产力研究结果及影响因素
Table3.Research results and influencing factors of partial factor productivity of applied N (PEPN) of winter wheat in China
研究范围 Research location | 研究时间 Research period | 氮肥偏生产力及差异 PEPN and difference (kg·kg-1) | 影响因素 Influencing factor | 参考文献 Reference |
中国?China | 2009—2012 | 28, 41~44 | 土壤、管理措施?Soil, management measure | [68] |
河北?Hebei | 2001—2005 | 36.1 | 肥料管理?Fertilizer management | [65] |
河北?Hebei | 2011—2014 | 20.8~43.1 | 土壤、种植技术、田间管理 Soil, planting technology, field management | [12] |
河南?Henan | 2012—2014 | 4.9~23.3 | 水肥管理?Water and fertilizer management | [66] |
河南?Henan | 2017—2018 | 19.84~50.21 | 品种?Variety | [62] |
山东?Shandong | 2009—2016 | 24~42 | 氮肥管理?Nitrogen management | [60] |
安徽?Anhui | 2016—2018 | 14.67~38.92 | 播期、品种、氮肥管理?Sowing date, variety, nitrogen management | [67] |
陕西?Shaanxi | 2009—2013 | 20.0~36.8 | 肥料管理?Fertilizer management | [63] |
陕西?Shaanxi | 2005—2012 | 36.8~63.9 | 最优氮肥管理?Optimal nitrogen management | [64] |
黄土高原 Loess Plateau | 2008—2014 | 29.5~74.1 | 水分、氮肥管理?Water, nitrogen management | [61] |
下载: 导出CSV
表4冬小麦水分利用效率研究结果及影响因素
Table4.Research results and influencing factors of water use efficiency of winter wheat
研究范围 Research location | 研究时间 Research period | 水分利用效率 Water use efficiency (kg·m-3) | 影响因素 Influencing factor | 参考文献 Reference |
全球?World | 2010—2014 | 0.31~2.04 | 管理措施?Management measure | [69] |
河北?Hebei | 2013—2015 | 1.70~2.49 | 灌溉次数等管理措施?Management measure such as irrigation times | [73] |
河南?Henan | 2014—2016 | 1.59~2.02 | 灌溉制度等管理措施?Management measure such as irrigation system | [71] |
黄土高原?Loess Plateau | 2011—2015 | 1.70~3.40 | 氮肥管理?Nitrogen management | [72] |
黄淮海地区 Huang-Huai-Hai Region | 1980—2017 | 1.09~2.06 | 品种、灌溉、土壤耕作等?Variety, irrigation, soil tillage, etc. | [70] |
下载: 导出CSV
表5我国冬小麦缩差增效技术途径
Table5.Yield gap-closing and resource use efficiency-enhancing technical routes of winter wheat in China
技术分类 Technical classification | 技术内容 Technical content | 文献来源 Reference |
土壤处理技术和耕作技术 Soil treatment and tillage technology | 深翻技术?Deep plowing | [100] |
土壤-作物综合管理系统?Integrated soil-crop system management | [68] | |
垂直深旋耕技术?Deep vertical rotatory tillage | [101] | |
播种技术?Seeding technology | 立体匀播?Tridimensional uniform sowing | [49] |
垄作、补灌?Ridge-furrow planting, supplemental irrigation | [47] | |
起垄覆膜技术?Ridge-furrow mulching technology | [93] | |
合理灌溉制度?Optimized irrigation system | 微喷灌?Sprinkler irrigation | [71] |
滴灌?Drip irrigation | ||
测墒补灌?Supplementary irrigation by soil moisture measure | [102] | |
精准施肥技术?Precision fertilizing technology | 测土配方技术?Soil testing and formulated fertilization | [12] |
农户合作模式?Farmer cooperation mode | 科技小院模式?Science and technology backyard mode | [41] |
下载: 导出CSV
参考文献
[1] | SENAPATI N, SEMENOV M A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe[J]. Global Food Security, 2020, 24:100340 doi: 10.1016/j.gfs.2019.100340 |
[2] | BAILEY-SERRES J, PARKER J E, AINSWORTH E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781):109-118 https://www.ncbi.nlm.nih.gov/pubmed/31695205 |
[3] | HOCHMAN Z, GOBBETT D L, HORAN H. Climate trends account for stalled wheat yields in Australia since 1990[J]. Global Change Biology, 2017, 23(5):2071-2081 doi: 10.1111/gcb.13604 |
[4] | LOBELL D B, CASSMAN K G, FIELD C B. Crop yield gaps:Their importance, magnitudes, and causes[J]. Annual Review of Environment and Resources, 2009, 34(1):179-204 doi: 10.1146/annurev.environ.041008.093740 |
[5] | FAO. FAOSTAT-agriculture database[EB/OL].[2019-10-16]. http://www.fao.org/faostat/zh/ |
[6] | 中华人民共和国国家统计局.地区数据[EB/OL].[2019-10-16]. http://data.stats.gov.cn/easyquery.htm?cn=E0103 National Bureau of Statistics of the People's Republic of China. Statistical data[EB/OL].[2019-10-16]. http://data.stats.gov.cn/easyquery.htm?cn=E0103 |
