董文旭1,
王文岩1,
GokulGaudel1, 2,
PeterMosongo1, 2,
胡春胜1, 2,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省土壤生态学重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2018YFC0213300
国家重点研发计划项目2017YFD0800601
国家自然基金项目31570442
详细信息
作者简介:胡瞒瞒, 主要研究方向为农田生态系统氨减排。E-mail:2572083047@qq.com
通讯作者:胡春胜, 主要从事农田生态系统碳氮水循环和土壤生态过程研究。E-mail:cshu@sjziam.ac.cn
中图分类号:S143.1计量
文章访问数:210
HTML全文浏览量:7
PDF下载量:125
被引次数:0
出版历程
收稿日期:2020-04-17
录用日期:2020-07-29
刊出日期:2020-12-01
The effects of deep application of nitrogen fertilization on ammonia volatilization in a winter wheat/summer maize rotation system in the North China Plain
HU Manman1, 2,,DONG Wenxu1,
WANG Wenyan1,
Gokul Gaudel1, 2,
Peter Mosongo1, 2,
HU Chunsheng1, 2,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key R&D Program of China2018YFC0213300
the National Key R&D Program of China2017YFD0800601
the National Natural Science Foundation of China31570442
More Information
Corresponding author:HU Chunsheng, E-mail:cshu@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:氮肥深施能有效减少土壤氨挥发,然而目前国内外关于小麦-玉米轮作体系氮肥深施缺乏周年系统性研究。本试验于2018年10月—2019年10月在中国科学院栾城农业生态系统试验站小麦-玉米轮作农田进行,利用动态箱法研究不同深施模式氨挥发损失率、氨挥发特征,旨在探讨冬小麦-夏玉米轮作体系下土壤氨排放对氮肥深施的响应,为减少农业源氨排放和优化农田施肥提供理论依据。试验设置5个处理:不施肥(CK)、常规肥料表施(T1)、缓释肥表施(T2)、缓释肥基追肥分层深施(T3)、缓释肥一次性分层深施(T4)。结果表明:氨挥发主要发生在玉米追肥季,占全年氨挥发量的84.84%;T1、T2、T3和T4处理的周年氨挥发累积量分别为22.75 kg·hm-2、6.17 kg·hm-2、2.25 kg·hm-2和0.55 kg·hm-2,分别占总施肥量的4.86%、1.32%、0.48%和0.13%。与常规肥料表施(T1)相比,缓释肥处理(T2、T3和T4)分别降低72.88%、90.11%和97.32%的氨挥发损失;一次性深施处理(T4)能避开土壤氨高挥发期,周年氨挥发累积量与不施肥处理(0.43 kg·hm-2)没有显著差异,且显著低于表施处理。CK、T1、T2、T3和T4全年产量分别为8.31 t·hm-2、13.20 t·hm-2、12.66 t·hm-2、14.42 t·hm-2和14.22 t·hm-2;与常规肥料表施(T1)相比,缓释肥深施(T3和T4)均可提高作物产量,分别增产9.25%和7.75%。而缓释肥表施(T2)产量略有降低。综合考虑土壤氨排放和作物产量,缓释肥表施(T2)可以显著降低土壤氨挥发,但是作物产量不稳定;而氮肥深施(T3、T4)能在保证作物高产的基础上显著降低土壤氨排放,是一种高效、简便、环境友好的施肥方式。
关键词:氨挥发/
氮肥深施/
单位产量氨排放强度/
缓释肥/
冬小麦-夏玉米轮作
Abstract:The deep application of nitrogen fertilizers can reduce soil ammonia volatilization, but no annual systematic study in a winter wheat/summer maize rotation system exists. Nitrogen fertilizer was deeply applied to soil from a winter wheat/summer maize rotation system to determine the effects on ammonia emissions and optimize farmland fertilization. Five treatments were used from October 2018 to October 2019:no fertilization (CK), conventional fertilizer surface-application (T1), slow-release fertilizer surface-application (T2), twice layered deep-application of slow-release fertilizer (T3), and single layered deep-application of slow-release fertilizer (T4). Ammonia volatilization primarily occurred in the corn top-dressing season and accounted for 84.84% of the annual ammonia volatilization. The cumulative amounts of annual ammonia volatiles were 22.75 (T1), 6.17 (T2), 2.25 (T3), and 0.55 kg·hm-2(T4), accounting for 4.86%, 1.32%, 0.48%, and 0.16% of the total fertilizer application, respectively. The slow-release fertilizer treatments reduced the ammonia volatilization loss by 72.88% (T2), 90.11% (T3), and 96.30% (T4) compared to T1. The single deep application treatment (T4) avoided the summertime high soil ammonia volatilization period, and the cumulative annual ammonia emissions were comparable to the unfertilized emissions (0.43 kg·hm-2). The annual yields were 8.31 (CK), 13.20 (T1), 12.66 (T2), 14.42 (T3), 14.22 (T4) t·hm-2; and compared with T1, the slow-release fertilizer deep application increased the crop yield by 9.25% (T3) and 7.75% (T4). The surface application of slow-release fertilizer (T2) slightly decreased the yield but significantly reduced the ammonia volatilization amount. In conclusion, the deep application of slow-release nitrogen fertilizer improved crop yield and reduced soil ammonia emissions, and was shown to be a simple, efficient, and environment-friendly fertilization method.
