删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

玉米秸秆低温降解复合菌系降解能力及微生物组成研究

本站小编 Free考研考试/2022-01-01

青格尔1, 2,,
于晓芳1, 2,,,
高聚林1, 2,,,
王志刚1, 2,
胡万吉1,
闹干朝鲁2, 3,
王振2, 3,
胡树平2, 4,
孙继颖1, 2,
屈佳伟1, 2
1.内蒙古农业大学农学院 呼和浩特 010019
2.内蒙古自治区作物栽培与遗传改良重点实验室 呼和浩特 010019
3.内蒙古农业大学园艺与植保学院 呼和浩特 010019
4.内蒙古农业大学职业技术学院 包头 014100
基金项目: 国家自然科学基金项目31760353
内蒙古自然基金项目2020MS03086
内蒙古自然基金项目2018ZD02
国家重点研发计划项目2017YFD0300804
国家玉米产业技术体系项目CARS-02-63
农业部华北黄土高原地区作物栽培科学观测实验站25204120
内蒙古农业大学高层次人才引进科研启动项目NDYB2016-15

详细信息
作者简介:青格尔, 主要从事玉米生理生态研究。E-mail:qinggeer001@163.com
通讯作者:于晓芳, 主要从事作物生理生态研究, E-mail:yuxiaofang75@163.com
高聚林, 主要从事作物生理生态研究, E-mail:nmgaojulin@163.com
中图分类号:S145.6

计量

文章访问数:229
HTML全文浏览量:12
PDF下载量:116
被引次数:0
出版历程

收稿日期:2020-02-26
录用日期:2020-06-21
刊出日期:2020-11-01

Straw degradation ability and composition of microbial consortium for corn straw decomposition at low temperature

Qing geer1, 2,,
YU Xiaofang1, 2,,,
GAO Julin1, 2,,,
WANG Zhigang1, 2,
HU Wanji1,
Naogan chaolu2, 3,
WANG Zhen2, 3,
HU Shuping2, 4,
SUN Jiying1, 2,
QU Jiawei1, 2
1. Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China
2. Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, Hohhot 010019, China
3. Horticulture and Plant Protection College, Inner Mongolia Agricultural University, Hohhot 010019, China
4. Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014100, China
Funds: National Natural Science Foundation of China31760353
Inner Mongolia Natural Sciences Foundation2020MS03086
Inner Mongolia Natural Sciences Foundation2018ZD02
National Key Research and Development Project of China2017YFD0300804
Earmarked Fund for China Agriculture Research SystemCARS-02-63
Crop Science Observation & Experiment Station in Loess Plateau of North China, Ministry of Agriculture, China25204120
Advanced Talented Scholars of Inner Mongolia Agricultural University, ChinaNDYB2016-15

More Information
Corresponding author:YU Xiaofang, E-mail:yuxiaofang75@163.com;GAO Julin, E-mail:nmgaojulin@163.com


