王琼2,,,
卢燕宇3,
杨松4,
于涵1,
王立声1,
赵嵘1
1.中国气象局公共气象服务中心 北京 100081
2.河北省沧州市气象局 沧州 061001
3.安徽省气象局 合肥 230000
4.内蒙古自治区巴彦淖尔市农业气象试验站 巴彦淖尔 015000
基金项目: 中国气象局气候变化专项CCSF201809
详细信息
通讯作者:王秀荣, 主要从事生态气候资源评价及气象灾害风险评估研究, E-mail:wangxr@cma.gov.cn
王琼, 主要从事天气预报服务及气候资源开发利用研究, E-mail:534251708@qq.com
中图分类号:S19;S162.3计量
文章访问数:247
HTML全文浏览量:5
PDF下载量:122
被引次数:0
出版历程
收稿日期:2020-06-12
录用日期:2020-09-10
刊出日期:2020-11-01
Conceptual model based on climate for comprehensive evaluation of crop planting conditions:A case study in Bayannur Hetao Irrigation District in Inner Mongolia
WANG Xiurong1,,,WANG Qiong2,,,
LU Yanyu3,
YANG Song4,
YU Han1,
WANG Lisheng1,
ZHAO Rong1
1. Public Meteorological Service Center, China Meteorological Administration, Beijing 100081, China
2. Cangzhou Meteorological Bureau, Cangzhou 061001, China
3. Anhui Meteorological Administration, Hefei 230000, China
4. Experimental Station of Agricultural Meteorology in Bayannur City, Inner Mongolia Autonomous Region, Bayannur 015000, China
Funds: the Special Fund for Climate Change from China Meteorological A dministrationCCSF201809
More Information
Corresponding author:WANG Xiurong, E-mail:wangxr@cma.gov.cn;WANG Qiong, E-mail:534251708@qq.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为更好地适应气候变化大背景下作物种植条件变化,对各地区的作物种植条件进行综合评估已迫在眉睫。本研究应用层次分析法,基于天气学、气候学和农业气象学等原理,结合地方生态和经济发展需求,选取气候资源、灾害防御、种植配套条件3大类准则层,并选定包括光照资源、热量资源、水资源、空气质量、气象灾害、病虫害以及土壤条件、地理环境、基础设施、管理制度等相关14类小项指标,设计作物种植条件综合评价体系框架;然后通过统计分析设定14类小项指标评分细则,最终构建作物种植条件综合评价概念模型。并利用所构建的概念模型对内蒙古巴彦淖尔河套灌区主要作物种植条件进行综合评价应用试验。评估结果显示:巴彦淖尔河套灌区光照资源充足、热量资源较稳定、气候适宜度高、灌溉条件优异,春小麦、玉米和向日葵等主要作物关键生长期综合日照保证率、综合积温保证率、综合气温适宜保证率均高达85%以上,水分保证率100%,气温日较差较大,空气质量优良,灌区土壤肥沃;高温、大风、冰雹、暴雨等主要气象灾害及病虫害发生频率低,预报与防御能力较强;自然、地理、人文、政策等各类资源配置优势突出,综合分析评价得出该地区作物种植条件为Ⅰ级优良。综合分析可见,本概念模型选取的指标之间既相互联系又相互独立、具有层次性和结构性,是能定量反映区域气候系统和相关配套条件所构成的有机整体;指标获取便捷、可操作性好,评估结果可靠性良好,可推广于不同地区或不同作物的种植条件综合评价,为实现农业的生态化、可持续性发展保驾护航。
Abstract:In response to climate change and to the progress of social economy, science, and technology, alterations to crop planting conditions in various places are warrant further scientific, technological, and ecological development. In order to adapt and enhance crop planting conditions, as well as to promote the development of market economy, it is an urgent need to conduct a comprehensive assessment of local crop planting conditions. In this study, analytic hierarchy process (AHP) methodology was applied, combined with the principles of meteorology, climatology, and agrometeorology, to design a framework for assessing the crop planting conditions. Taking into account the needs of local ecological and economic development, the framework was constructed by selecting three major criteria, namely climate resources, disaster prevention, and supporting conditions for cultivation, as well as 14 related sub-indicators, including light resources, heat resources, water resources, air quality, meteorological disasters, plant diseases and insect pests, soil conditions, geographical environment, infrastructure, and management system. Through statistical