王霖娇1, 2,
盛茂银1, 2,,
1.贵州师范大学喀斯特研究院 贵阳 550001
2.国家喀斯特石漠化治理工程技术研究中心 贵阳 550001
3.贵州省喀斯特石漠化防治与衍生产业工程实验室 贵阳 550001
基金项目: 国家自然科学基金项目31660136
贵州省科学技术基金Qiankehe Jichu[2019] 1224
贵州省科技计划项目Qiankehe Pingtai Rencai[2017] 5726
贵州省优秀青年科技人才支持计划项目Qiankehe Pingtai Rencai[2017] 5638
贵州省普通高等学校科技拔尖人才支持计划Qianjiaohe KY zi[2016]064
详细信息
作者简介:袁发英, 主要研究方向为喀斯特生态建设与区域经济。E-mail:yuanfaying0230@163.com
通讯作者:盛茂银, 主要研究方向为喀斯特生态与石漠化治理。E-mail:shmoy@163.com
中图分类号:S181计量
文章访问数:240
HTML全文浏览量:22
PDF下载量:133
被引次数:0
出版历程
收稿日期:2020-04-23
录用日期:2020-08-09
刊出日期:2020-12-01
The application of crop phytoliths for reviewing occluded organic carbon
YUAN Faying1, 3,,WANG Linjiao1, 2,
SHENG Maoyin1, 2,,
1. Institute of Karst Research, Guizhou Normal University, Guiyang 550001, China
2. National Engineering Research Center for Karst Rocky Desertification Control, Guiyang 550001, China
3. Guizhou Engineering Laboratory for Karst Rocky Desertification Control and Derivative Industry, Guiyang 550001, China
Funds: the National Natural Science Foundation of China31660136
the Project of Guizhou Science and Technology FundQiankehe Jichu[2019] 1224
the Program of Guizhou Science and TechnologyQiankehe Pingtai Rencai[2017] 5726
the Support Plan for Excellent Young Science and Technology Talents of Guizhou ProvinceQiankehe Pingtai Rencai[2017] 5638
the Support Plan for Science and Technology Top-notch Talents of Guizhou Higher Education InstitutionsQianjiaohe KY zi[2016]064
More Information
Corresponding author:SHENG Maoyin, E-mail:shmoy@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农田生态系统是陆地生态系统的重要组成部分,在维系生命的生长发育和环境的动态平衡等方面起着至关重要的作用,在其生长发育和环境演变的过程中储存大量的环境变化信息,能够反映古农业的发展变迁。植硅体是一种长期稳定存在于土壤中的非晶质二氧化硅颗粒物,它可以指示气候变化。近年来,植硅体分析主要应用在农业考古、古气候重建、生物地球化学循环和全球碳汇潜力估算的研究中。世界上作物分布广泛,作物栽培历史悠久,研究作物植硅体与植硅体碳,对探讨农业起源与发展,估算农田生态系统植硅体碳汇潜力,应对全球气候变化具有重要意义。本文在查阅国内外与作物植硅体研究相关文献的基础上,综述了作物植硅体的形态研究、植硅体在考古学中的应用、作物植硅体碳含量与分布、碳汇潜力以及植硅体碳汇在全球碳汇中的贡献,阐明了作物植硅体未来的研究方向。1)不同作物产生的植硅体形态不同,而且对作物植硅体形态的研究较多处于优势的禾本科中,其他作物的研究较少;2)作物植硅体碳含量与其本身的固碳能力和效率有关,不完全由植硅体含量的多少决定,此外,植硅体碳含量的多少也可能受生长环境和植物基因型的影响;3)不同生态系统中气候、地表植被、土壤环境等诸多因素直接或间接地影响区域植硅体的碳汇潜力;4)农田生态系统不同作物植硅体碳汇存在显著差异,施加硅肥或硅-磷复合肥、种植高植硅体含量和高植硅体碳含量的作物等均可显著提高农田生态系统碳汇潜力。今后应进一步研究不同作物植硅体碳汇,以帮助识别过去的农业碳汇,评估当前农业碳汇潜力;加强植物、根系、土壤迁移规律的探讨,进一步分析不同作物植硅体积累与碳汇效应;阐明不同植物吸硅机制、植物根系硅化过程与其植硅体含量、植硅体碳含量间的关系;了解西南喀斯特生态脆弱区农业碳汇潜力,以期为作物科学种植、农田生态系统碳汇估算等提供参考。
关键词:作物/
植硅体/
植硅体碳/
碳汇/
农田生态系统
Abstract:Farmland ecosystems are important for maintaining terrestrial ecosystems and environmental homeostasis. As farmland ecosystems develop and evolve, change information is stored in the environment such as in phytoliths, which are stable, non-crystalline minerals in the soil that can indicate climate change. Phytolith analysis has been used for agricultural archaeology, paleoclimate reconstruction, and for estimating biogeochemical cycles and global carbon sequestration potential. Crop