Key words:Ammonia volatilization/
Nitrogen deep application/
Ammonia discharge per unit output/
Slow-release fertilizer/
Winter wheat-summer maize rotation
HTML全文
图1不同施肥处理下冬小麦-夏玉米轮作体系不同施肥时期氨挥发通量变化(a、b、c、d分别为小麦底肥、小麦追肥、玉米底肥、玉米追肥氨挥发通量变化情况; CK、T1、T2、T3、T4含义见表 1)
Figure1.Variations of ammonia volatilization fluxes in winter wheat-summer maize rotation system at different fertilization periods under different treatments (figure a, b, c and d show the changes of ammonia volatilization fluxes of base-fertilizer of wheat season, top-fertilizer of wheat season, base-fertilizer of maize season and top-fertilizer of maize season. The meanings of CK, T1, T2, T3 and T4 are shown in the table 1.)
下载: 全尺寸图片幻灯片
图2冬小麦季和夏玉米季施肥后表层土壤NH4+-N、NO3--N和pH变化情况(图a、b、c为小麦底肥, d、e、f为小麦追肥, g、h、i为玉米底肥, j、k、l为玉米追肥)
CK、T1、T2、T3和T4含义见表 1。
Figure2.Changes in NH4+-N, NO3--N and pH of surface soil after fertilization in winter wheat season and summer maize season (figure a, b and c show the base fertilization of winter wheat; figure d, e and f show the top dressing of winter wheat; figure g, h and i show the base fertilization of summer maize; figure j, k and l show the top dressing of summer maize)
The meanings of CK, T1, T2, T3 and T4 are shown in the table 1.
下载: 全尺寸图片幻灯片
表1不同处理的冬小麦-夏玉米轮作体系施肥方式及施肥量
Table1.Fertilizer types, fertilization patterns and rates of winter wheat-summer maize rotation system of different treatments
处理 Treatment | 肥料种类和施氮量Fertilizer type and rate | ||||
冬小麦季Winter wheat season | 夏玉米季Summer maize season | ||||
底肥Base fertilizer | 追肥Top-dressing | 底肥Base fertilizer | 追肥Top-dressing | ||
不施肥Control (CK) | — | — | — | — | |
常规肥料表施 Surface application of conventional fertilizers (T1) | 尿素 Urea 108 kg(N)·hm-2 | 尿素 Urea 120 kg(N)·hm-2 | 复合肥 Compound fertilizer 120 kg(N)·hm-2 | 尿素 Urea 120 kg(N)·hm-2 | |
缓释肥表施 Surface application of slow-release fertilizers (T2) | 缓释复合肥 Slow-release compound fertilizer 108 kg(N)·hm-2 | 缓释尿素 Slow-release urea 120 kg(N)·hm-2 | 缓释复合肥 Slow-release compound fertilizer 120 kg(N)·hm-2 | 缓释尿素 Slow-release urea 120 kg(N)·hm-2 | |
缓释肥深施 Twice layered deep-application of slow-release fertilizers (T3) | 缓释复合肥 Slow-release compound fertilizer 108 kg(N)·hm-2 | 缓释尿素 Slow-release urea 120 kg(N)·hm-2 | 缓释复合肥 Slow-release compound fertilizer 120 kg(N)·hm-2 | 缓释尿素 Slow-release urea 120 kg(N)·hm-2 | |
缓释肥一次性分层深施 Single layered deep-application of slow-release fertilizers (T4) | 缓释复合肥 Slow-release compound fertilizer 215 kg(N)·hm-2 | — | 缓释复合肥 Slow-release compound fertilizer 225 kg(N)·hm-2 | — |
下载: 导出CSV
表2不同施肥处理冬小麦-夏玉米氨挥发总累积量及损失率
Table2.Accumulation ammonia volatilization and loss rate under different fertilization treatments of winter wheat-summer maize rotation system
作物 Crop | 施肥时期 Fertilization period | 指标 Index | CK | T1 | T2 | T3 | T4 |
小麦 Wheat | 底肥 Base fertilizer | 累积损失量 Accumulation ammonia volatilization (kg·hm-2) | 0.08±0.02c | 1.05±0.09a | 1.04±0.17a | 0.43±0.06b | 0.46±0.02b |
损失率 Loss rate (%) | — | 0.97±0.08a | 0.96±0.15a | 0.40±0.05b | 0.21±0.01b | ||