analysis, the scoring rules for the 14 sub-indicators were set up and the conceptual model for comprehensive evaluation of crop planting conditions was created. To validate the novel assessment model, a comprehensive evaluation experiment was carried out on the main crop planting conditions at the Bayannaoer Hetao Irrigation District of Inner Mongolia. The assessment results indicated that Bayannur Hetao Irrigation District had sufficient light resources, stable heat resources, high climate suitability, and excellent irrigation conditions. The guarantee rate of light, cumulative temperature, and temperature suitability for key growing periods for major crops, such as spring wheat, maize, and sunflower, were more than 85%, whereas water guarantee rate was 100%. The temperature diurnal range was larger. The air quality was excellent and the irrigated areas had fertile soil. The frequency of major meteorological disasters such as high temperature, strong wind, hail, and heavy rain and plant diseases and insect pests were low, and the ability of prediction and defense for these disasters were strong. Natural, geographical, and cultural policies and various resources had prominent advantages in allocation. The comprehensive evaluation of crop cultivation conditions in the region was excellent, level Ⅰ. These results demonstrated that the selected indicators used by the conceptual model were interrelated and independent, hierarchical and structural, and could quantitatively reflect the complex setting formed by the regional climate system and relevant supporting conditions. Indexes were easy to obtain and operate, and the evaluation results were reliable. Therefore, the proposed conceptual model may be applied to the comprehensive evaluation of planting conditions in different regions or different crops, so as to guarantee the ecological and sustainable development of agriculture.
HTML全文
表1作物种植条件综合评价指标体系
Table1.Comprehensive evaluation indexes system of crop planting conditions
准则层 Rule layer | 指标类别 Indicator category | 指标层 Indicator layer |
气候资源 Climatic resource (IR) | 光照资源 Light resources | 日照保证率 Sunshine guarantee rate (IRsg) |
热量资源 Heat resources | 积温保证率 Accumulated temperature guarantee rate (IRta) | |
气温适宜度 Air temperature suitability (IRts) | ||
气温日较差 Daily temperature range (IRtd) | ||
水分资源 Water resources | 水分保证率 Water guarantee rate (IRwg) | |
大气环境 Atmospheric environment | 空气质量优良率 Air quality good rate (IRaq) | |
灾害防御 Disaster defense (ID) | 气象灾害 Meteorological disasters | 发生频次 Occurrence frequency (IDmf) |
防御能力 Defense capability (IDmd) | ||
病虫害 Plant diseases and insect pests | 发生频次或潜势 Occurrence frequency or potential (IDpf) | |
防御能力 Defense capability (IDpd) | ||
配套条件 Supporting conditions (IC) | 土壤条件 Soil conditions | 土质环境 Soil environment (ICst) |
地理条件 Geographical conditions | 地形地貌 Terrain topography (ICtf) | |
基础设施 Infrastructure | 农业配套系统 Agricultural supporting systems (ICis) | |
管理制度 Management systems | 种植管理水平 Planting management level (ICpm) |
下载: 导出CSV
表2气候资源类评价指标等级划分和评分规则