cultivation has a long history, and crops are globally distributed. Therefore, studying crop phytoliths and phytolith-occluded carbon is useful for exploring the origin and development of agriculture, estimating farmland ecosystem carbon sequestration, and responding to global climate change. The content and distribution of phytolith-occluded carbon, the phytolith carbon sequestration potential, and the contribution to global carbon sequestrations were analyzed (by literature review and phytolith morphological and archaeological information) to determine future crop phytolith research directions. The results showed that crops had differing phytolith characteristics, and most crop phytolith research had been completed in the family Gramineae. The crop phytolith carbon content was correlated to crop's carbon sequestration capacity and efficiency, and the phytolith-occluded carbon content may also be affected by the growth environment and plant genotypes. The climate, surface vegetation, and soil environment of the ecosystem had direct and indirect effects on the regional phytolith carbon sequestration potential. Significant differences in carbon sequestration between farmland crops were observed. Applying a silicon fertilizer or a silicon-phosphorus compound fertilizer and planting crops with high silicon content can significantly improve the carbon sequestration potential. Future studies should investigate the phytolith carbon sequestration of specific crops to identify past carbon sequestration levels and compare them with the current potential. The plant migration law, root systems, and soil should be improved, and crop silicon levels should be analyzed to determine the effect on accumulation volume and carbon sequestration. Future studies should investigate the silicon absorption mechanism, root silicification process, and phytolith-occluded carbon content of crops and the agricultural carbon sequestration potential of the ecologically fragile karst area in Southwest China to improve farmland ecosystem crop planting and carbon sink estimation.
Key words:Crops/
Phytoliths/
Phytolith-occluded carbon (PhytOC)/
Carbon sequestration/
Farmland ecosystem
HTML全文
表1不同作物稃壳主要植硅体类型
Table1.Main phytolith types in shell of different crop species
作物?Crop | 类型?Type | 参考文献?Reference |
黍?Prosomillet | 3级稃片η型? η type | [25] |
粟?Millet | 3级稃片Ω型? Ω type | |
稗?Trtf | 3级稃片β型? β type | |
小麦?Wheat | 苞片内树枝状、叶片组织内乳突状 Dendritic type in inflorescence tissue, papilla type in leaf tissue | |
水稻?Rice | 鱼鳞纹扇型、双峰型、并排哑铃型 Bulliforms, double peaked, parallel bilobate types | |
玉米?Maize | 哑铃型、尖型、棒型?Bilobate, pointed, elongate types | [26] |
下载: 导出CSV
表2不同作物植硅体碳含量[17]
Table2.Contents of phytolith-occluded carbon in different crop species[17]
作物 Crop | 种植面积 Planting area (×106 hm2) | 器官 Organ | 植硅体碳含量 Phytolith-occluded carbon content (%) |