[7] | SCHILS R, OLESEN J E, KERSEBAUM K C, et al. Cereal yield gaps across Europe[J]. European Journal of Agronomy, 2018, 101:109-120 doi: 10.1016/j.eja.2018.09.003 |
[8] | SUN S, YANG X G, LIN X M, et al. Winter wheat yield gaps and patterns in China[J]. Agronomy Journal, 2018, 110(1):319-330 doi: 10.2134/agronj2017.07.0417 |
[9] | 卢燕宇, 孙维, 唐为安, 等.气候变化背景下安徽省冬小麦气候生产潜力和胁迫风险研究[J].中国生态农业学报(中英文), 2020, 28(1):17-30 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0103&flag=1 LU Y Y, SUN W, TANG W A, et al. Climatic potential productivity and stress risk of winter wheat under the background of climate change in Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1):17-30 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0103&flag=1 |
[10] | 王冲, 张瑞芳, 李旭光, 等.黑龙港平原东北部小麦、玉米土地生产潜力研究[J].河北农业大学学报, 2019, 42(6):23-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnydxxb201906004 WANG C, ZHANG R F, LI X G, et al. Study on the land production potential of wheat and maize in the northeast of Heilongang Plain[J]. Journal of Hebei Agricultural University, 2019, 42(6):23-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnydxxb201906004 |
[11] | 李国强, 陈丹丹, 张建涛, 等.基于DSSAT模型的河南省小麦生产潜力定量模拟与分析[J].麦类作物学报, 2016, 36(4):507-515 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201604017 LI G Q, CHEN D D, ZHANG J T, et al. Quantitative simulation and analysis of winter wheat production potential in Henan Province[J]. Journal of Triticeae Crops, 2016, 36(4):507-515 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201604017 |
[12] | 黄少辉, 杨云马, 刘克桐, 等.河北省小麦产量潜力、产量差与效率差分析[J].作物杂志, 2018, (2):118-122 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201802021 HUANG S H, YANG Y M, LIU K T, et al. Yield potential, yield gap and nitrogen use efficiency gap of winter wheat in Hebei Province[J]. Crops, 2018, (2):118-122 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201802021 |
[13] | 陶志强, 王德梅, 杨玉双, 等.北方冬麦区小麦产量潜力及增产技术研究进展[J].中国农学通报, 2018, 34(2):48-53 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201802009 TAO Z Q, WANG D M, YANG Y S, et al. Yield potential and yield-increasing techniques of winter wheat in northern winter wheat region:Research progress[J]. Chinese Agricultural Science Bulletin, 2018, 34(2):48-53 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201802009 |
[14] | 刘保花, 陈新平, 崔振岭, 等.三大粮食作物产量潜力与产量差研究进展[J].中国生态农业学报, 2015, 23(5):525-534 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015501&flag=1 LIU B H, CHEN X P, CUI Z L, et al. Research advance in yield potential and yield gap of three major cereal crops[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5):525-534 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015501&flag=1 |
[15] | 杨晓光, 刘志娟.作物产量差研究进展[J].中国农业科学, 2014, 47(14):2731-2741 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201414004 YANG X G, LIU Z J. Advances in research on crop yield gaps[J]. Scientia Agricultura Sinica, 2014, 47(14):2731-2741 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201414004 |
[16] | FISCHER R A T, EDMEADES G O. Breeding and cereal yield progress[J]. Crop Science, 2010, 50(S1):S85-S98 doi: 10.2135/cropsci2009.10.0564 |
[17] | LOBELL D B. The use of satellite data for crop yield gap analysis[J]. Field Crops Research, 2013, 143:56-64 doi: 10.1016/j.fcr.2012.08.008 |
[18] | VAN DIJK M, MORLEY T, JONGENEEL R, et al. Disentangling agronomic and economic yield gaps:An integrated framework and application[J]. Agricultural Systems, 2017, 154:90-99 doi: 10.1016/j.agsy.2017.03.004 |
