张晓煜1, 2, 3,,
丁琦4,
杨豫1, 2,
南学军2, 3,
胡宏远2, 3,
冯蕊1, 2,
李芳红1, 2,
张亚红1
1.宁夏大学农学院 银川 750021
2.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室 银川 750002
3.宁夏气象科学研究所 银川 750002
4.南京信息工程大学 南京 210044
基金项目: 国家自然科学基金项目41675114
详细信息
作者简介:张晓煜, 主要从事酿酒葡萄气象研究。E-mail:zhang_xynet@163.com
通讯作者:陈仁伟, 主要从事果树生理生态及防灾减灾研究。E-mail:c958512504@163.com
中图分类号:S663.1计量
文章访问数:281
HTML全文浏览量:2
PDF下载量:212
被引次数:0
出版历程
收稿日期:2020-03-02
录用日期:2020-05-14
刊出日期:2020-07-01
Comprehensive evaluation of cold resistance in different parts of four wine grape varieties based on different thermal analysis
CHEN Renwei1, 2,,,ZHANG Xiaoyu1, 2, 3,,
DING Qi4,
YANG Yu1, 2,
NAN Xuejun2, 3,
HU Hongyuan2, 3,
FENG Rui1, 2,
LI Fanghong1, 2,
ZHANG Yahong1
1. School of Agriculture, Ningxia University, Yinchuan 750021, China
2. Key Laboratory for Meteorological Disaster Monitoring, Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, China
3. Ningxia Institute of Meteorological Sciences, Yinchuan 750002, China
4. Nanjing University of Information Science & Technology, Nanjing 210044, China
Funds: the National Natural Science Foundation of China41675114
More Information
Corresponding author:CHEN Renwei, E-mail:zhang_xynet@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:越冬冻害是中国北方地区的主要气象灾害之一,严重影响着西北内陆埋土防寒区酿酒葡萄产业的可持续发展。葡萄不同部位抗寒能力具有差异,主要受品种遗传性状差异及各部位特性影响。本文基于差热分析技术对不同品种酿酒葡萄不同部位抗寒性进行测定,为葡萄越冬冻害的防御工作提供理论依据。本研究以贺兰山东麓主栽的4种酿酒葡萄‘赤霞珠’‘美乐’‘西拉’和‘北玫’的主根、副根和枝条为试材,在模拟自然降温冷冻过程中测定其过冷却点、结冰点、相对电导率和枝条含水率,并应用模糊隶属函数法综合评价4个品种酿酒葡萄根系的抗寒能力。研究结果表明:1)不同品种间的抗寒能力有显著差异,且不同品种根系、枝条抗寒能力趋势表现较为一致,4个品种抗寒能力大小顺序为:‘北玫’ > ‘赤霞珠’ >‘美乐’ > ‘西拉’。2)半致死温度与根系过冷却点呈显著性相关,结合半致死温度确定供试品种根系的过冷却点温度范围为-5.2~-2.7℃,可作为4个酿酒葡萄品种根系越冬冻害的温度参考指标。供试品种各部位中枝条抗寒能力最强,主根次之,副根最弱,且主根抗寒能力显著大于副根。研究结果对于酿酒葡萄越冬冻害监测、预警和防御能力具有重要意义,也为酿酒葡萄抗寒性育种、优良品种的推广应用提供理论参考。
关键词:酿酒葡萄/
抗寒性综合评价/
过冷却点/
半致死温度/
根系/
差热分析
Abstract:Freezing injury is one of the main meteorological disasters for grapes in northern China, and it seriously affects the growth and quality of wine grapes, which are soil-buried for winter protection in the northwest inland zones, and restricts the sustainable development of grapevine and the wine industry. The cold resistance of different parts of wine grape varies with the genetic characters of the grape varieties. In this paper, the cold resistance capacity of different parts of wine grape were measured using different thermal analysis (DTA) technologies to provide a theoretical basis for the prevention and mitigation of the winter freezing injury of grape. The physiological response indexes (supercooling point, freezing point, relative conductivity, and water content of branches) of four common varieties of wine grapes, namely, 'Cabernet Sauvignon' 'Merlot' 'Syrah, ' and 'Beimei', were measured by simulating the natural freezing schedule. Based on the fuzzy subordination function, the cold resistance capabilities of four wine grape varieties roots were comprehensively evaluated. The results showed that: 1) there were significant differences in cold resistance among different varieties, but the trend cold resistance of root and branch of the four varieties were identical. The order of cold resistance of the four varieties was: 'Beimei' > 'Cabernet Sauvignon' > 'Merlot' > 'Syrah'. 2) There was a significant correlation between the semi-lethal temperature and the supercooling point of the root system. Combined with the semi-lethal temperature, the temperature range of the supercooling points of the tested varieties roots was -5.2~-2.7 ℃, which could be used as the temperature reference index of the root system of four wine grape varieties. In all parts of the tested varieties, the cold resistance of branch was the strongest, the taproot was the second, the secondary root was the weakest, and the cold resistance capacity of the taproots was significantly better than that of the accessory roots. The results of this study are of significance to the monitoring, early warning, and improving the ability of wine grapes to resist overwintering freezing damage and provide a theoretical basis for the breeding of cold resistance ability in wine grape and the popularization and application of excellent varieties.