Table2.Classification and scoring rules of climate resource evaluation indexes
指标类型 Index type | 等级 Class | 分值 Score |
日照、积温、气温适宜度和水分的保证率(IR) Guarantee rates of sunshine, accumulated temperature, suitable temperature, and water (IR) | IR≥90% | 100分100 points |
80%≤IR < 90% | 90~100分(80%为90分, 每增加1%加1分) 90-100 points (80% is 90 points, plus 1 point for every 1% increase) | |
60%≤IR < 80% | 80~90分(60%为80分, 每增加2%加1分) 80-90 points (60% is 80 points, plus 1 point for every 2% increase) | |
40%≤IR < 60% | 70~80分(40%为70分, 每增加2%加1分) 70-80 points (40% is 70 points, plus 1 point for every 2% increase) | |
20%≤IR < 40% | 60~70分(20%为60分, 每增加2%加1分) 60-70 points (20% is 60 points, plus 1 point for every 2% increase) | |
IR < 20% | 60分以下Below 60 points | |
气温日较差(气温日较差百分位, IRtd) Daily temperature range (percentile of diurnal temperature range, IRtd) | IRtd≥90% | 100分100 points |
80%≤IRtd < 90% | 90~100分(80%为90分, 每增加1%加1分) 90-100 points (80% is 90 points, plus 1 point for every 1% increase) | |
70%≤IRtd < 80% | 80~90分(70%为80分, 每增加1%加1分) 80-90 points (70% is 80 points, plus 1 point for every 1% increase) | |
60%≤IRtd < 70% | 70~80分(60%为70分, 每增加1%加1分) 70-80 points (60% is 70 points, plus 1 point for every 1% increase) | |
50%≤IRtd < 60% | 60~70分(50%为60分, 每增加1%加1分) 60-70 points (50% is 60 points, plus 1 point for every 1% increase) | |
空气质量优良率 Good air quality rate (IRaq) | IRaq≥90% | 100分100 points |
80%≤IRaq < 90% | 90~100分(80%为90分, 每增加1%加1分) 90-100 points (80% is 90 points, plus 1 point for every 1% increase) | |
70%≤IRaq < 80% | 80~90分(70%为80分, 每增加1%加1分) 80-90 points (70% is 80 points, plus 1 point for every 1% increase) | |
60%≤IRaq < 70% | 70~80分(60%为70分, 每增加1%加1分) 70-80 points (60% is 70 points, plus 1 point for every 1% increase) | |
50%≤IRaq < 60% | 60~70分(50%为60分, 每增加1%加1分) 60-70 points (50% is 60 points, plus 1 point for every 1% increase) | |
IRaq < 50% | 60分以下Below 60 points |
下载: 导出CSV
表3气象灾害类评价指标等级划分和评分规则
Table3.Classification and scoring rules of meteorological disaster evaluation indexes
主要气象灾害频次等级 Class of frequency of major meteorological disasters | 分值 Score | 气象灾害防御能力等级 Class of meteorological disaster prevention capability | 分值 Score | |
偏低 Low | 80~100分 80-100 points | 制定气象灾害防御相关规划, 并经过地方政府审议通过, 有效贯彻执行; 气象灾害防御措施执行到位, 设施完备。 Formulate relevant plans for meteorological disaster prevention and approved by the local government and effective implementation; execute preventive measures against meteorological disasters properly and complete facilities | 80~100分 80-100 points | |
中等 Medium | 60~80分 60-80 points | 制定有气象灾害防御相关规划, 气象灾害防御措施执行和设施情况一般。 Formulate relevant plans for meteorological disaster prevention, general for implementation of meteorological disaster prevention measures and facilities | 60~80分 60-80 points | |
中等偏高 Medium on the high side | 60分以下 Below 60 points | 未制定气象灾害防御相关规划, 未能有效组织气象灾害防御措施。 No relevant plans for meteorological disaster prevention; no effectively organize preventive measures against meteorological disasters | 60以下 Below 60 points |
下载: 导出CSV
表4病虫害类评价指标等级划分和评分规则