水稻?Rice | 30.1 | 茎、叶鞘、叶?Stem, sheath, leaf | 0.25±0.07 |
小麦?Wheat | 24.3 | 茎、叶鞘、叶?Stem, sheath, leaf | 0.16±0.07 |
玉米?Maize | 33.5 | 茎、叶鞘、叶?Stem, sheath, leaf | 0.16±0.06 |
其他谷类?Other cereals | 6.2 | 茎、叶鞘、叶?Stem, sheath, leaf | 0.17±0.09 |
豆类?Soybeans | 10.7 | 茎、叶?Stem, leaf | 0.02±0.01 |
薯类?Tubers | 8.9 | 茎、叶?Stem, leaf | 0.02±0.01 |
油料作物?Oil-bearing crops | 13.9 | 茎、叶?Stem, leaf | 0.08±0.07 |
棉花?Cotton | 5.0 | 茎、叶?Stem, leaf | 0.02±0.01 |
甘蔗?Sugarcane | 1.9 | 叶鞘、叶?Sheath, leaf | 0.25±0.07 |
下载: 导出CSV
表3不同作物植硅体碳产生通量和产生量[17]
Table3.The phytolith-occluded carbon production flux and rate of different crop species[17]
作物 Crop | 种植面积 Planting area (×106 hm2) | 植硅体碳产生通量 Phytolith-occluded carbon production flux [kg(CO2)·hm-2·a-1] | 植硅体碳产生量 Phytolith-occluded carbon production rate [×106 t(CO2)·a-1] |
水稻?Rice | 30.1 | 67.8 | 2.04 |
小麦?Wheat | 24.3 | 37.5 | 0.91 |
玉米?Maize | 33.5 | 44.4 | 1.49 |
甘蔗?Sugarcane | 1.9 | 96.0 | 0.19 |
棉花?Cotton | 5.0 | 16.9 | 0.08 |
下载: 导出CSV
参考文献
[1] | PIPERNO D R. Phytoliths:A Comprehensive Guide for Archaeologists and Paleoecologists[M]. Lanham:Altamira Press, 2006, 238 |
[2] | HODSON M J. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology[J]. Journal of Archaeological Science, 2016, 68:62-69 doi: 10.1016/j.jas.2015.09.002 |
[3] | PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths[J]. Soil Biology and Biochemistry, 2005, 37(1):117-124 |
[4] | SONG Z L, WANG H L, STRONG P J, et al. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon:Implications for biogeochemical carbon sequestration[J]. Earth-Science Reviews, 2012, 115(4):319-331 doi: 10.1016/j.earscirev.2012.09.006 |
[5] | PARR J, SULLIVAN L, CHEN B H, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biology, 2010, 16(10):2661-2667 doi: 10.1111/j.1365-2486.2009.02118.x |
[6] | ZHANG X D, SONG Z L, HAO Q, et al. Storage of soil phytoliths and phytolith-occluded carbon along a precipitation gradient in grasslands of northern China[J]. Geoderma, 2020, 364:114-200 |
[7] | WU Y, WANG C S. Extended depth of focus image for phytolith analysis[J]. Journal of Archaeological Science, 2009, 36(10):2253-2257 doi: 10.1016/j.jas.2009.06.010 |
[8] | Lü H Y, WU N Q, YANG X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅰ:Phytolith-based transfer functions[J]. Quaternary Science Reviews, 2006, 25(9/10):945-959 |
[9] | BREMOND L, ALEXANDRE A, WOOLLER M J, et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains[J]. Global and Planetary Change, 2008, 61(3/4):209-224 |
[10] | ZUO X X, Lü H Y, JIANG L P, et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25):6486-6491 doi: 10.1073/pnas.1704304114 |
[11] | 吕厚远, 贾继伟, 王伟铭, 等. "植硅体"含义和禾本科植硅体的分类[J].微体古生物学报, 2002, 19(4):389-396 Lü H Y, JIA J W, WANG W M, et al. On the meaning of phytolith and its classification in Gramineae[J]. Acta Micropalaeontologica Sinica, 2002, 19(4):389-396 |