摘要
HTML全文
(8)(1)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:根据还田秸秆配施尿素的生产实际,对玉米秸秆低温高效降解复合菌系GF-20进行氮源培养基驯化,探明其菌种组成和功能多样性及其与菌源菌种结构差异,完善复合菌系筛选方法,促进其开发利用。本文以低温高效降解复合菌系GF-20为研究对象,在硫酸铵和尿素不同配比下连续继代培养10代,获得不同氮源菌系(硫酸铵处理N1,硫酸铵和尿素混合处理N2-N5,尿素处理N6),测定其玉米秸秆降解率,评价复合菌系秸秆降解效率;采用MiSeq高通量测序对菌源土壤样品及不同氮源下继代培养的复合菌系菌种组成和功能多样性进行研究。结果显示N2处理玉米秸秆降解率显著高于其他处理;菌源土壤的Alpha多样性指数显著高于继代培养后的复合菌系,不同处理间N2处理显著高于其他氮处理;菌源和复合菌间以及不同氮处理间菌种组成具有显著差异,N2处理菌种组成多样性较高,菌群结构更加丰富、均匀,且碳水化合物的代谢通路丰度较高。菌源经限制性继代筛选后得到了参与玉米秸秆降解过程的功能菌,能有效提高秸秆降解率,其在硫酸铵和尿素氮源为0.16%+0.04%的条件下,菌系的秸秆降解效率较高,这为复合菌的生产实际开发利用提供了理论依据。
关键词:菌源/
复合菌系/
氮源/
高通量测序/
菌种组成多样性/
玉米秸秆降解
Abstract:It is common practice to return field straw with urea to accelerate decomposition. To improve the microbial screening methodology and investigate the microbes responsible for decomposition of corn straw, nitrogen acclimatization of the microbial consortium GF-20 (GF-20) was performed. Compositional differences in the cultured microbial consortium and the microbe source were also evaluated. GF-20 was cultured until the 10th generation in variable nitrogen conditions[ammonium sulfate (N1), mixtures of ammonium sulfate and urea (N2-N5), and urea (N6)]. The corn straw decomposition ratio was determined to estimate the activity of the composite microbial system, and the composition diversity and function were analyzed by MiSeq high-throughput sequencing. The results showed that the N2 degradation rate was significantly higher than the other treatments. The bacterial source alpha diversity index (ADI) was significantly higher than the cultured microbial consortium, and the N2 ADI was significantly higher than the other nitrogen treatments. The bacterial composition also significantly differed between the source and consortium, as well as among the nitrogen treatments. The N2 treatment yielded the most diverse bacterial composition, with richer and more uniform flora structures and a higher carbohydrate metabolic pathway activity (which promotes corn straw degradation). Functional microbial strains involved in corn straw degradation were obtained after restrictive sub-generation of the microbial sources, which can accelerate corn straw degradation. The highest corn straw degradation efficiency of microbial consortium was observed with the 0.16% ammonium sulfate + 0.04% of urea nitrogen (N2) treatment. These findings provide a basis for developing microbial consortium used in commercial production decomposition.
Key words:Original microbe source/
Microbial consortium/
Nitrogen resources/
High throughput sequencing/
Composition diversity/
Corn straw degradation

HTML全文


图1不同氮源处理复合菌系玉米秸秆降解率
N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例为分别0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%、0+0.2%。CK为不加菌对照, 培养条件同N1。不同小写字母表示不同处理间差异显著。
Figure1.Corn straw degradation ratios of microbial consortium under different treatments of nitrogen resources
The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, and 0+0.2%, respectively. CK is non-inoculated microbial consortium (control), and the culture conditions are the same as N1. Different lowercase letters mean sig-nificant differences among different treatments.


下载: 全尺寸图片幻灯片


图2菌源样品及不同氮源处理复合菌系Alpha多样性指数
Q为菌源土壤。N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例为分别0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%、0+0.2%。
Figure2.Alpha diversity indexes of source samples and microbial consortium under different treatments of nitrogen resources
Q is original microbe source. The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, and 0+0.2%, respectively.


下载: 全尺寸图片幻灯片


图3菌源样品及不同氮源处理复合菌系门(a)和纲(b)水平群落结果及属水平(c)Heatmap图分析
将在所有样本中丰度占比均小于0.02%的物种归为Others。Q为菌源土壤。N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%和0+0.2%。
Figure3.Analysis of community structure at phyla (a) and class (b) level and Heatmap at genus level (c) of source samples and mi-crobial consortium under different treatments of nitrogen resources
Microbes with less than 0.02% abundance in all samples are classified as others. Q is original microbe source. The nitrogen resources of N1, N2, N3, N4, N5, and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16% and 0+0.2%, respectively.


下载: 全尺寸图片幻灯片


图4菌源及不同氮源处理复合菌系细菌群落结构分布(属水平)
Q为菌源土壤。N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%、0+0.2%。
Figure4.Bacterial community structure at genus level of source samples and microbial consortium under different treatments of nitrogen resources
Q is original microbe source. The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, 0+0.2%, respectively.


下载: 全尺寸图片幻灯片


图5不同氮源处理复合菌系属水平PCoA (a)和Rank Abundance (b)分析
N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%和0+0.2%。
Figure5.PCoA analysis (a) and rank abundance analysis (b) at genus level of microbial consortium under different treatments of ni-trogen resources
The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, and 0+0.2%, respectively.


下载: 全尺寸图片幻灯片


图6不同氮源处理复合菌系属水平菌种分布比较的Venn图分析
N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%和0+0.2%。
Figure6.Venn analysis at genus level of microbial consortium under different treatments of nitrogen resources
The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, and 0+0.2%, respectively.