Key words:Wine grape/
Comprehensive evaluation of cold resistance/
Supercooling point/
Semi-lethal temperature (LT50)/
Root/
Different thermal analysis
HTML全文
图1不同酿酒葡萄品种主根的过冷却点及结冰点频次图
Figure1.Frequencies of supercooling point and freezing point of taproots of different wine grape varieties
下载: 全尺寸图片幻灯片
图2不同酿酒葡萄品种副根的过冷却点及结冰点频次图
Figure2.Frequencies of supercooling point and freezing point of accessory roots of different wine grape varieties
下载: 全尺寸图片幻灯片
图3不同酿酒葡萄品种枝条的过冷却点及结冰点频次图
Figure3.Frequencies of supercooling point and freezing point of branches of different wine grape varieties
下载: 全尺寸图片幻灯片
表1供试酿酒葡萄品种及来源
Table1.Varieties and sources of the tested wine grape
品种Variety | 来源Source |
北玫 Beimei | 银川市永宁县玉泉营乡西夏王葡萄基地 Chateau Xixia King, Yuquanying Township, Yongning County, Yinchuan City |
美乐 Merlot | 银川市西夏区美贺庄园 Chateau Mihope, Xixia District, Yinchuan City |
赤霞珠、西拉 Cabernet Sauvignon, Syrah | 银川市贺兰县金山村观兰酒庄 Guanlan Vineyard, Jinshan Village, Helan County, Yinchuan City |
下载: 导出CSV
表2不同酿酒葡萄品种同一部位及同一品种不同部位的过冷却点、结冰点和过冷却能力差异性分析
Table2.Variance analysis of supercooling points, freezing points and supercooling capacities of the same part among different wine grape varieties and among different parts of the same variety
指标 Index | 部位 Part | 北玫 Beimei | 美乐 Merlot | 西拉 Syrah | 赤霞珠 Cabernet Sauvignon |
过冷却点温度 Supercooling point temperature (℃) | 主根Taproot | -4.94±0.15aB | -3.91±0.12bB | -3.21±0.14cB | -4.02±0.15bB |
副根Accessory root | -4.12±0.27aC | -3.73±0.51bB | -2.87±0.01cC | -3.53±0.33bC | |
枝条Branch | -9.79±0.95aA | -7.03±0.99dA | -7.99±0.58cA | -8.71±0.65bA | |
结冰点温度 Freezing point temperature (℃) | 主根Taproot | -3.49±0.35aB | -2.76±0.46bB | -1.95±0.17dB | -2.45±0.27cB |
副根Accessory root | -3.14±0.32aB | -2.78±0.51abB | -2.25±0.23bB | -2.62±0.28bB | |
枝条Branch | -7.77±1.37aA | -5.00±1.08bA | -4.97±0.78bA | -7.51±0.84aA | |
过冷却能力 Supercooling capacity | 主根Taproot | 1.45±0.41aB | 1.15±0.42aA | 1.22±0.19aB | 1.57±0.301aC |
副根Accessory root | 0.89±0.30abA | 0.95±0.41bA | 0.62±0.27aA | 0.91±0.21bA | |
枝条Branch | 2.02±0.83bC | 2.03±0.60bB | 3.02±0.81cC | 1.20±0.42aB | |
同行不同小写字母表示不同品种同一部位各指标在P < 0.05水平差异显著, 同列不同大写字母表示同一品种不同部位各指标在P < 0.05水平差异显著。Different lowercase letters in the same line mean significant differences at P < 0.05 level in the same part among different varieties; different capital letters in the same column mean significant differences at P < 0.05 level in the same variety among different parts. |
下载: 导出CSV
表3基于模糊隶属函数法综合评价4个酿酒葡萄品种的抗寒性
Table3.Comprehensive evaluation of cold resistance of four wine grape varieties based on fuzzy membership function
部位 Part | 指标 Index | 北玫 Beimei | 美乐 Merlot | 西拉 Syrah | 赤霞珠 Cabernet Sauvignon |