[19] | VAN ITTERSUM M K, CASSMAN K G, GRASSINI P, et al. Yield gap analysis with local to global relevance-A review[J]. Field Crops Research, 2013, 143:4-17 doi: 10.1016/j.fcr.2012.09.009 |
[20] | HOCHMAN Z, GOBBETT D, HORAN H, et al. Data rich yield gap analysis of wheat in Australia[J]. Field Crops Research, 2016, 197:97-106 doi: 10.1016/j.fcr.2016.08.017 |
[21] | MANN M L, WARNER J M. Ethiopian wheat yield and yield gap estimation:A spatially explicit small area integrated data approach[J]. Field Crops Research, 2017, 201:60-74 doi: 10.1016/j.fcr.2016.10.014 |
[22] | ZHANG A R, HOCHMAN Z, HORAN H, et al. Socio-psychological and management drivers explain farm level wheat yield gaps in Australia[J]. Agronomy for Sustainable Development, 2019, 39(1):10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=984052a2690e6f2bf03ccce028c5b459 |
[23] | SUMBERG J. Mind the (yield) gap(s)[J]. Food Security, 2012, 4(4):509-518 doi: 10.1007/s12571-012-0213-0 |
[24] | CHAPAGAIN T, GOOD A. Yield and production gaps in rainfed wheat, barley, and canola in Alberta[J]. Frontiers in Plant Science, 2015, 6:990 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618133 |
[25] | DEIHIMFARD R, MAHALLATI M N, KOOCHEKI A. Yield gap analysis in major wheat growing areas of Khorasan Province, Iran, through crop modelling[J]. Field Crops Research, 2015, 184:28-38 doi: 10.1016/j.fcr.2015.09.002 |
[26] | SOSIBO N Z, MUCHAONYERWA P, VISSER L, et al. Soil fertility constraints and yield gaps of irrigation wheat in South Africa[J]. South African Journal of Science, 2017, 113(1/2):1-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bccf37cec552a3367b2d6fd4c446e4eb |
[27] | GOBBETT D L, HOCHMAN Z, HORAN H, et al. Yield gap analysis of rainfed wheat demonstrates local to global relevance[J]. Journal of Agricultural Science, 2017, 155(2):282-299 doi: 10.1017/S0021859616000381 |
[28] | HOFFMANN M P, HAAKANA M, ASSENG S, et al. How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites[J]. Agricultural Systems, 2018, 159:199-208 doi: 10.1016/j.agsy.2017.03.012 |
[29] | HOCHMAN Z, HORAN H. Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia[J]. Field Crops Research, 2018, 228:20-30 doi: 10.1016/j.fcr.2018.08.023 |
[30] | PRISHCHEPOV A V, PONKINA E, SUN Z L, et al. Revealing the determinants of wheat yields in the Siberian breadbasket of Russia with Bayesian networks[J]. Land Use Policy, 2019, 80:21-31 doi: 10.1016/j.landusepol.2018.09.038 |
[31] | HATFIELD J L, BERES B L. Yield gaps in wheat:Path to enhancing productivity[J]. Frontiers in Plant Science, 2019, 10:1603 doi: 10.3389/fpls.2019.01603 |
[32] | LI K N, YANG X G, LIU Z J, et al. Low yield gap of winter wheat in the North China Plain[J]. European Journal of Agronomy, 2014, 59:1-12 doi: 10.1016/j.eja.2014.04.007 |
[33] | CHEN Y, ZHANG Z, TAO F, et al. Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China[J]. Field Crops Research, 2017, 206:11-20 doi: 10.1016/j.fcr.2017.02.012 |
[34] | 马小龙, 王朝辉, 曹寒冰, 等.黄土高原旱地小麦产量差异与产量构成及氮磷钾吸收利用的关系[J].植物营养与肥料学报, 2017, 23(5):1135-1145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201705002 MA X L, WANG C H, CAO H B, et al. Yield variation of winter wheat and its relation to yield components, NPK uptake and utilization in drylands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5):1135-1145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201705002 |
[35] | LUY Z F, LIU X J, CAO W X, et al. A model-based estimate of regional wheat yield gaps and water use efficiency in main winter wheat production regions of China[J]. Scientific Reports, 2017, 7(1):6081 doi: 10.1038/s41598-017-06312-x |