下载: 全尺寸图片幻灯片


图7不同氮源处理复合菌系COG功能注释相对丰度
N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%和0+0.2%。
Figure7.Relative abundance of the COG annotations of microbial consortium under different treatments of nitrogen resources
The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, and 0+0.2%, respectively.


下载: 全尺寸图片幻灯片


图8不同氮源处理复合菌系KEGG主要代谢途径的相对丰度(> 1.00%)
N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%和0+0.2%。
Figure8.Relative abundances of dominant KEGG pathway (> 1.00%) of microbial consortium under different treatments of nitrogen resources
The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, and 0+0.2%, respectively.


下载: 全尺寸图片幻灯片

表1不同氮源处理复合菌系KEGG注释结果的第2类水平统计
Table1.Statistics of the KEGG pathway annotations at the second level of microbial consortium under different treatments of ni-trogen resources
KEGG第二代谢水平注释
KEGG pathway level 2
N1 N2 N3 N4 N5 N6
RA% log RA% log RA% log RA% log RA% log RA% log
氨基酸代谢
Amino acid metabolism
12.23 6.27 12.06 6.25 11.59 6.31 11.60 6.35 12.02 6.30 12.52 6.44
碳水化合物代谢
Carbohydrate metabolism
12.71 6.31 14.11 6.24 13.73 6.26 13.99 6.29 13.53 6.28 13.24 6.41
其他次生代谢产物的生物合成
Biosynthesis of other secondary metabolites
0.90 5.26 0.98 5.21 0.83 5.17 0.85 5.20 0.96 5.18 1.04 5.32
辅助因子和维生素的代谢
Metabolism of cofactors and vitamins
6.63 5.98 6.93 5.87 6.58 5.91 6.59 5.94 6.82 5.87 6.79 6.04
其他氨基酸的代谢
Metabolism of other amino acids
2.51 5.56 2.63 5.53 2.71 5.61 2.75 5.65 2.80 5.62 2.88 5.74
萜类和聚酮化合物的代谢
Metabolism of terpenoids and polyketides
3.52 5.54 3.11 5.54 3.15 5.58 3.01 5.62 3.83 5.62 3.04 5.74
异生物素的生物降解与代谢
Xenobiotics biodegradation and metabolism
4.02 5.69 3.87 5.74 4.01 5.83 4.08 5.89 4.57 5.87 4.67 5.98
聚糖的生物合成与代谢
Glycan biosynthesis and metabolism
2.37 5.73 3.22 5.61 2.45 5.61 2.54 5.63 2.35 5.51 2.55 5.74
脂质代谢
Lipid metabolism
3.70 5.81 3.90 5.80 3.67 5.85 3.69 5.90 3.82 5.87 3.75 6.00
能量代谢
Energy metabolism
6.37 6.01 6.77 5.97 6.62 6.00 6.69 6.04 6.56 6.02 6.68 6.14
核苷酸代谢
Nucleotide metabolism
4.70 5.84 5.07 5.75 4.86 5.76 4.91 5.79 4.78 5.78 4.79 5.90
信号转导
Signal transduction
10.17 5.78 8.95 5.62 9.27 5.77 8.92 5.78 8.54 5.63 9.29 5.83
信号分子与相互作用
Signaling molecules and interaction
0.00 4.39 0.00 4.51 0.00 4.67 0.00 4.72 0.00 4.61 0.00 4.73
膜运输
Membrane transport