主根 Taproot | 过冷却点Supercooling point | 0.00 | 0.60 | 1.00 | 0.53 |
结冰点Freezing point | 0.00 | 0.47 | 1.00 | 0.68 | |
过冷却能力Supercooling capacity | 0.71 | 0.00 | 0.26 | 1.00 | |
副根 Accessory root | 过冷却点Supercooling point | 0.00 | 0.30 | 1.00 | 0.46 |
结冰点Freezing point | 0.00 | 0.45 | 1.00 | 0.61 | |
过冷却能力Supercooling capacity | 0.82 | 1.00 | 0.00 | 0.88 | |
枝条 Branch | 过冷却点Supercooling point | 0.00 | 1.00 | 0.65 | 0.39 |
结冰点Freezing point | 0.00 | 0.99 | 1.00 | 0.09 | |
过冷却能力Supercooling capacity | 0.44 | 0.45 | 1.00 | 0.00 | |
平均隶属函数度Average of subordination value | 0.22 | 0.58 | 0.77 | 0.52 | |
抗寒类型Cold hardiness | 高High | 中Middle | 低Low | 中Middle |
下载: 导出CSV
表4不同酿酒葡萄品种不同部位相对电导率(Y)和温度(X)的Logistics方程及半致死温度(LT50)
Table4.Logistics equations of relative electrical conductivity (Y) and temperature (X) and semi-lethal temperature (LT50) of different parts of different wine grape varieties
部位Part | 品种Variety | 逻辑斯蒂方程Logistics equations | R2 | LT50 (℃) |
主根 Taproot | 北玫Beimei | Y=52.87/[1+EXP(4.68+0.89X)] | 0.999 3 | -5.30f |
美乐Merlot | Y=44.97/[1+EXP(2.55+0.66X)] | 0.977 6 | -3.97de | |
西拉Syrah | Y=60.82/[1+EXP(4.39+1.38X)] | 0.982 5 | -3.25b | |
赤霞珠Cabernet Sauvignon | Y=45.07/[1+EXP(1.97+0.49X)] | 0.918 3 | -4.06e | |
副根 Accessory root | 北玫Beimei | Y=34.02/[1+EXP(4.98+1.22X)] | 0.975 3 | -4.10e |
美乐Merlot | Y=41.46/[1+EXP(3.33+0.93X)] | 0.963 4 | -3.61c | |
西拉Syrah | Y=30.36/[1+EXP(2.68+0.91X)] | 0.950 1 | -2.92a | |
赤霞珠Cabernet Sauvignon | Y=46.59/[1+EXP(2.75+0.74X)] | 0.994 1 | -3.70cd | |
枝条 Branch | 北玫Beimei | Y=117.81/[1+EXP(4.62+0.16X)] | 0.967 5 | -28.86i |
美乐Merlot | Y=84.22/[1+EXP(4.29+0.24X)] | 0.999 5 | -17.90h | |
西拉Syrah | Y=85.34/[1+EXP(6.02+0.43X)] | 0.995 2 | -14.16g | |
赤霞珠Cabernet Sauvignon | Y=72.26/[1+EXP(4.44+0.25X)] | 0.975 7 | -17.76h | |
半致死温度列不同小写字母表示P < 0.05水平差异显著。Different lowercase letters in the semi-lethal temperature column mean significant differences at P < 0.05 level. |
下载: 导出CSV
表5应用模糊隶属函数法基于半致死温度的不同酿酒葡萄品种抗寒性评价
Table5.Cold resistance evaluation of different grape varieties based on semi-lethal temperature by fuzzy membership function method
品种 Variety | 半致死温度Semi-lethal temperature (LT50) | 平均隶属函数度 Average of subordination value | 抗寒类型 Cold hardiness | ||
主根 Taproot | 副根 Accessory root | 枝条 Branch | |||
北玫Beimei | 0 | 0 | 0 | 0 | 高High |
美乐Merlot | 0.69 | 0.44 | 0.75 | 0.62 | 中Middle |
西拉Syrah | 1.00 | 1.00 | 1.00 | 1.00 | 低Low |
赤霞珠Cabernet Sauvignon | 0.58 | 0.31 | 0.76 | 0.55 | 中Middle |
下载: 导出CSV
表6酿酒葡萄半致死温度(LT50)与抗寒性指标的相关性分析
Table6.Correlation analysis between semi-lethal temperature (LT50) and cold resistance indexes of wine grape
过冷却点 Supercooling point | 结冰点 Freezing point | 过冷却能力 Supercooling capacity | LT50 | ||