追肥 Top dressing | 累积损失量 Accumulation ammonia volatilization (kg·hm-2) | 0.15±0.02c | 1.00±0.13a | 0.33±0.08b | 0.61±0.11b | ||
损失率 Loss rate (%) | — | 0.83±0.11a | 0.28±0.06b | 0.51±0.09b | |||
合计Total (kg·hm-2) | 0.21±0.01e | 2.05±0.07a | 1.37±0.13b | 1.03±0.07c | 0.46±0.02d | ||
玉米 Maize | 底肥 Base fertilizer | 累积损失量 Accumulation ammonia volatilization (kg·hm-2) | 0.05±0.01c | 1.41±0.17a | 0.68±0.05b | 0.19±0.04c | 0.09±0.02c |
损失率Loss rate (%) | — | 1.17±0.14a | 0.56±0.04b | 0.16±0.03c | 0.04±0.02c | ||
追肥 Top dressing | 累积损失量 Accumulation ammonia volatilization (kg·hm-2) | 0.15±0.00b | 19.30±3.15a | 4.12±0.27b | 1.02±0.27b | ||
损失率Loss rate (%) | — | 16.08±2.63a | 3.44±0.23b | 0.85±0.23b | |||
合计Total (kg·hm-2) | 0.20±0.00c | 20.70±3.04a | 4.80±0.25b | 1.22±0.25bc | 0.09±0.02c | ||
总挥发损失量Total ammonia volatilization (kg·hm-2) | 0.43±0.02c | 22.75±3.18a | 6.17±0.43b | 2.25±0.27bc | 0.55±0.01c | ||
总减排率Total emission reduction rate (%) | — | — | 72.88 | 90.11 | 97.32 | ||
同行不同小写字母表示处理间在P < 0.05水平差异显著。CK、T1、T2、T3和T4含义见表 1。Different small letters in the same row indicate significant differences among treatments at P < 0.05 level. The meanings of CK, T1, T2, T3 and T4 are shown in the table 1. |
下载: 导出CSV
表3冬小麦-夏玉米轮作体系不同施肥处理氨挥发总量、总产量及单位产量氨排放强度
Table3.Total ammonia volatilization, total yield and ammonia emission intensity of per unit yield of winter wheat-summer maize rotation system under different fertilization treatments
处理 Treatment | 小麦产量 Wheat yield (t·hm-2) | 玉米产量 Maize yield (t·hm-2) | 总产量 Total yield (t·hm-2) | 氨挥发总量 Total ammonia volatilization [kg(N)·hm-2] | 单位产量氨挥发强度 Total ammonia emission per unit area yield [kg(N)·t-1] |
CK | 3.88±0.40b | 4.43±0.28c | 8.31±0.12d | 0.43±0.02b | — |
T1 | 5.15±0.68ab | 8.05±0.13ab | 13.19±0.68bc | 22.75±3.18a | 1.72±0.23a |
T2 | 5.15±0.39ab | 7.51±0.35b | 12.66±0.04c | 6.17±0.43b | 0.49±0.03b |
T3 | 5.59±0.12a | 8.83±0.57a | 14.42±0.42a | 2.25±0.27b | 0.16±0.02bc |
T4 | 5.64±0.18a | 8.58±0.10a | 14.22±0.11ab | 0.55±0.01b | 0.04±0.00c |
同列不同小写字母表示处理间在P < 0.05水平差异显著。CK、T1、T2、T3和T4含义见表 1。Different small letters in the same column indicate significant differences among treatments at P < 0.05 level. The meanings of CK, T1, T2, T3 and T4 are shown in the table 1. |
下载: 导出CSV
参考文献
[1] | BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11): 8092-8131 doi: 10.1007/s11356-013-2051-9 |
[2] | ERISMAN J W, SCHAAP M. The need for ammonia abatement with respect to secondary PM reductions in Europe[J]. Environmental Pollution, 2004, 129(1): 159-163 doi: 10.1016/j.envpol.2003.08.042 |
[3] | 巨晓棠, 谷保静, 蔡祖聪.关于减少农业氨排放以缓解灰霾危害的建议[J].科技导报, 2017, 35(13): 11-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201713004 JU X T, GU B J, CAI Z C. Suggestions on reducing ammonia emissions from agriculture to alleviate the harm of haze[J]. Science & Technology Review, 2017, 35(13): 11-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201713004 |
[4] | YANG Y, LI N, NI X Y, et al. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields[J]. Journal of Cleaner Production, 2020, 244: 118745 doi: 10.1016/j.jclepro.2019.118745 |