[36] | ZHANG S Y, ZHANG X H, QIU X L, et al. Quantifying the spatial variation in the potential productivity and yield gap of winter wheat in China[J]. Journal of Integrative Agriculture, 2017, 16(4):845-857 doi: 10.1016/S2095-3119(16)61467-3 |
[37] | 王连喜, 卢媛媛, 李琪, 等.基于AEZ模型的河南省冬小麦产量差时空特征分析[J].中国生态农业学报, 2018, 26(4):547-558 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0408&flag=1 WANG L X, LU Y Y, LI Q, et al. Spatio-temporal analysis of winter wheat yield gaps in Henan Province using AEZ model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(4):547-558 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0408&flag=1 |
[38] | 李勤英, 姚凤梅, 张佳华, 等.不同农艺措施对缩小冬小麦产量差和提高氮肥利用率的评价[J].中国农业气象, 2018, 39(6):370-379 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201806002 LI Q Y, YAO F M, ZHANG J H, et al. Evaluation of different agronomic measures on narrowing the yield gap and improving nitrogen use efficiency of winter wheat[J]. Chinese Journal of Agrometeorology, 2018, 39(6):370-379 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201806002 |
[39] | 张玲玲.黄土高原冬小麦产量差及其水氮利用效率分析[D].杨凌: 中国科学院大学, 2019: 119-121 http://cdmd.cnki.com.cn/Article/CDMD-80129-1019655889.htm ZHANG L L. Analysis on yield gaps and its water and nitrogen use efficiency of winter wheat in Loess Plateau[D]. Yangling: University of Chinese Academy of Sciences, 2019: 119-121 http://cdmd.cnki.com.cn/Article/CDMD-80129-1019655889.htm |
[40] | 王兰.山东省小麦玉米产量差及影响因素研究[D].泰安: 山东农业大学, 2019: 17-28 http://cdmd.cnki.com.cn/Article/CDMD-10434-1019075278.htm WANG L. Study on yield gap of wheat and maize and its influencing factors in Shandong Province[D]. Tai'an: Shandong Agricultural University, 2019: 17-28 http://cdmd.cnki.com.cn/Article/CDMD-10434-1019075278.htm |
[41] | CAO H Z, LI Y N, CHEN G F, et al. Identifying the limiting factors driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain[J]. Journal of Integrative Agriculture, 2019, 18(8):1701-1713 doi: 10.1016/S2095-3119(19)62574-8 |
[42] | REYNOLDS P M, VAN GINKEL M, RIBAUT J M. Avenues for genetic modification of radiation use efficiency in wheat[J]. Journal of Experimental Botany, 2000, 51(S1):459-473 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005674648 |
[43] | 刘晓迎, 陈罗成, 赵巧梅, 等.豫北主要农作物光热资源利用效率研究[J].河南农业科学, 2012, 41(4):29-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201204007 LIU X Y, CHEN L C, ZHAO Q M, et al. Light and heat utilization efficiency of winter wheat and summer maize in northern region of Henan province[J]. Journal of Henan Agricultural Sciences, 2012, 41(4):29-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201204007 |
[44] | ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61(1):235-261 doi: 10.1146/annurev-arplant-042809-112206 |
[45] | 周宝元, 葛均筑, 侯海鹏, 等.黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J].作物学报, 2020, 46(6):937-949 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb202006012 ZHOU B Y, GE J Z, HOU H P, et al. Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers Plain[J]. Acta Agronomica Sinica, 2020, 46(6):937-949 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb202006012 |
[46] | 张黛静, 陈倩青, 马建辉, 等.不同冬春性小麦品种在豫中、豫北地区光能利用率及生产潜力比较[J].河南农业科学, 2018, 47(8):17-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201808004 ZHANG D J, CHEN Q Q, MA J H, et al. Comparison of light use efficiency and production potential of different winter and spring wheat varieties in central and North Henan[J]. Journal of Henan Agricultural Sciences, 2018, 47(8):17-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201808004 |
[47] | ALI S, XU Y Y, AHMAD I, et al. The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China[J]. Agricultural Water Management, 2019, 213:76-86 doi: 10.1016/j.agwat.2018.10.006 |