[12] | SONG Z L, MCGROUTHER K, WANG H L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews, 2016, 158:19-30 doi: 10.1016/j.earscirev.2016.04.007 |
[13] | 应雨骐, 项婷婷, 李永夫, 等.中国亚热带重要树种植硅体碳封存潜力估测[J].自然资源学报, 2015, 30(1):133-140 YING Y Q, XIANG T T, LI Y F, et al. Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China[J]. Journal of Natural Resources, 2015, 30(1):133-140 |
[14] | 刘星辰, 计勇, 周娟, 等.湖泊湿地生态系统植硅体指示古环境研究进展[J].南昌工程学院学报, 2019, 38(4):41-46 LIU X C, JI Y, ZHOU J, et al. Research progress of phytosilicon applied to paleoenvironment in lake wetland ecosystem[J]. Journal of Nanchang Institute of Technology, 2019, 38(4):41-46 |
[15] | 王丹, 王奥博, 龙高飞, 等.湿地生态系统中植硅体与植硅体碳的研究进展[J].生态学杂志, 2017, 36(12):3602-3609 WANG D, WANG A B, LONG G F, et al. Research advances of phytolith and phytolith-occluded-carbon in wetland ecosystems[J]. Chinese Journal of Ecology, 2017, 36(12):3602-3609 |
[16] | PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241):1009-1013 doi: 10.1038/nature07944 |
[17] | SONG Z L, WANG H L, STRONG P J, et al. Phytolith carbon sequestration in China's croplands[J]. European Journal of Agronomy, 2014, 53:10-15 doi: 10.1016/j.eja.2013.11.004 |
[18] | ZUO X X, Lü H Y. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chinese Science Bulletin, 2011, 56(32):3451-3456 doi: 10.1007/s11434-011-4674-x |
[19] | LI Z M, SONG Z L, PARR J F, et al. Occluded C in rice phytoliths:Implications to biogeochemical carbon sequestration[J]. Plant and Soil, 2013, 370(1/2):615-623 |
[20] | 王永吉, 吕厚远.植物硅酸体研究及应用[M].北京:海洋出版社, 1993, 4 WANG Y J, Lü H Y. Phytolithss Study and Its Application[M]. Beijing:China Ocean Press, 1993, 4 |
[21] | BROWN D A. Prospects and limits of a phytolith key for grasses in the central United States[J]. Journal of Archaeological Science, 1984, 11(4):345-368 |
[22] | 何蕊, 邱坚, 罗蓓, 等.慈竹植硅体形态及其发育变化研究[J].西北农林科技大学学报:自然科学版, 2018, 46(4):68-74 HE R, QIU J, LUO B, et al. Developmental changes and morphology of phytolith in Bambusa emeiensis[J]. Journal of Northwest A & F University:Natural Science Edition, 2018, 46(4):68-74 |
[23] | 张新荣, 胡克, 王东坡, 等.植硅体研究及其应用的讨论[J].世界地质, 2004, 23(2):112-117 ZHANG X R, HU K, WANG D P, et al. Discussion on research and application of phytolith[J]. Global Geology, 2004, 23(2):112-117 |
[24] | BOZARTH S R. Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains[M]//RAPP JR G, MULHOLLAND S C. Phytolith Systematics. Boston: Springer, 1992: 193-241 |
[25] | 温昌辉, 吕厚远, 左昕昕, 等.表土植硅体研究进展[J].中国科学:地球科学, 2018, 48(9):1125-1140 WEN C H, Lü H Y, ZUO X X, et al. Advance of research on modern soil phytolith[J]. Science China Earth Sciences, 2018, 48(9):1125-1140 |
[26] | 李仁成, 谭淑慧, 覃翔, 等.玉米生长周期内植硅体的变化研究[J].微体古生物学报, 2016, 33(2):170-179 LI R C, TAN S H, QIN X, et al. Studies on the phytolith variation in maize during its growing season[J]. Acta Micropalaeontologica Sinica, 2016, 33(2):170-179 |