Table4.Classification and scoring rules of plant diseases and insect pests revaluation indexes
病虫害发生的气象潜势等级 Class of meteorological potential for plhant diseases and insect pestspests and diseases occurrence | 分值 Score | 病虫害防御能力等级 Class of plhant diseases and insect pests insect and disease resistance capability | 分值 Score | |
偏低 Low | 80~100分 80-100 points | 偏低 Low | 80~100分 80-100 points | |
中等 Medium | 60~80分 60-80 points | 中等 Medium | 60~80分60-80 points | |
偏高 High | 60分以下 Below 60 points | 偏高 High | 60分以下 Below 60 points |
下载: 导出CSV
表5配套条件类评价指标等级划分和评分规则
Table5.Classification and scoring rules of complementary condition revaluation indexes
配套条件 Complementary condition | 分类 Classification | 分值 Score |
土壤环境 Soil environment | 壤土比例≥80%, 土壤环境洁净为Ⅰ类 Loam ratio≥80%, soil environment at class Ⅰ | 90~100分(80%为90分, 每增加2%, 加1分) 90-100 points (80% is 90 points, plus 1 point for every 2% increase) |
60%≤壤土比例 < 80%, 土壤环境洁净为Ⅰ类 60%≤loam ratio < 80%, soil environment at class Ⅰ | 80~90分(60%为80分, 每增加2%, 加1分) 80-90 points (60% is 80 points, plus 1 point for every 2% increase) | |
40%≤壤土比例 < 60%, 土壤环境洁净为Ⅰ类 40%≤loam ratio < 60%, soil environment at class Ⅰ | 70~80分(40%为70分, 每增加2%, 加1分) 70-80 points (40% is 70 points, plus 1 point for every 2% increase) | |
20%≤壤土比例 < 40%, 土壤环境洁净为Ⅰ类 20%≤loam ratio < 40%, soil environment at class Ⅰ | 60~70分(20%为60分, 每增加2%, 加1分) 60-70 points (20% is 60 points, plus 1 point for every 2% increase) | |
壤土比例 < 20%, 土壤环境洁净为Ⅰ类 Loam ratio < 20%, soil environment at clean class Ⅰ | 60分以下 Below 60 points | |
土壤环境为Ⅱ类, 在上述分值减去20 Minus 20 points from the above score for class Ⅱ soil environment | ||
土壤环境为Ⅲ类及以下等级, 在上述分值减去40 Minus 40 points from the above score for class Ⅲ or below soil environment | ||
地形地貌 Landform | 平原为主 Plain | 80~100分 80-100 points |
丘陵为主 Hills | 60~80分 60-80 points | |
山地为主 Mountain | 60以下 Below 60 points | |
农业配套系统 Agricultural supporting system | 完善Perfect | 80~100分 80-100 points |
较完善 Relatively perfect | 60~80分 60-80 points | |
不完善 Imperfect | 60以下 Below 60 points | |
种植制度和管理水平 Cropping system and management level | 完备而且高 Complete and high | 80~100分 80-100 points |
较完备也较高 Relatively complete and high | 60~80分 60-80 points | |
欠缺也不高 Incomplete and low | 60以下 Below 60 points |
下载: 导出CSV
表6作物种植条件评分等级划分
Table6.Grading of crop planting conditions
级别 Level | 综合评分 Comprehensive score | 作物种植条件描述 Describe of crop planting conditions |
Ⅰ | [90, 100] | 很好 Very good |
Ⅱ | [80, 90) | 好 Good |
Ⅲ | [70, 80) | 较好 Relatively good |
Ⅳ | [60, 70) | 一般 General |
Ⅴ | (60, 0] | 差 Poor |
下载: 导出CSV
表7巴彦淖尔河套灌区主要作物不同生育期光温条件阈值
Table7.Light and temperature thresholds of main crops in different growth periods in Bayannur Hetao Irrigation District
作物 Crop | 生育期 Growth period | 时间 Time | 日照时数 Sunshine hours (h) | 积温1) Accumulated temperature1) (℃) | 平均气温 Average temperature (℃) |
春小麦 Spring wheat | 播种—出苗 Sow-sprout | 3月初—4月中旬 From early March to mid-April | 180 | 120~130 | 5.0~8.0 |
分蘖—拔节 Tiller-elongating | 5月上旬—5月下旬 From early May to late May | 150 | 260~320 | 16.0~19.0 | |