[48] | 李华龙, 窦子荷, 蒋腾聪, 等.水分胁迫对冬小麦冠层辐射截获率和利用效率的影响[J].农业机械学报, 2018, 49(9):226-237 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201809027 LI H L, DOU Z H, JIANG T C, et al. Influences of soil water stress on solar radiation interception and use efficiency of winter wheat canopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9):226-237 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201809027 |
[49] | TAO Z Q, WANG D M, MA S K, et al. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat[J]. Journal of Integrative Agriculture, 2018, 17(3):566-578 doi: 10.1016/S2095-3119(17)61715-5 |
[50] | 毕常锐, 白志英, 杨訸, 等.种植密度对小麦群体光能资源利用的调控效应[J].华北农学报, 2010, 25(5):171-176 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb201005036 BI C R, BAI Z Y, YANG H, et al. Effects of planting densities on radiation resource utilization of the wheat colony[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(5):171-176 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb201005036 |
[51] | ZHANG Z, ZHOU X B, CHEN Y H. Effects of irrigation and precision planting patterns on photosynthetic product of wheat[J]. Agronomy Journal, 2016, 108(6):2322-2328 doi: 10.2134/agronj2016.01.0051 |
[52] | HATFIELD J L, DOLD C. Photosynthesis in the solar corridor system[M]//DEICHMAN C L, KREMER R J. The Solar Corridor Crop System. USA: Academic Press, 2019: 1-33 |
[53] | 徐延红, 李树岩.气候变化对河南省小麦和玉米气候资源利用效率的影响[J].干旱地区农业研究, 2019, 37(5):218-225 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201905032 XU Y H, LI S Y. Impact of climate change on climatic resources utilization efficiency of wheat and maize in Henan Province[J]. Agricultural Research in the Arid Areas, 2019, 37(5):218-225 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201905032 |
[54] | DAR E, BRAR A S, YOUSUF A. Growing degree days and heat use efficiency of wheat as influenced by thermal and moisture regimes[J]. Journal of Agrometeorology, 2018, 20(2):168-170 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=543c680eb2b1c374084a0ab5b9e66d5b |
[55] | 石晓丽, 史文娇.极端高温对黄淮海平原冬小麦产量的影响[J].生态与农村环境学报, 2016, 32(2):259-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201602016 SHI X L, SHI W J. Impacts of extreme high temperature on winter wheat yield in the Huang-Huai-Hai Plain[J]. Journal of Ecology and Rural Environment, 2016, 32(2):259-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201602016 |
[56] | 李书钦, 诸叶平, 刘海龙, 等.基于有效积温的冬小麦返青后植株三维形态模拟[J].中国农业科学, 2017, 50(9):1594-1605 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201709005 LI S Q, ZHU Y P, LIU H L, et al. 3D shape simulation of winter wheat after turning green stage based on effective accumulated temperature[J]. Scientia Agricultura Sinica, 2017, 50(9):1594-1605 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201709005 |
[57] | 郑大玮, 孙忠富.关于积温一词及其度量单位科学性问题的讨论[J].中国农业气象, 2010, 31(2):165-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201002002 ZHENG D W, SUN Z F. Discussion on scientificalness problem of accumulated temperature and its unit[J]. Chinese Journal of Agrometeorology, 2010, 31(2):165-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201002002 |
[58] | 常清, 王靖, 余卫东, 等.河南小麦-玉米轮作系统热量利用率时空分布[J].资源科学, 2019, 41(6):1176-1187 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201906016 CHANG Q, WANG J, YU W D, et al. Spatiotemporal variation and potential of heat use efficiency of wheat-maize rotation system in Henan Province[J]. Resources Science, 2019, 41(6):1176-1187 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201906016 |
[59] | TOMAR S K, YADAV S K, SINGH D P, et al. Degree days, heat use efficiency and biomass accumulation in wheat under varying growing environments[J]. Ecology, Environment and Conservation, 2016, 22(S1):S449-S454 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3bf57faf75f08b2bd939e069c82c45f |