主根 Taproot | 过冷却点Supercooling point | 1.000 | |||
结冰点Freezing point | 0.966* | 1.000 | |||
过冷却能力Supercooling capacity | -0.525 | -0.288 | 1.000 | ||
LT50 | 0.996** | 0.969* | -0.494 | 1.000 | |
副根 Accessory root | 过冷却点Supercooling point | 1.000 | |||
结冰点Freezing point | 0.990* | 1.000 | |||
过冷却能力Supercooling capacity | -0.833 | -0.746 | 1.000 | ||
LT50 | 0.972* | 0.954* | -0.828 | 1.000 | |
枝条 Branch | 过冷却点Supercooling point | 1.000 | |||
结冰点Freezing point | 0.884 | 1.000 | |||
过冷却能力Supercooling capacity | 0.259 | 0.681 | 1.000 | ||
LT50 | 0.833 | 0.940 | 0.637 | 1.000 | |
*: P < 0.05; **: P < 0.01. |
下载: 导出CSV
表7不同酿酒葡萄品种枝条含水量与抗寒性指标的相关性分析
Table7.Correlation analysis between water contents and cold resistance indexes of branches of wine grape
过冷却点 Supercooling point | 结冰点 Freezing point | 过冷却能力 Supercooling capacity | 含水量 water content | |
过冷却点Supercooling point | 1.000 | |||
结冰点Freezing point | 0.884 | 1.000 | ||
过冷却能力Supercooling capacity | 0.259 | 0.681 | 1.000 | |
含水量Water content | 0.984* | 0.953* | -0.515 | 1.000 |
*: P < 0.05. |
下载: 导出CSV
参考文献
[1] | STEPONKUS P L. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annual Review of Plant Biology, 1984, 35(1):543-584 doi: 10.1146/annurev.pp.35.060184.002551 |
[2] | TONIETTO J, CARBONNEAU A. A multicriteria climatic classification system for grape-growing regions worldwide[J]. Agricultural and Forest Meteorology, 2004, 124(1/2):81-97 |
[3] | 王文平, 郭祀远, 李琳, 等.苯酚-硫酸法测定野木瓜中多糖含量的研究[J].食品科学, 2007, 28(4):276-279 doi: 10.3321/j.issn:1002-6630.2007.04.065 WANG W P, GUO S Y, LI L, et al. Assay study on content of polysaccharides in Stanuntonia chinensis by phenol-sulfuric acid method[J]. Food Science, 2007, 28(4):276-279 doi: 10.3321/j.issn:1002-6630.2007.04.065 |
[4] | XIN Z, BROWSE J. Cold comfort farm:The acclimation of plants to freezing temperatures[J]. Plant, Cell & Environment, 2000, 23(9):893-902 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0214145865 |
[5] | 苏李维, 李胜, 马绍英, 等.葡萄抗寒性综合评价方法的建立[J].草业学报, 2015, 24(3):70-79 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201503007 SU L W, LI S, MA S Y, et al. A comprehensive assessment method for cold resistance of grape vines[J]. Acta Prataculturae Sinica, 2015, 24(3):70-79 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201503007 |
[6] | 牛锦凤, 王振平, 李国, 等.几种方法测定鲜食葡萄枝条抗寒性的比较[J].果树学报, 2006, 23(1):31-34 http://d.old.wanfangdata.com.cn/Periodical/gskx200601008 NIU J F, WANG Z P, LI G, et al. Comparison of different methods for examination of grape hardiness[J]. Journal of Fruit Science, 2006, 23(1):31-34 http://d.old.wanfangdata.com.cn/Periodical/gskx200601008 |