[27] | 葛利花, 王振祥, 靳桂云.植硅体分析与稻作农业[J].农业考古, 2019, (4):13-22 GE L H, WANG Z X, JIN G Y. Application of phytolith analysis in paddy rice cultivation in China[J]. Agricultural Archaeology, 2019, (4):13-22 |
[28] | GU Y S, WANG H L, HUANG X Y, et al. Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China[J]. Frontiers of Earth Science, 2012, 6(1):10-17 doi: 10.1007/s11707-012-0302-6 |
[29] | WEISSKOPF A, QIN L, DING J L, et al. Phytoliths and rice:From wet to dry and back again in the Neolithic Lower Yangtze[J]. Antiquity, 2015, 89(347):1051-1063 doi: 10.15184/aqy.2015.94 |
[30] | WEISSKOPF A. A wet and dry story:Distinguishing rice and millet arable systems using phytoliths[J]. Vegetation History and Archaeobotany, 2017, 26:99-109 doi: 10.1007/s00334-016-0593-8 |
[31] | RANERE A J, PIPERNO D R, HOLST I, et al. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13):5014-5018 doi: 10.1073/pnas.0812590106 |
[32] | 金和天, 潘岩, 杨颖亮, 等.浙江余姚田螺山遗址土壤植硅体AMS14C测年初步研究[J].第四纪研究, 2014, 34(1):1-7 JIN H T, PAN Y, YANG Y L, et al. A primary study on AMS 14C dating of phytolith at Tianluoshan Site, Zhejiang Province[J]. Quaternary Sciences, 2014, 34(1):1-7 |
[33] | 郭荣臻.河南新密史前先民食物结构的考古学观察[J].农业考古, 2018, (3):26-32 GUO R Z. Archaeological observations on the food structure of the prehistoric ancestors in Xinmi of Henan[J]. Agricultural Archaeology, 2018, (3):26-32 |
[34] | 刘莉, 王佳静, 赵昊, 等.陕西蓝田新街遗址仰韶文化晚期陶器残留物分析:酿造谷芽酒的新证据[J].农业考古, 2018, (1):7-15 LIU L, WANG J J, ZHAO H, et al. Analysis on pottery residue of the Late Yangshao culture in Xinjie Site of Lantian, Shaanxi:New evidence of Guya beer brewing[J]. Agricultural Archaeology, 2018, (1):7-15 |
[35] | DING T P, MA G R, SHUI M X, et al. Silicon isotope study on rice plants from the Zhejiang Province, China[J]. Chemical Geology, 2005, 218(1/2):41-50 |
[36] | 赵玉营.草地生态系统植硅体碳汇及其控制机制[D].杭州: 浙江农林大学, 2016 ZHAO Y Y. Research on silicon distribution and phytolith carbon sequestration of grassland ecosystem[D]. Hangzhou: Zhejiang A & F University, 2016 |
[37] | MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8):392-397 doi: 10.1016/j.tplants.2006.06.007 |
[38] | 李自民, 宋照亮, 姜培坤.稻田生态系统中植硅体的产生与积累——以嘉兴稻田为例[J].生态学报, 2013, 33(22):7197-7203 LI Z M, SONG Z L, JIANG P K. The production and accumulation of phytoliths in rice ecosystems:A case study to Jiaxing paddy field[J]. Acta Ecologica Sinica, 2013, 33(22):7197-7203 |
[39] | SUN X, LIU Q, ZHAO G M, et al. Comparison of phytolith-occluded carbon in 51 main cultivated rice (Oryzasativa) cultivars of China[J]. RSC Advances, 2017, 7(86):54726-54733 doi: 10.1039/C7RA10685H |
[40] | 胡晓薇, 黄程鹏, 黄张婷, 等.毛竹林植硅体碳封存速率估算的最佳鲜叶采样时间[J].应用生态学报, 2019, 30(9):2949-2954 HU X W, HUANG C P, HUANG Z T, et al. Sampling time of living leaf for estimating phytolith-occluded organic carbon sequestration rate of Phyllostachys edulis[J]. Chinese Journal of Applied Ecology, 2019, 30(9):2949-2954 |