[60] | LIU Z, YU N N, CAMBERATO J J, et al. Crop production kept stable and sustainable with the decrease of nitrogen rate in North China Plain:An economic and environmental assessment over 8 years[J]. Scientific Reports, 2019, 9(1):19335 doi: 10.1038/s41598-019-55913-1 |
[61] | YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation:A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014)[J]. Field Crops Research, 2017, 206:1-10 doi: 10.1016/j.fcr.2017.02.016 |
[62] | 姜瑛, 戚秀秀, 李祥剑, 等.不同小麦品种的氮素利用特性研究[J].麦类作物学报, 2019, 39(6):702-708 http://www.cqvip.com/QK/96016B/201906/7002437813.html JIANG Y, QI X X, LI X J, et al. Study on nitrogen utilization characteristics of different wheat cultivars[J]. Journal of Triticeae Crops, 2019, 39(6):702-708 http://www.cqvip.com/QK/96016B/201906/7002437813.html |
[63] | 赵护兵, 王朝辉, 高亚军, 等.陕西省农户小麦施肥调研评价[J].植物营养与肥料学报, 2016, 22(1):245-253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201601031 ZHAO H B, WANG Z H, GAO Y J, et al. Investigation and evaluation of household wheat fertilizer application in Shaanxi Province[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1):245-253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201601031 |
[64] | LYU F L, HOU M M, ZHANG H T, et al. Closing the nitrogen use efficiency gap and reducing the environmental impact of wheat-maize cropping on smallholder farms in the Guanzhong Plain, Northwest China[J]. Journal of Integrative Agriculture, 2019, 18(1):169-178 doi: 10.1016/S2095-3119(18)61948-3 |
[65] | 孙彦铭, 黄少辉, 刘克桐, 等.河北省冬小麦施肥效果与肥料利用率现状[J].江苏农业科学, 2019, 47(6):60-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201906014 SUN Y M, HUANG S H, LIU K T, et al. Fertilization effects and fertilizer utilization rates of winter wheat in Hebei Province[J]. Jiangsu Agricultural Sciences, 2019, 47(6):60-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201906014 |
[66] | LIU W X, WANG J R, WANG C Y, et al. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain[J]. Frontiers in Plant Science, 2018, 9:1798 doi: 10.3389/fpls.2018.01798 |
[67] | 江东国, 黄正来, 张文静, 等.晚播条件下施氮量对稻茬小麦氮素吸收及产量的影响[J].麦类作物学报, 2019, 39(10):1211-1221 http://www.cqvip.com/main/zcps.aspx?c=1&id=7100257179 JIANG D G, HUANG Z L, ZHANG W J, et al. Effects of nitrogen application on nitrogen uptake and yield of wheat under late sowing conditions after rice[J]. Journal of Triticeae Crops, 2019, 39(10):1211-1221 http://www.cqvip.com/main/zcps.aspx?c=1&id=7100257179 |
[68] | CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523):486-489 doi: 10.1038/nature13609 |
[69] | RATTALINO EDREIRA J I, GUILPART N, SADRAS V, et al. Water productivity of rainfed maize and wheat:A local to global perspective[J]. Agricultural and Forest Meteorology, 2018, 259:364-373 doi: 10.1016/j.agrformet.2018.05.019 |
[70] | 张喜英.华北典型区域农田耗水与节水灌溉研究[J].中国生态农业学报, 2018, 26(10):1454-1464 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1004&flag=1 ZHANG X Y. Water use and water-saving irrigation in typical farmlands in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1454-1464 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1004&flag=1 |
[71] | JHA S K, RAMATSHABA T S, WANG G S, et al. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain[J]. Agricultural Water Management, 2019, 217:292-302 doi: 10.1016/j.agwat.2019.03.011 |
[72] | WANG L L, PALTA J A, CHEN W, et al. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling[J]. Agricultural Water Management, 2018, 197:41-53 doi: 10.1016/j.agwat.2017.11.010 |