抽穗—开花 Heading-flowering | 6月上旬—6月中旬 From early June to mid-June | 70 | 160~200 | 20.0~25.0 | |
灌浆—成熟 FillingGrouting -ripening | 6月下旬—7月中旬 From late June to mid-July | 250 | 610~670 | 20.0~25.0 | |
全生育期 Whole growth period | 3月初—7月中旬 From early March to mid-July | 1 080 | 1 900~2 000 | 15.5~18.0 | |
玉米 Corn | 播种—出苗 Sow-sprout | 4月下旬—5月中旬 From late April to mid-May | 165 | 260~310 | 14.0~18.0 |
出苗—拔节 Sow-elongating | 5月中旬—6月下旬 From mid-May to late June | 400 | 880~970 | 20.0~24.0 | |
拔节—吐丝 Elongating-spinning | 6月下旬—7月下旬 From late June to late July | 280 | 730~790 | 23.0~25.0 | |
吐丝—成熟 Spinning-ripening | 7月下旬—9月中旬 From late July to mid-September | 460 | 1 080~1 220 | 20.0~23.0 | |
全生育期 Whole growth period | 4月下旬—9月中旬 From late April to mid-September | 1 320 | 2 900~3 200 | 20.0~22.0 | |
向日葵 Sunflower | 播种—出苗 Sow-sprout | 5月下旬—6月上旬 From late May to early June | 70 | 185~225 | 18.0~22.5 |
出苗—二对真叶 Sprout-two pairs of true leaves | 6月上旬—6月中旬 From early June to mid-June | 85 | 180~220 | 20.0~24.5 | |
二对真叶—现蕾 Two pairs of true leaves-budding | 6月中旬—7月上旬 From mid-June to early July | 220 | 600~680 | 21.5~24.5 | |
现蕾—开花 Budding-flowering | 7月上旬—7月下旬 From early July to late July | 150 | 400~460 | 22.5~25.5 | |
开花—成熟 Flowering-ripening | 7月下旬—9月下旬 From late July to late September | 480 | 1 000~1 250 | 18.5~22.5 | |
全生育期 Whole growth period | 5月下旬—9月下旬 From late May to late September | 1 000 | 2 400~2 650 | 20.0~23.0 | |
??1)春小麦、玉米和向日葵的积温分别为≥0 ℃、≥10 ℃和≥5 ℃的积温。1) The accumulated temperature of spring wheat, corn and sunflower are accumulation of temperature above 0 ℃, 10 ℃ and 5 ℃, respectively. |
下载: 导出CSV
表8巴彦淖尔河套灌区主要作物播种面积比例及其全生育期主要气候资源类指标占比值
Table8.Ratios of planting area and climate resource indexes during whole growth periods of main crops in Bayannur Hetao Irrigation District?
作物 Crop | 播种面积比例 Planting area ratio | 日照保证率 Sunshine guarantee rate | 积温保证率 Accumulated temperature guarantee rate | 气温适宜保证率 Suitable temperature guarantee rate | 水分保证率 Water guarantee rate | 气温日较差百分位 Percentile of diurnal temperature range | 空气质量优良率 Days with good air quality |
春小麦 Spring wheat | 12 | 96.0 | 93.3 | 84.7 | 100 | 87.2 | 83.8 |
玉米 Corn | 33 | 93.3 | 84.0 | 80.0 | 100 | 88.1 | 92.1 |
向日葵 Sunflower | 38 | 98.6 | 98.6 | 91.3 | 100 | 88.2 | 94.0 |
总计/平均 Total/average | 83 | 96.0 | 92.0 | 85.3 | 100 | 88.0 | 91.8 |
下载: 导出CSV
表9巴彦淖尔河套灌区主要气象灾害特征
Table9.Main meteorological disaster characteristics in Bayannur Hetao Irrigation District
气象灾害 Meteorological disaster | 高温 High temperature | 雷暴 Thunderstorm | 冰雹 Hail | 大风 Strong wind | 暴雨 Heavy rains | 霜日 Frost |
年平均日数 Annual average number of days (d) | 7.9 | 18.4 | 0.6 | 11.3 | 0.4 | 62.8 |
发生频率 Occurrence frequency (%) | 2.2 | 5.0 | 0.2 | 3.1 | 0.1 | 17.2 |
1981—2010年变化趋势 Change trend from 1981 to 2010 | 增加 Increase | 减少 Decrease | 减少 Decrease | 减少 Decrease | 略增加 Slightly increase | 缓慢增加 Slowly increase |
下载: 导出CSV
表10巴彦淖尔河套灌区不同土层深度不同类型土壤质地占比
Table10.Proportions of different types of soil texture in different soil depths in Bayannur Hetao Irrigation District?