[41] | PRAJAPATI K, RAJENDIRAN S, COUMAR M V, et al. Bio-sequestration of carbon in rice phytoliths[J]. National Academy Science Letters, 2015, 38(2):129-133 doi: 10.1007/s40009-014-0313-9 |
[42] | 杨杰, 吴家森, 姜培坤, 等.苦竹林植硅体碳与硅的研究[J].自然资源学报, 2016, 31(2):299-309 YANG J, WU J S, JIANG P K, et al. Study on phytolith-occluded organic carbon and silicon in a Pleioblastus amarus forest[J]. Journal of Natural Resources, 2016, 31(2):299-309 |
[43] | 罗东海, 王子芳, 陆畅, 等.缙云山不同土地利用方式下土壤植硅体碳的含量特征[J].环境科学, 2019, 40(9):4270-4277 LUO D H, WANG Z F, LU C, et al. Content of soil phytolith-occluded organic carbon in different land use patterns at Jinyun Mountain[J]. Environmental Science, 2019, 40(9):4270-4277 |
[44] | ZUO X X, Lü H Y, GU Z Y. Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles[J]. Plant and Soil, 2014, 374(1/2):223-232 |
[45] | 陈留美, 张甘霖.水耕人为土时间序列的植硅体及其闭留碳演变特征[J].土壤通报, 2011, 42(5):1025-1030 CHEN L M, ZHANG G L. Phytoliths and its occluded organic carbon in a stagnic anthrosols chronosequence[J]. Chinese Journal of Soil Science, 2011, 42(5):1025-1030 |
[46] | AL-ISMAILY S S. Genesis of silica-enriched agricultural pans in soils managed under wheat-fallow cropping systems[D]. Corvallis: Oregon State University, 1997 |
[47] | NGUYEN M N, DULTZ S, MEHARG A, et al. Phytolith content in Vietnamese paddy soils in relation to soil properties[J]. Geoderma, 2019, 333:200-213 doi: 10.1016/j.geoderma.2018.07.027 |
[48] | 潘文杰, 杨孝民, 张晓东, 等.中国陆地生态系统植硅体碳汇研究进展[J].地球科学进展, 2017, 32(8):859-866 PAN W J, YANG X M, ZHANG X D, et al. Advances in study of phytolith carbon sequestration in terrestrial ecosystems of China[J]. Advances in Earth Science, 2017, 32(8):859-866 |
[49] | 介冬梅, 刘红梅, 葛勇, 等.长白山泥炭湿地主要植物植硅体形态特征研究[J].第四纪研究, 2011, 31(1):163-170 JIE D M, LIU H M, GE Y, et al. Phytolith analysis:Morphological characteristics of peatland plant species in Changbai Mountains[J]. Quaternary Sciences, 2011, 31(1):163-170 |
[50] | PARR J, SULLIVAN L, QUIRK R. Sugarcane phytoliths:Encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Tech, 2009, 11(1):17-21 doi: 10.1007/s12355-009-0003-y |
[51] | SUN X, LIU Q, GU J, et al. Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars[J]. Frontiers of Earth Science, 2016, 10(4):683-690 doi: 10.1007/s11707-015-0549-9 |
[52] | PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant and Soil, 2011, 342(1/2):165-171 |
[53] | SONG Z L, LIU H Y, LI B L, et al. The production of phytolith-occluded carbon in China's forests:Implications to biogeochemical carbon sequestration[J]. Global Change Biology, 2013, 19(9):2907-2915 doi: 10.1111/gcb.12275 |
[54] | LI Z M, GUO F S, CORNELIS J T, et al. Combined silicon-phosphorus fertilization affects the biomass and phytolith stock of rice plants[J]. Frontiers in Plant Science, 2020, 11:67 doi: 10.3389/fpls.2020.00067 |