[73] | XU C L, TAO H B, TIAN B J, et al. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat[J]. Field Crops Research, 2016, 196:268-275 doi: 10.1016/j.fcr.2016.07.009 |
[74] | WAN J M. Genetic crop improvement:A guarantee for sustainable agricultural production[J]. Engineering, 2018, 4(4):431-432 doi: 10.1016/j.eng.2018.07.019 |
[75] | 梁鹏, 石玉, 赵俊晔, 等.不同产量潜力小麦品种冠层光截获特性及产量的差异[J].麦类作物学报, 2018, 38(10):1189-1194 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201810007 LIANG P, SHI Y, ZHAO J Y, et al. Differences of canopy light interception characteristics and yield in different yield potential wheat varieties[J]. Journal of Triticeae Crops, 2018, 38(10):1189-1194 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201810007 |
[76] | ZHANG W F, CAO G X, LI X L, et al. Closing yield gaps in China by empowering smallholder farmers[J]. Nature, 2016, 537(7622):671-674 doi: 10.1038/nature19368 |
[77] | RAY D K, GERBER J S, MACDONALD G K, et al. Climate variation explains a third of global crop yield variability[J]. Nature Communications, 2015, 6(1):5989 doi: 10.1038/ncomms6989 |
[78] | LOBELL D B, SIBLEY A, ORTIZ-MONASTERIO J I. Extreme heat effects on wheat senescence in India[J]. Nature Climate Change, 2012, 2(3):186-189 doi: 10.1038/nclimate1356 |
[79] | YANG X, TIAN Z, SUN L X, et al. The impacts of increased heat stress events on wheat yield under climate change in China[J]. Climatic Change, 2017, 140(3/4):605-620 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8776e01aca6f1a7c8e29d3c091d3056 |
[80] | LIU Y A, WANG E L, YANG X G, et al. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s[J]. Global Change Biology, 2010, 16(8):2287-2299 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2009.02077.x |
[81] | XIONG W, ASSENG S, HOOGENBOOM G, et al. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat[J]. Nature Food, 2020, 1(1):63-69 https://www.ifpri.org/publication/different-uncertainty-distribution-between-high-and-low-latitudes-modelling-warming |
[82] | HATFIELD J L, DOLD C. Agroclimatology and wheat production:Coping with climate change[J]. Frontiers in Plant Science, 2018, 9:224 doi: 10.3389/fpls.2018.00224 |
[83] | ZHANG Q, XIAO M Z, SINGH V P, et al. Spatiotemporal variations of temperature and precipitation extremes in the Poyang Lake basin, China[J]. Theoretical and Applied Climatology, 2016, 124(3/4):855-864 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4ae1e1f510a89b006ea901148d062c4 |
[84] | ANDERSON W K. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar[J]. Field Crops Research, 2010, 116(1/2):14-22 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c17f150db5b0422139ffd033e0ff17f |
[85] | SINCLAIR T R, RUFTY T W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics[J]. Global Food Security, 2012, 1(2):94-98 https://www.sciencedirect.com/science/article/pii/S2211912412000028 |
[86] | HERNáNDEZ-BARRERA S, RODRíGUEZ-PUEBLA C. Wheat yield in Spain and associated solar radiation patterns[J]. International Journal of Climatology, 2017, 37(S1):45-58 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/joc.4975 |
[87] | ZHANG X Y, WANG S F, SUN H Y, et al. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades:A case study in the North China Plain[J]. European Journal of Agronomy, 2013, 50:52-59 doi: 10.1016/j.eja.2013.05.005 |
[88] | CASSMAN K G. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11):5952-5959 doi: 10.1073/pnas.96.11.5952 |
[89] | 韩上, 武际, 夏伟光, 等.耕层增减对作物产量、养分吸收和土壤养分状况的影响[J].土壤, 2018, 50(5):881-887 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201805004 HAN S, WU J, XIA W G, et al. Effects of topsoil thickness on crop yields and nutrient uptake as well as soil nutrients[J]. Soils, 2018, 50(5):881-887 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201805004 |