类型 Class | 占比 Proportion | |
0~30 cm | 30~100 cm | |
黏壤土 Clay loam | 53.95 | 56.39 |
壤土 Loam | 8.27 | 5.83 |
砂质壤土 Sandy loam | 25.69 | 0 |
壤质砂土 Loamy sand | 0.02 | 25.71 |
其他 Others | 12.07 | 12.07 |
下载: 导出CSV
表11巴彦淖尔河套灌区各评价指标评价赋分、权重及作物种植条件综合评价结果
Table11.Indexes weights, and assignment values of each level and comprehensive evaluation results of crop planting conditions in Bayannur Hetao Irrigation District
准则层(权重) Rule layer (weight) | 指标类别(权重) Indicator category (weight) | 指标层(权重) Indicator layer (weight) | 指标赋分值(权重) Indicator assignment value (weight) |
气候资源 (0.65) Climatic resources (0.65) | 光照资源(0.18) Lighting resources (0.18) | 日照保证率 Sunshine guarantee rate | 95(0.12) |
热量资源 (0.40) Thermal resources (0.40) | 积温保证率(0.44) Accumulated temperature guarantee rate(0.44)(0.44) | 90(0.12) | |
气温适宜度(0.27) Air temperature suitability (0.27)(0.27) | 90(0.07) | ||
气温日较差(0.29) Daily temperature range (0.29) | 95(0.07) | ||
水分资源(0.38) Water resources (0.38) | 水分保证率 Water guarantee rate | 99(0.25) | |
空气质量(0.04) Air quality (0.04) | 空气质量优良占比 Ratio of good air quality | 95(0.02) | |
灾害防御(0.14) Disaster prevention (0.14) | 气象灾害(0.74) Meteorological disasters (0.74) | 发生频次(0.63) Occurrence frequency (0.63) | 95(0.06) |
防御能力(0.37) Defense capability (0.37) | 95(0.04) | ||
病虫害(0.26) Plant diseases and insect pests (0.26) | 发生频次或潜势(0.52) Occurrence frequency or potential (0.52) | 95(0.02) | |
防御能力(0.48) Defense capability (0.48) | 95(0.02) | ||
配套条件(0.21) Supporting conditions (0.21) | 土壤条件(0.23) Soil conditions (0.23) | 土质环境 Soil environment | 90(0.05) |
地理条件(0.12) Geographical conditions (0.12) | 地形地貌 Topography | 95(0.03) | |
基础设施(0.42) Infrastructure (0.42) | 农业配套系统 Agricultural supporting system | 96(0.09) | |
管理制度(0.23) Management system (0.23) | 种植管理水平 Planting management level | 95(0.04) | |
综合评分 Comprehensive score | 95 |
下载: 导出CSV
参考文献
[1] | 李祎君, 王春乙.气候变化对我国农作物种植结构的影响[J].气候变化研究进展, 2010, 6(2):123-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz201002009 LI Y J, WANG C Y. Impacts of climate change on crop planting structure in China[J]. Advances in Climate Change Research, 2010, 6(2):123-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz201002009 |
[2] | 刘璐, 王景红, 张树誉, 等.陕西红富士苹果气候品质指标及认证技术[J].中国农业气象, 2018, 39(9):611-617 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201809008 LIU L, WANG J H, ZHANG S Y, et al. Climate quality index and climate quality certification model of red Fuji apple in Shaanxi Province[J]. Chinese Journal of Agrometeorology, 2018, 39(9):611-617 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201809008 |
[3] | 谢远玉, 王培娟, 朱凌金, 等.基于气象因子的赣南脐橙气候品质指标评价模型[J].生态学杂志, 2019, 38(7):2265-2274 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201907039 XIE Y Y, WANG P J, ZHU L J, et al. Climate quality evaluation model for navel orange in Ganzhou[J]. Chinese Journal of Ecology, 2019, 38(7):2265-2274 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201907039 |
[4] | 屈振江, 郑小华, 刘璐, 等.陕西不同生态区苹果品质差异及与气象因子的关系[J].气象, 2017, 43(7):872-878 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201707011 QU Z J, ZHENG X H, LIU L, et al. Relationship between apple quality and meteorological factors in different ecological regions in Shaanxi[J]. Meteorological Monthly, 2017, 43(7):872-878 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201707011 |
[5] | 葛万达, 盛光华.基于联合分析的绿色产品属性选择偏好研究[J].干旱区资源与环境, 2019, 33(8):49-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201908007 GE W D, SHENG G H. Research on attribute selection preference of green products based on conjoint analysis[J]. Journal of Arid Land Resources and Environment, 2019, 33(8):49-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201908007 |