[7] | 马小河, 唐晓萍, 董志刚, 等. 6个酿酒葡萄品种抗寒性比较[J].山西农业大学学报:自然科学版, 2013, 33(1):1-5 http://d.old.wanfangdata.com.cn/Periodical/sxnydxxb201301001 MA X H, TANG X P, DONG Z G, et al. Comparison of cold resistance for 6 grapewine cultivars[J]. Journal of Shanxi Agricultural University:Natural Science Edition, 2013, 33(1):1-5 http://d.old.wanfangdata.com.cn/Periodical/sxnydxxb201301001 |
[8] | 张文娥, 王飞, 潘学军.应用隶属函数法综合评价葡萄种间抗寒性[J].果树学报, 2007, 24(6):849-853 http://d.old.wanfangdata.com.cn/Periodical/gskx200706027 ZHANG W E, WANG F, PAN X J. Comprehensive evaluation on cold hardiness of Vitis species by Subordinate Function (SF)[J]. Journal of Fruit Science, 2007, 24(6):849-853 http://d.old.wanfangdata.com.cn/Periodical/gskx200706027 |
[9] | 鲁金星, 姜寒玉, 李唯.低温胁迫对砧木及酿酒葡萄枝条抗寒性的影响[J].果树学报, 2012, 29(6):1040-1046 LU J X, JIANG H Y, LI W. Effects of low temperature stress on the cold resistance of rootstock and branch of wine grapes[J]. Journal of Fruit Science, 2012, 29(6):1040-1046 |
[10] | 赵滢, 艾军, 杨义明, 等. TTC染色指数配合Logistic方程鉴定山葡萄种质抗寒性[J].农业工程学报, 2018, 34(11):174-180 doi: 10.11975/j.issn.1002-6819.2018.11.022 ZHAO Y, AI J, YANG Y M, et al. Identification of cold resistance in Vitis amurensis germplasms base on TTC staining index and Logistic equation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11):174-180 doi: 10.11975/j.issn.1002-6819.2018.11.022 |
[11] | 陈佰鸿, 张彪, 毛娟, 等.葡萄枝条水分含量变化与抗寒性关系[J].植物生理学报, 2014, 50(4):535-541 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201404024 CHEN B H, ZHANG B, MAO J, et al. The relationship between the changing of water content and the cold resistance of grape branches[J]. Plant Physiology Journal, 2014, 50(4):535-541 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201404024 |
[12] | 范宗民, 孙军利, 赵宝龙, 等.不同砧木'赤霞珠'葡萄枝条抗寒性比较[J].果树学报, 2020, 37(2):215-225 http://d.old.wanfangdata.com.cn/Periodical/gskx202002007 FAN Z M, SUN J L, ZHAO B L, et al. Evaluation of cold resistance of one-year shoots from 'Cabernet Sauvignon' grape vine grafted on different rootstocks[J]. Journal of Fruit Science, 2020, 37(2):215-225 http://d.old.wanfangdata.com.cn/Periodical/gskx202002007 |
[13] | 郭修武, 傅望衡, 王光洁.葡萄根系抗寒性的研究[J].园艺学报, 1989, 16(1):17-22 doi: 10.3321/j.issn:0513-353X.1989.01.003 GUO X W, FU W H, WANG G J. Studies on cold hardiness of grape roots[J]. Acta Horticulturae Sinica, 1989, 16(1):17-22 doi: 10.3321/j.issn:0513-353X.1989.01.003 |
[14] | 付晓伟, 张倩, 刘崇怀, 等.评价葡萄根系抗寒性指标的确定[J].果树学报, 2014, 31(1):52-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201401008 FU X W, ZHANG Q, LIU C H, et al. Index for the evaluation of grape root cold-resistance[J]. Journal of Fruit Science, 2014, 31(1):52-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201401008 |