[55] | SONG A L, NING D F, FAN F L, et al. The potential for carbon bio-sequestration in China's paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer[J]. Scientific Reports, 2015, 5(1):17354 doi: 10.1038/srep17354 |
[56] | SUN X, LIU Q, TANG T T, et al. Silicon fertilizer application promotes phytolith accumulation in rice plants[J]. Frontiers in Plant Science, 2019, 10:425 doi: 10.3389/fpls.2019.00425 |
[57] | 孟赐福, 姜培坤, 徐秋芳, 等.植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用[J].浙江农林大学学报, 2013, 30(6):921-929 MENG C F, JIANG P K, XU Q F, et al. PhytOC in plant ecological system and its important roles in the global soil carbon sink[J]. Journal of Zhejiang A & F University, 2013, 30(6):921-929 |
[58] | 许子娟, 左昕昕, 范百龄, 等.植硅体圈闭碳地球化学研究进展[J].地球科学进展, 2017, 32(2):151-159 XU Z J, ZUO X X, FAN B L, et al. Advances in geochemical study of phytolith occluded carbon[J]. Advances in Earth Science, 2017, 32(2):151-159 |
[59] | 卢燕宇, 孙维, 唐为安, 等.气候变化背景下安徽省冬小麦气候生产潜力和胁迫风险研究[J].中国生态农业学报(中英文), 2020, 28(1):17-30 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0103&flag=1 LU Y Y, SUN W, TANG W A, et al. Climatic potential productivity and stress risk of winter wheat under the background of climate change in Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1):17-30 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0103&flag=1 |
[60] | MA J F, YAMAJI N. A cooperative system of silicon transport in plants[J]. Trends in Plant Science, 2015, 20(7):435-442 doi: 10.1016/j.tplants.2015.04.007 |
[61] | YAMAJI N, MA J F. A transporter at the node responsible for intervascular transfer of silicon in rice[J]. The Plant Cell, 2009, 21(9):2878-2883 doi: 10.1105/tpc.109.069831 |
[62] | YAMAJI N, SAKURAI G, MITANI-UENO N, et al. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36):11401-11406 doi: 10.1073/pnas.1508987112 |
[63] | PONTIGO S, RIBERA A, GIANFREDA L, et al. Silicon in vascular plants:Uptake, transport and its influence on mineral stress under acidic conditions[J]. Planta, 2015, 242(1):23-37 doi: 10.1007/s00425-015-2333-1 |
[64] | 李菲, 刘杰, 张习敏, 等.喀斯特适生植物的共生微生物的研究进展[J].贵州师范大学学报:自然科学版, 2019, 37(3):1-5 LI F, LIU J, ZHANG X M, et al. Research advances on symbiotic microbes of karst adapted plants[J]. Journal of Guizhou Normal University:Natural Sciences, 2019, 37(3):1-5 |
[65] | 吴清林, 梁虹, 熊康宁, 等.喀斯特地区水土漏失监测方法评述[J].贵州师范大学学报:自然科学版, 2020, 38(3):30-38 WU Q L, LIANG H, XIONG K N, et al. Reviews of soil leakage loss monitoring in karst areas[J]. Journal of Guizhou Normal University:Natural Sciences, 2020, 38(3):30-38 |
[66] | YANG X M, SONG Z L, SULLIVAN L, et al. Topographic control on phytolith carbon sequestration in moso bamboo (Phyllostachys pubescens) ecosystems[J]. Carbon Management, 2016, 7(1/2):105-112 |