[5] | PAN B B, LAM S K, MOSIER A, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 232: 283-289 |
[6] | 丁新泉.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[D].北京: 中国农业大学, 2005 DING X Q. Ammonia volatilization from nitrogen fertilization in winter wheat-summer maize rotation system in the North China Plain[D]. Beijing: China Agricultural University, 2005 |
[7] | 胡春胜, 张玉铭, 秦树平, 等.华北平原农田生态系统氮素过程及其环境效应研究[J].中国生态农业学报, 2018, 26(10): 1501-1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1009&flag=1 HU C S, ZHANG Y M, QIN S P, et al. Nitrogen processes and related environmental effects on agro-ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1501-1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1009&flag=1 |
[8] | CAI G X, CHEN D L, DING H, et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2): 187-195 |
[9] | 曹兵, 李新慧, 张琳, 等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报, 2001, 16(2): 83-86 CAO B, LI X H, ZHANG L, et al. Effect of different basal- dressing application methods on soil ammonia volatilization from winter wheat field[J]. Acta Agriculturae Boreali-Sinica, 2001, 16(2): 83-86 |
[10] | 张玉铭, 胡春胜, 董文旭.华北太行山前平原农田氨挥发损失[J].植物营养与肥料学报, 2005, 11(3): 417-419 ZHANG Y M, HU C S, DONG W X. Ammonia volatilization from wheat-maize rotation field in the piedmont of Taihang[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 417-419 |
[11] | TI C P, XIA L L, CHANG S X, et al. Potential for mitigating global agricultural ammonia emission: A meta-analysis[J]. Environmental Pollution, 2019, 245: 141-148 doi: 10.1016/j.envpol.2018.10.124 |
[12] | YANG Y, NI X Y, ZHOU Z J, et al. Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits[J]. Field Crops Research, 2017, 212: 73-81 doi: 10.1016/j.fcr.2017.07.005 |
[13] | 安文博.缓控释尿素对鲜食玉米和籽用玉米的产量、品质和环境效应的影响[D].张家口: 河北北方学院, 2019 AN W B. Effects of slow-release urea on yield, quality and environmental effects of fresh corn[D]. Zhangjiakou: Hebei North University, 2019 |
[14] | 韩蔚娟, 王寅, 陈海潇, 等.黑土区玉米施用新型肥料的效果和环境效应[J].水土保持学报, 2016, 30(2): 307-311 http://d.wanfangdata.com.cn/Periodical/trqsystbcxb201602053 HAN W J, WANG Y, CHEN H X, et al. Study on the effect of new-type fertilizer application on spring maize production and its environmental impact in black soil area[J]. Journal of Soil and Water Conservation, 2016, 30(2): 307-311 http://d.wanfangdata.com.cn/Periodical/trqsystbcxb201602053 |
[15] | 吴静.秸秆还田模式及氮肥减量对夏玉米农田土壤氨挥发的影响[D].西安: 西北农林科技大学, 2019 WU J. Effects of straw application mode and fertilizer reduction on soil ammonia volatilization of summer maize[D]. Xi'an: Northwest A & F University, 2019 |
[16] | 谢勇, 荣湘民, 张玉平, 等.控释氮肥减量施用对春玉米土壤N2O排放和氨挥发的影响[J].农业环境科学学报, 2016, 35(3): 596-603 XIE Y, RONG X M, ZHANG Y P, et al. Effects of reduced CRNF applications on N2O emissions and ammonia volatilization in spring maize soil[J]. Journal of Agro-Environment Science, 2016, 35(3): 596-603 |