[15] | 袁军伟, 郭紫娟, 刘长江, 等. 11个葡萄品种根系抗寒性的综合评价[J].中外葡萄与葡萄酒, 2015, (2):21-25 http://d.old.wanfangdata.com.cn/Periodical/zwptyptj201502003 YUAN J W, GUO Z J, LIU C J, et al. Comprehensive assessment of the cold resistance of roots from eleven grape cultivars[J]. Sino-Overseas Grapevine & Wine, 2015, (2):21-25 http://d.old.wanfangdata.com.cn/Periodical/zwptyptj201502003 |
[16] | 高振, 翟衡, 孙鲁龙, 等.基于温度-伤害度关系分析酿酒葡萄根系及芽抗寒性[J].应用生态学报, 2014, 25(4):983-990 http://d.old.wanfangdata.com.cn/Periodical/yystxb201404008 GAO Z, ZHAI H, SUN L L, et al. Evaluation of root and bud cold hardiness of wine grape varieties based on temperature-injury relation[J]. Chinese Journal of Applied Ecology, 2014, 25(4):983-990 http://d.old.wanfangdata.com.cn/Periodical/yystxb201404008 |
[17] | 杨豫, 张晓煜, 陈仁伟, 等.不同品种酿酒葡萄根系抗寒性鉴定[J].中国生态农业学报(中英文), 2020, 28(4):558-565 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0409&flag=1 YANG Y, ZHANG X Y, CHEN R W, et al. Comparing the cold resistance of roots of different wine grape varieties[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4):558-565 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0409&flag=1 |
[18] | 王景红, 刘璐, 高峰, 等.陕西富士系苹果花期霜冻灾害气象指标的修订[J].中国农业气象, 2015, 36(1):50-56 doi: 10.3969/j.issn.1000-6362.2015.01.007 WANG J H, LIU L, GAO F, et al. Revision on meteorological indices of florescence frost disaster for Fuji apple in Shaanxi Province[J]. Chinese Journal of Agrometeorology, 2015, 36(1):50-56 doi: 10.3969/j.issn.1000-6362.2015.01.007 |
[19] | 秦明, 王红芳, 刘振国, 等.中华蜜蜂和意大利蜜蜂耐寒性能差异比较[J].中国农业科学, 2017, 50(12):2380-2388 doi: 10.3864/j.issn.0578-1752.2017.12.018 QIN M, WANG H F, LIU Z G, et al. Comparison of different cold resistance between Apis cerana cerana and Apis mellifera ligustica[J]. Scientia Agricultura Sinica, 2017, 50(12):2380-2388 doi: 10.3864/j.issn.0578-1752.2017.12.018 |
[20] | 孟庆瑞, 王文凤, 梁隐泉, 等.杏品种花器官过冷却点及结冰点的研究[J].中国农业科学, 2008, 41(4):1128-1133 doi: 10.3864/j.issn.0578-1752.2008.04.023 MENG Q R, WANG W F, LIANG Y Q, et al. Study on supercooling point and freezing point in floral organs of apricot[J]. Scientia Agricultura Sinica, 2008, 41(4):1128-1133 doi: 10.3864/j.issn.0578-1752.2008.04.023 |
[21] | 祁娇娇, 崔如海, 李保国, 等. 5个核桃品种结果母枝过冷却点及结冰点的研究[J].林业实用技术, 2012, (11):13-16 http://d.old.wanfangdata.com.cn/Conference/8098612 QI J J, CUI R H, LI B G, et al. Study on supercooling point and freezing point of 5 varieties of walnut[J]. Practical Forestry Technology, 2012, (11):13-16 http://d.old.wanfangdata.com.cn/Conference/8098612 |