10.92 6.34 9.29 6.30 11.88 6.45 11.95 6.49 11.30 6.43 9.62 6.46
运输和分解代谢
Transport and catabolism
0.34 4.76 0.49 4.81 0.32 4.78 0.34 4.84 0.42 4.88 0.38 4.91
细胞生长与死亡
Cell growth and death
1.82 0.00 1.62 0.00 1.58 0.00 1.58 0.00 1.34 0.00 1.90 0.00
细胞群落
Cellular community
0.77 5.06 0.54 5.01 0.68 5.00 0.63 5.07 0.50 4.96 0.63 5.27
细胞能动性
Cell motility
3.23 6.06 2.08 5.81 2.67 5.92 2.47 5.92 1.61 5.72 2.90 6.05
循环系统
Circulatory system
0.01 4.11 0.01 3.94 0.01 4.05 0.01 4.07 0.01 3.93 0.02 4.25
消化系统
Digestive system
0.16 4.28 0.26 4.07 0.12 3.92 0.13 3.88 0.14 3.95 0.20 4.14
内分泌系统
Endocrine system
0.35 4.81 0.34 4.75 0.36 4.77 0.35 4.81 0.47 5.04 0.37 4.93
环境适应性
Environmental adaptation
0.26 4.65 0.24 4.44 0.24 4.39 0.23 4.39 0.20 4.38 0.27 4.69
排泄系统
Excretory system
0.01 3.05 0.02 3.60 0.02 3.65 0.02 3.71 0.03 3.93 0.02 3.58
免疫系统
Immune system
0.04 4.12 0.06 3.97 0.05 3.97 0.05 3.95 0.05 4.06 0.05 4.03
神经系统
Nervous system
0.15 3.92 0.13 4.09 0.13 4.40 0.12 4.44 0.12 4.13 0.12 4.13
感官系统
Sensory system
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
免疫疾病
Immune disease
0.06 4.09 0.05 3.93 0.06 4.08 0.06 4.07 0.07 4.14 0.05 4.09
传染病
Infectious disease
1.65 5.09 1.57 4.95 2.14 5.05 2.09 5.07 1.56 4.87 1.50 5.18
内分泌和代谢疾病
Endocrine and metabolic disease
0.05 4.17 0.05 4.09 0.05 4.18 0.05 4.21 0.06 4.09 0.05 4.23
神经退行性疾病
Neurodegenerative disease
0.20 4.79 0.21 4.83 0.20 4.89 0.20 4.95 0.17 4.88 0.20 5.10
癌症
Cancer
0.20 4.51 0.18 4.53 0.20 4.58 0.20 4.64 0.19 4.58 0.25 4.74
心血管疾病
Cardiovascular disease
0.00 3.18 0.00 3.63 0.00 3.66 0.00 3.80 0.00 3.63 0.01 4.07
复制和修复
Replication and repair
3.81 6.16 4.31 6.08 3.77 6.10 3.79 6.13 4.31 6.12 3.78 6.25
转录
Transcription
0.18 5.72 0.19 5.65 0.17 5.72 0.17 5.75 0.21 5.67 0.18 5.81
翻译
Translation
3.66 6.02 4.23 5.88 3.66 5.87 3.71 5.89 4.26 5.86 3.91 6.05
折叠、分类和降解
Folding, sorting and degradation
2.16 5.78 2.36 5.63 2.10 5.66 2.10 5.67 2.26 5.62 2.14 5.80
N1、N2、N3、N4、N5和N6的氮源为硫酸铵+尿素, 比例分别为0.2%+0、0.16%+0.04%、0.12%+0.08%、0.08%+0.12%、0.04%+0.16%和0+0.2%。RA%指相对丰度, log指注释数量的log10。The nitrogen resources of N1, N2, N3, N4, N5 and N6 are ammonium sulfate+urea with ratios of 0.2%+0, 0.16%+0.04%, 0.12%+0.08%, 0.08%+0.12%, 0.04%+0.16%, 0+0.2%, and respectively. RA% refers to relative abundance, and log refers to log10 of the number of annotations.