[17] | 周亮.控释氮肥减量施用对双季稻生长、氮素养分吸收利用及稻田氨挥发的影响[D].长沙: 湖南农业大学, 2014 ZHOU L. Effects of reduction application of controlled-release nitrogen fertilizer on growth, nitrogen uptake-utilization of rice and ammonia volatilization in paddy soil[D]. Changsha: Hunan Agricultural University, 2014 |
[18] | NKEBIWE P M, WEINMANN M, BAR-TAL A, et al. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis[J]. Field Crops Research, 2016, 196: 389-401 doi: 10.1016/j.fcr.2016.07.018 |
[19] | 赵先贵, 肖玲.控释肥料的研究进展[J].中国生态农业学报, 2002, 10(3): 95-97 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2002330&flag=1 ZHAO X G, XIAO L. Current research on controlled release fertilizers[J]. Chinese Journal of Eco-Agriculture, 2002, 10(3): 95-97 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2002330&flag=1 |
[20] | 吴景贵, 任成礼, 代静玉, 等.玉米一次性分层施肥技术研究[J].土壤肥料, 1995, (1): 29-32 WU J G, REN C L, DAI J Y, et al. Study on the technique of single layered fertilization of maize[J]. Soils and Fertilizers, 1995, (1): 29-32 |
[21] | 李硕, 王选, 张西群, 等.猪场肥水施用对玉米-小麦农田氨排放、氮素利用与表观平衡的影响[J].中国生态农业学报(中英文), 2019, 27(10): 1502-1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1005&flag=1 LI S, WANG X, ZHANG X Q, et al. Effects of swine slurry application on ammonia emission, nitrogen utilization and apparent balance of a winter wheat-summer maize rotation system[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1502-1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1005&flag=1 |
[22] | 刘兆辉, 吴小宾, 谭德水, 等.一次性施肥在我国主要粮食作物中的应用与环境效应[J].中国农业科学, 2018, 51(20): 3827-3839 LIU Z H, WU X B, TAN D S, et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica, 2018, 51(20): 3827-3839 |
[23] | 张翀, 李雪倩, 苏芳, 等.施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J].农业环境科学学报, 2016, 35(6): 1194-1201 http://qikan.cqvip.com/Qikan/Article/Detail?id=669251368 ZHANG C, LI X Q, SU F, et al. Effects of different fertilization and measurement methods on ammonia volatilization of summer maize in purple soil[J]. Journal of Agro-Environment Science, 2016, 35(6): 1194-1201 http://qikan.cqvip.com/Qikan/Article/Detail?id=669251368 |
[24] | TAUCHNITZ N, BISCHOFF J, SCHR?DTER M, et al. Nitrogen efficiency of strip-till combined with slurry band injection below the maize seeds[J]. Soil and Tillage Research, 2018, 181: 11-18 doi: 10.1016/j.still.2018.03.020 |
[25] | WEBB J, S?RENSEN P, VELTHOF G, et al. An assessment of the variation of manure nitrogen efficiency throughout Europe and an appraisal of means to increase manure-N efficiency[J]. Advances in Agronomy, 2013, 119: 371-442 doi: 10.1016/B978-0-12-407247-3.00007-X |
[26] | 王朝辉, 刘学军, 巨晓棠, 等.田间土壤氨挥发的原位测定——通气法[J].植物营养与肥料学报, 2002, 8(2): 205-209 http://www.cnki.com.cn/article/cjfdtotal-zwyf200202013.htm WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(2): 205-209 http://www.cnki.com.cn/article/cjfdtotal-zwyf200202013.htm |
[27] | 王文岩, 董文旭, 陈素英, 等.连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响[J].农业工程学报, 2016, 32(S2): 135-141 http://www.cqvip.com/QK/90712X/2016z2/WD788971678866504849549050484956.html WANG W Y, DONG W X, CHEN S Y, et al. Effect of continuously appling controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 135-141 http://www.cqvip.com/QK/90712X/2016z2/WD788971678866504849549050484956.html |