[90] | LINDERT P H. Shifting ground:The changing agricultural soils of China and Indonesia[J]. Soil Science, 2000, 166(3):824-825 https://www.cabdirect.org/cabdirect/abstract/20026789236 |
[91] | KAHLON M S, KHURANA K. Effect of land management practices on physical properties of soil and water productivity in wheat-maize system of Northwest India[J]. Applied Ecology and Environmental Research, 2017, 15(4):1-13 |
[92] | ZHANG L, WANG J, FU G Z, et al. Rotary tillage in rotation with plowing tillage improves soil properties and crop yield in a wheat-maize cropping system[J]. PLoS One, 2018, 13(6):e0198193 doi: 10.1371/journal.pone.0198193 |
[93] | 靳乐乐, 乔匀周, 董宝娣, 等.起垄覆膜栽培技术的增产增效作用与发展[J].中国生态农业学报(中英文), 2019, 27(9):1364-1374 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0907&flag=1 JIN L L, QIAO Y Z, DONG B D, et al. Crop yield increasing and efficiency improving effects and development of technology of ridge-furrow cultivation with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9):1364-1374 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0907&flag=1 |
[94] | PONISIO L C, M'GONIGLE L K, MACE K C, et al. Diversification practices reduce organic to conventional yield gap[J]. Proceedings of the Royal Society B-Biological Sciences, 2015, 282(1799):7 https://escholarship.org/uc/item/2jk6j262 |
[95] | MUELLER N D, GERBER J S, JOHNSTON M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490(7419):254-257 doi: 10.1038/nature11420 |
[96] | GEORGE T. Why crop yields in developing countries have not kept pace with advances in agronomy[J]. Global Food Security, 2014, 3(1):49-58 https://www.sciencedirect.com/science/article/abs/pii/S2211912413000527 |
[97] | SNYDER K A, MITHTHAPALA S, SOMMER R, et al. The yield gap:closing the gap by widening the approach[J]. Experimental Agriculture, 2017, 53(3):445-459 doi: 10.1017/S0014479716000508 |
[98] | SAMBERG L H, GERBER J S, RAMANKUTTY N, et al. Subnational distribution of average farm size and smallholder contributions to global food production[J]. Environmental Research Letters, 2016, 11(12):124010 doi: 10.1088/1748-9326/11/12/124010 |
[99] | MARIANO M J, VILLANO R, FLEMING E. Factors influencing farmers' adoption of modern rice technologies and good management practices in the Philippines[J]. Agricultural Systems, 2012, 110:41-53 doi: 10.1016/j.agsy.2012.03.010 |
[100] | 党建友, 裴雪霞, 张定一, 等.休闲期深翻时间对旱地麦田土壤水分特性和小麦产量的影响[J].应用生态学报, 2016, 27(9):2975-2982 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201609030 DANG J Y, PEI X X, ZHANG D Y, et al. Effects of deep plowing time during the fallow period on water storage-consumption characteristics and wheat yield in dry-land soil[J]. Chinese Journal of Applied Ecology, 2016, 27(9):2975-2982 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201609030 |
[101] | 王世佳, 蒋代华, 朱文国, 等.粉垄耕作对农田赤红壤团聚体结构的影响[J].土壤学报, 2020, 57(2):326-335 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb202002007 WANG S J, JIANG D H, ZHU W G, et al. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil[J]. Acta Pedologica Sinica, 2020, 57(2):326-335 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb202002007 |
[102] | 曹彩云, 党红凯, 郑春莲, 等.不同灌溉模式对小麦产量、耗水及水分利用效率的影响[J].华北农学报, 2016, 31(S1):17-24 http://www.cqvip.com/QK/91494X/2016S1/72667866504849548349484851.html CAO C Y, DANG H K, ZHENG C L, et al. Effects of different irrigation regime on yield, water consumption and water use efficiency of winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(S1):17-24 http://www.cqvip.com/QK/91494X/2016S1/72667866504849548349484851.html |