下载: 导出CSV

参考文献(42)
[1]MARSCHNER P, KANDELER E, MARSCHNER B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2003, 35(3):453-461 doi: 10.1016/S0038-0717(02)00297-3
[2]PETERSSON L, KVIEN I, OKSMAN K. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials[J]. Composites Science and Technology, 2007, 67(11/12):2535-2544 doi: 10.1016/j.compscitech.2006.12.012
[3]YANG H Y, WU H, WANG X F, et al. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases[J]. Bioresource Technology, 2011, 102(3):3546-3550 doi: 10.1016/j.biortech.2010.09.009
[4]WANG X J, YUAN X F, WANG H, et al. Characteristics and community diversity of a wheat straw-colonizing microbial community[J]. African Journal of Biotechnology, 2011, 10(40):7853-7861 doi: 10.5897/AJB11.276
[5]ULRICH A, KLIMKE G, WIRTH S. Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application[J]. Microbial Ecology, 2008, 55(3):512-522 doi: 10.1007/s00248-007-9296-0
[6]LI P P, WANG X F, YUAN X F, et al. Screening of a composite microbial system and its characteristics of wheat straw degradation[J]. Agricultural Sciences in China, 2011, 10(10):1586-1594 doi: 10.1016/S1671-2927(11)60155-7
[7]FENG Y J, YU Y L, WANG X, et al. Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure[J]. Bioresource Technology, 2011, 102(2):742-747 doi: 10.1016/j.biortech.2010.08.074
[8]QINGGEER, GAO J L, YU X F, et al. Screening of a microbial consortium with efficient corn stover degradation ability at low temperature[J]. Journal of Integrative Agriculture, 2016, 15(10):2369-2379 doi: 10.1016/S2095-3119(15)61272-2
[9]YU X F, BORJIGIN Q, GAO J L, et al. Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures[J]. Journal of Integrative Agriculture, 2019, 18(8):1893-1904 doi: 10.1016/S2095-3119(19)62609-2
[10]PARKS D H, BEIKO R G. Identifying biologically relevant differences between metagenomic communities[J]. Bioinformatics, 2010, 26(6):715-721 doi: 10.1093/bioinformatics/btq041
[11]NELSON C E, GARDNER J G. In-frame deletions allow functional characterization of complex cellulose degradation phenotypes in Cellvibrio japonicus[J]. Applied and Environmental Microbiology, 2015, 81(17):5968-5975 doi: 10.1128/AEM.00847-15
[12]MILLWARD-SADLER S J, DAVIDSON K, HAZLEWOOD G P, et al. Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus[J]. Biochemical Journal, 1995, 312(1):39-48
[13]WU Y R, HE J Z. Characterization of a xylanase-producing Cellvibrio mixtus strain J3-8 and its genome analysis[J]. Scientific Reports, 2015, 5:10521 doi: 10.1038/srep10521
[14]WANG W D, YAN L, CUI Z J, et al. Characterization of a microbial consortium capable of degrading lignocellulose[J]. Bioresource Technology, 2011, 102(19):9321-9324 doi: 10.1016/j.biortech.2011.07.065
[15]DA X Y, JIANG F, CHANG X L, et al. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(11):3841-3846 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7064ec766b5598542dbc51fcdbb4562f
[16]WON K H, KOOK M, YI T H. Pedobacter bambusae sp. nov., isolated from soil of a bamboo plantation[J]. Antonie van Leeuwenhoek, 2015, 107(2):565-573 doi: 10.1007/s10482-014-0352-8
[17]KANG J Y, CHUN J, JAHNG K Y. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(5):1633-1638 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f74c68a7affc758797823a009cc23db
[18]周丽沙, 李慧, 张颖, 等.石油污染土壤鞘氨醇单胞菌遗传多样性16S rDNA-PCR-DGGE分析[J].土壤学报, 2011, 48(4):804-812 http://d.wanfangdata.com.cn/Periodical/trxb201104017
ZHOU L S, LI H, ZHANG Y, et al. Analysis of Sphingomonas genetic diversity in petroleum-contaminated soils by using PCR-DGGE technique[J]. Acta Pedologica Sinica, 2011, 48(4):804-812 http://d.wanfangdata.com.cn/Periodical/trxb201104017
[19]DUAN J, LIANG J D, DU W J, et al. Biodegradation of kraft lignin by a bacterial strain Sphingobacterium sp. HY-H[J]. Advanced Materials Research, 2014, 955/959:548-553 doi: 10.4028/www.scientific.net/AMR.955-959.548
[20]XING W, LI J L, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65:262-270 doi: 10.1016/j.jes.2017.03.001
[21]LA SCOLA B, MALLET M N, GRIMONT P A D, et al. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996)[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(1):15-20 doi: 10.1099/ijs.0.02127-0
[22]XU L, ZHANG Y, READ N, et al. Devosia nitraria sp. nov., a novel species isolated from the roots of Nitraria sibirica in China[J]. Antonie van Leeuwenhoek, 2017, 110(11):1475-1483 doi: 10.1007/s10482-017-0901-z