[28] | 黄进宝, 范晓晖, 张绍林.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发[J].土壤学报, 2006, 43(5): 786-792 http://d.wanfangdata.com.cn/Periodical/trxb200605012 HUANG J B, FAN X H, ZHANG S L. Ammonia volatilization from nitrogen fertilizer in the rice field of Fe-leachi-stagnic anthrosols in the Taihu lake region[J]. Acta Pedologica Sinica, 2006, 43(5): 786-792 http://d.wanfangdata.com.cn/Periodical/trxb200605012 |
[29] | 邬刚, 袁嫚嫚, 曹哲伟, 等.不同水氮管理条件下稻田氨挥发损失特征[J].生态与农村环境学报, 2019, 35(5): 651-658 http://www.cnki.com.cn/Article/CJFDTotal-NCST201905015.htm WU G, YUAN M M, CAO Z W, et al. Ammonia volatilization under different water management and nitrogen schemes in a paddy field[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 651-658 http://www.cnki.com.cn/Article/CJFDTotal-NCST201905015.htm |
[30] | 朱岩松.控释掺混肥不同施用量及深度对土壤养分与小麦生长效应的影响[D].泰安: 山东农业大学, 2015 ZHU Y S. Effects of controlled-release blending fertilizer dosage and depth on soil nutrient and growth of wheat[D]. Tai'an: Shandong Agricultural University, 2015 |
[31] | 高鹏程, 张一平.氨挥发与土壤水分散失关系的研究[J].西北农林科技大学学报:自然科学版, 2001, 29(6): 22-26 GAO P C, ZHANG Y P. Research on relationship between volatilization of ammonia and evaporation of soil water[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry: Natural Science Edition, 2001, 29(6): 22-26 |
[32] | 黄建英, 张卫.不同土壤施氮肥后氨的挥发试验初报[J].土壤肥料, 1990, (1): 26-28 HUANG J Y, ZHANG W. Preliminary report of ammonia volatilization test after applying nitrogen fertilizer in different soils[J]. Soils and Fertilizers, 1990, (1): 26-28 |
[33] | 肖娇, 樊建凌, 叶桂萍, 等.不同施肥处理下小麦季潮土氨挥发损失及其影响因素研究[J].农业环境科学学报, 2016, 35(10): 2011-2018 http://d.wanfangdata.com.cn/Periodical/nyhjbh201610024 XIAO J, FAN J L, YE G P, et al. Ammonia volatilization from fluvo-aquic clay soil and its influencing factors during wheat growing season under different fertilization[J]. Journal of Agro-Environment Science, 2016, 35(10): 2011-2018 http://d.wanfangdata.com.cn/Periodical/nyhjbh201610024 |
[34] | SANZ-COBENA A, MISSELBROOK T, CAMP V, et al. Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea[J]. Atmospheric Environment, 2011, 45(8): 1517-1524 doi: 10.1016/j.atmosenv.2010.12.051 |
[35] | KIRK G J D, NYE P H. A model of ammonia volatilization from applied urea. Ⅵ. The effects of transient-state water evaporation[J]. Journal of Soil Science, 1991, 42(1): 115-125 |
[36] | GONG W W, ZHANG Y S, HUANG X F, et al. High-resolution measurement of ammonia emissions from fertilization of vegetable and rice crops in the pearl river delta region, China[J]. Atmospheric Environment, 2013, 65: 1-10 doi: 10.1016/j.atmosenv.2012.08.027 |
[37] | 曹欢欢.旱地夏玉米-冬小麦轮作体系尿素氨挥发研究[D].西安: 西北农林科技大学, 2018 CAO H H. Ammonia volatilization of urea from summer maize-winter wheat rotation system in dryland[D]. Xi'an: Northwest A & F University, 2018 |