[22] | 王海梅, 侯琼, 云文丽, 等.内蒙古河套灌区玉米与向日葵霜冻的关键温度[J].生态学报, 2014, 34(11):2948-2953 http://d.old.wanfangdata.com.cn/Periodical/stxb201411017 WANG H M, HOU Q, YUN W L, et al. Key temperatures of corn and sunflower during cooling process in Hetao irrigation district, Inner Mongolia[J]. Acta Ecologica Sinica, 2014, 34(11):2948-2953 http://d.old.wanfangdata.com.cn/Periodical/stxb201411017 |
[23] | 李盼华.低温胁迫对早春开花植物花器官抗寒性及花色的影响[D].保定: 河北农业大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-11920-1011074418.htm LI P H. The impact of cold hardiness and floral color under low temperature stress on floral organs of early spring flowering plants[D]. Baoding: Hebei Agricultural University, 2011 http://cdmd.cnki.com.cn/Article/CDMD-11920-1011074418.htm |
[24] | 王文举, 张亚红, 牛锦凤, 等.电导法测定鲜食葡萄的抗寒性[J].果树学报, 2007, 24(1):34-37 http://d.old.wanfangdata.com.cn/Periodical/gskx200701008 WANG W J, ZHANG Y H, NIU J F, et al. Study on cold tolerance of table grape cultivars by measuring the conductivity[J]. Journal of Fruit Science, 2007, 24(1):34-37 http://d.old.wanfangdata.com.cn/Periodical/gskx200701008 |
[25] | 李玉鼎, 宋文章, 宋长冰, 等. 2009年黄羊滩、红寺堡等酿酒葡萄基地葡萄冻害调查报告[J].中外葡萄与葡萄酒, 2010, (11):35-37 doi: 10.3969/j.issn.1004-7360.2010.11.010 LI Y D, SONG W Z, SONG C B, et al. Investigation report on grape freezing injury in wine bases of Huangyangtan and Hongsibao in 2009[J]. Sino-Overseas Grapevine & Wine, 2010, (11):35-37 doi: 10.3969/j.issn.1004-7360.2010.11.010 |
[26] | 王丽雪, 赵金枝, 余茂莉, 等.葡萄根系抗寒力的研究[J].内蒙古农牧学院学报, 1982, 4(1):111-123 http://d.old.wanfangdata.com.cn/Thesis/Y061818 WANG L X, ZHAO J Z, YU M L, et al. Study on cold resistance of grape roots[J]. Journal of Inner Mongolia Institute of Agriculture & Animal Husbandry, 1982, 4(1):111-123 http://d.old.wanfangdata.com.cn/Thesis/Y061818 |
[27] | 刘建, 项东云, 陈健波, 等.应用Logistic方程确定三种桉树的低温半致死温度[J].广西林业科学, 2009, 38(02):75-78. doi: 10.3969/j.issn.1006-1126.2009.02.002 LIU J, XIANG D Y, CHEN J B, et al. Low temperature LT50 of three eucalyptus seedlings with electrical conductivity method and Logistic equation[J]. Guangxi Forestry Science, 2009, 38(2):75-78 doi: 10.3969/j.issn.1006-1126.2009.02.002 |
[28] | 王玮, 李红旭, 赵明新, 等. 7个梨品种的低温半致死温度及耐寒性评价[J].果树学报, 2015, 32(5):860-865 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201505014 WANG W, LI H X, ZHAO M X, et al. Study on the cold resistance and the semi-lethal temperatures for seven pear cultivars[J]. Journal of Fruit Science, 2015, 32(5):860-865 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201505014 |
[29] | ZHENG C L, HALALY T, ACHEAMPONG A K, et al. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism[J]. Journal of Experimental Botany, 2015, 66(5):1527-1542 doi: 10.1093/jxb/eru519 |
[30] | 焦奎宝.葡萄根系抗寒性的研究[D].哈尔滨: 东北农业大学, 2010 JIAO K B. Study on cold hardiness of grape roots[D]. Harbin: Northeast Agricultural University, 2010 |