[23]HASSAN Y I, LEPP D, ZHOU T. Genome assemblies of three soil-associated Devosia species:D. insulae, D. limi, and D. soli[J]. Genome Announcements, 2015, 3(3):e00514-15 http://genomea.asm.org/content/3/3/e00514-15.abstract
[24]JIN L, LEE H G, KIM H S, et al. Caulobacter daechungensis sp. nov., a stalked bacterium isolated from a eutrophic reservoir[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(7):2559-2564 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e608f26b7fd11721239a8aa9bda26817
[25]SUN L N, YANG E D, WEI J C, et al. Caulobacter flavus sp. nov., a stalked bacterium isolated from rhizosphere soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(12):4374-4380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddb3565762094aa142e42da22395e453
[26]JACKSON C A, COUGER M B, PRABHAKARAN M, et al. Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass[J]. Journal of Applied Microbiology, 2017, 122(4):940-952 doi: 10.1111/jam.13401
[27]LAUS M C, VAN BRUSSEL A A N, KIJNE J W. Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs[J]. Molecular Plant-Microbe Interactions, 2005, 18(6):533-538 doi: 10.1094/MPMI-18-0533
[28]TER BEEK J, GUSKOV A, SLOTBOOM D J. Structural diversity of ABC transporters[J]. Journal of General Physiology, 2014, 143(4):419-435 doi: 10.1085/jgp.201411164
[29]UEKI A, KODAMA Y, KAKU N, et al. Rhizomicrobium palustre gen. nov., sp. nov., a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots[J]. The Journal of General and Applied Microbiology, 2010, 56(3):193-203 doi: 10.2323/jgam.56.193
[30]KODAMA Y, WATANABE K. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(8):1781-1785 doi: 10.1099/ijs.0.023580-0
[31]ABRAHAM W R, ESTRELA A B, NIKITIN D I, et al. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(8):1837-1843 doi: 10.1099/ijs.0.016832-0
[32]司美茹, 赵云峰, 苏涛.高效降解烷烃的无色杆菌XL株的分离鉴定及其降解特性[J].土壤通报, 2011, 42(3):562-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb201103010
SI M R, ZHAO Y F, SU T. Isolation and identification of a high-efficiency alkane-degrading Achromobacter insolitus XL strain and its degradation characteristics[J]. Chinese Journal of Soil Science, 2011, 42(3):562-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb201103010
[33]唐玉斌, 孙常宇, 陈芳艳, 等.一株[艹屈]高效降解菌的分离鉴定及其降解特性[J].微生物学通报, 2009, 36(4):593-597
TANG Y B, SUN C Y, CHEN F Y, et al. Isolation and identification of a chrysene-degrading strain and its degradation characteristics[J]. Microbiology, 2009, 36(4):593-597
[34]WAKARCHUK W W, BROCHU D, FOOTE S, et al. Proteomic analysis of the secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482[J]. PLoS One, 2016, 11(3):e0151186 doi: 10.1371/journal.pone.0151186
[35]ZHUANG W P, ZHANG S Z, XIA X, et al. Draft genome sequence of Cellulomonas carbonis T26T and comparative analysis of six Cellulomonas genomes[J]. Standards in Genomic Sciences, 2015, 10:104 doi: 10.1186/s40793-015-0096-8
[36]KUPRYASHINA M A, PETROV S V, PONOMAREVA E G, et al. Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum[J]. Microbiology, 2015, 84(6):791-795 doi: 10.1134/S0026261715060041
[37]肖建军, 李亚龙, 杨琦.寡养单胞菌降解石油污染土壤中的甲苯[J].环境工程, 2018, 36(4):186-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201804037
XIAO J J, LI Y L, YANG Q. Degradation of toluene in petroleum contaminated soil by Stenotrophomonas sp. MJ-1[J]. Environmental Engineering, 2018, 36(4):186-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201804037
[38]MADHAIYAN M, JIN T Y, ROY J J, et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L.[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(7):2477-2483 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9371bd803b0b1309ac9f3bf7b712675d
[39]LEWIN G R, JOHNSON A L, SOTO R D M, et al. Cellulose-enriched microbial communities from leaf-cutter ant (Atta colombica) refuse dumps vary in taxonomic composition and degradation ability[J]. PLoS One, 2016, 11(3):e0151840 doi: 10.1371/journal.pone.0151840
[40]ABT B, TESHIMA H, LUCAS S, et al. Complete genome sequence of Leadbetterella byssophila type strain (4M15T)[J]. Standards in Genomic Sciences, 2011, 4(1):2-12 doi: 10.4056/sigs.1413518
[41]ZIEMER C J. Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides[J]. Applied and Environmental Microbiology, 2014, 80(2):574-585 doi: 10.1128/AEM.03016-13
[42]LIANG Y L, ZHANG Z, WU M, et al. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1[J]. Biomed Research International, 2014, 2014:512497

相关话题/土壤 图片 比例 内蒙古农业大学 作物