[38] | 王文林, 童仪, 杜薇, 等.畜禽养殖氨排放清单研究现状与实证[J].生态与农村环境学报, 2018, 34(9): 813-820 WANG W L, TONG Y, DU W, et al. Empirical study on ammonia emission inventory from livestock[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 813-820 |
[39] | 周静, 崔键, 王霞.红壤不同含水量对尿素氨挥发的影响[J].土壤, 2008, 40(6): 930-933 ZHOU J, CUI J, WANG X. Effects of red soil moisture on ammonia volatilization of urea[J]. Soils, 2008, 40(6): 930-933 |
[40] | GUO L W, NING T Y, NIE L P, et al. Interaction of deep placed controlled-release urea and water retention agent on nitrogen and water use and maize yield[J]. European Journal of Agronomy, 2016, 75: 118-129 doi: 10.1016/j.eja.2016.01.010 |
[41] | 刘威, 周剑雄, 谢媛圆, 等.控释尿素不同条施深度下鲜食玉米产量和氮素利用效应[J].水土保持学报, 2018, 32(1): 246-251 LI W, ZHOU J X, XIE Y Y, et al. Yield and nitrogen utilization efficiency of fresh edible maize under different fertilization depths of control-release urea[J]. Journal of Soil and Water Conservation, 2018, 32(1): 246-251 |
[42] | 卢丽丽, 吴根义.农田氨排放影响因素研究进展[J].中国农业大学学报, 2019, 24(1): 149-162 LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149-162 |
[43] | 马银丽, 吉艳芝, 李鑫, 等.施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响[J].生态环境学报, 2012, 21(2): 225-230 MA Y L, JI Y Z, LI X, et al. Effects of N fertilization rates on the NH3 volatilization and N2O emissions from the wheat-maize rotation system in North China Plain[J]. Ecology and Environmental Sciences, 2012, 21(2): 225-230 |
[44] | 苏芳, 丁新泉, 高志岭, 等.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学, 2007, 27(3): 409-413 SU F, DING X Q, GAO Z L, et al. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain[J]. China Environmental Science, 2007, 27(3): 409-413 |
[45] | 王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[D].北京: 中国农业科学院, 2009 WANG X B. Nitrogen cycling and balance in winter wheat-summer corn rotation system under optimized nitrogen management[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009 |
[46] | ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Ammonia volatilization and nitrogen retention: How deep to incorporate urea?[J]. Journal of Environmental Quality, 2013, 42(6): 1635-1642 doi: 10.2134/jeq2013.05.0192 |
[47] | XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917-1925 doi: 10.1111/gcb.13455 |
[48] | 宫宇, 段巍巍, 王贵彦, 等.缓释肥分层底施对夏玉米生长、干物质积累和产量的影响[J].河南农业科学, 2019, 48(10): 41-46 GONG Y, DUAN W W, WANG G Y, et al. Effects of layered bottom application of slow-release fertilizer on growth, dry matter accumulation and yield of summer maize[J]. Journal of Henan Agricultural Sciences, 2019, 48(10): 41-46 |
[49] | HUANG S, LV W S, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis[J]. Field Crops Research, 2016, 192: 118-125 doi: 10.1016/j.fcr.2016.04.023 |
[50] | 朱志锋, 李同花, 焦卫平, 等.不同类型缓控释肥对小麦产量的影响[J].磷肥与复肥, 2019, 34(11): 49-51 ZHU Z F, LI T H, JIAO W P, et al. Effect of different types of slow controlled release fertilizers on wheat yield[J]. Phosphate & Compound Fertilizer, 2019, 34(11): 49-51 |
[51] | LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80-90 doi: 10.1016/j.fcr.2015.09.011 |