[6] | 盛光华, 葛万达, 李若琪.绿色产品环境溢价支付水平影响因素的识别与效应分析[J].干旱区资源与环境, 2018, 32(6):11-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201806002 SHENG G H, GE W D, LI R Q. Identification and analysis on influential factors of payment for green product environment premium[J]. Journal of Arid Land Resources and Environment, 2018, 32(6):11-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201806002 |
[7] | 张翼, 王书蓓.政府环境规制、研发税收优惠政策与绿色产品创新[J].华东经济管理, 2019, 33(9):47-53 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdjjgl201909006 ZHANG Y, WANG S B. Government environmental regulation, R & D tax preference policy and green product innovation[J]. East China Economic Management, 2019, 33(9):47-53 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdjjgl201909006 |
[8] | 王娜, 任士伟, 王亮.中国有机农产品发展概况[J].现代农业科技, 2017, (9):268-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahny201709160 WANG N, REN S W, WANG L. General development situation of organic agricultural products in China[J]. Modern Agricultural Science and Technology, 2017, (9):268-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahny201709160 |
[9] | 谢敏.地理标志农产品对品牌营销竞争力的影响——以四川省为例[J].中国农业资源与区划, 2017, 38(4):207-213 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyyqh201704031 XIE M. Effects of agricultural products of geographical indication on brand marketing competitiveness-Take Sichuan Province for example[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(4):207-213 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyyqh201704031 |
[10] | 杨永.精准扶贫视域中的地理标志保护蔬菜发展研究[J].北方园艺, 2018, (22):195-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfyany201822034 YANG Y. Research on development of geographical indications protection vegetables in perspective of precise poverty alleviation[J]. Northern Horticulture, 2018, (22):195-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfyany201822034 |
[11] | 张树阁.京东与润果共同打造生态种植基地——全国首家京东示范农场落户江苏[J].农机科技推广, 2018, (6):58 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njkjtg201806027 ZHANG S G. Jingdong and Runguo jointly built an ecological planting base-The first Jingdong demonstration farm in China was settled in Jiangsu Province[J]. Agriculture Machinery Technology Extension, 2018, (6):58 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njkjtg201806027 |
[12] | 关恒伟.宁夏农垦平吉堡农场生态农业园区规划设计[J].农业技术与装备, 2018, 348(12):27-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njtgyaq201812010 GUAN H W. Planning and design of Pingjibao farm ecological agriculture park in Ningxia[J]. Agricultural Technology & Equipment, 2018, 348(12):27-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njtgyaq201812010 |
[13] | 付喜龙.北方山区核桃林下生态种养模式研究[J].农村科技, 2015, (9):75-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nckj201509049 FU X L. Study on the ecological cultivation mode of walnut forest in northern mountain area[J]. Rural Science & Technology, 2015, (9):75-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nckj201509049 |
[14] | 李翠娜, 石广玉, 余正泓, 等.农作物实景监测中的图像数据质量控制方法研究[J].气象, 2020, 46(1):119-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx202001012 LI C N, SHI G Y, YU Z H, et al. Research on image data quality control method in crop real landscape observation[J]. Meteorological Monthly, 2020, 46(1):119-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx202001012 |
[15] | 马树庆, 陈剑, 王琪, 等.东北地区玉米整地、播种和收获气象适宜度评价模型[J].气象, 2013, 39(6):782-788 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201306015 MA S Q, CHEN J, WANG Q, et al. Evaluation model of meteorological suitability for maize soil preparation, sowing and harvesting in Northeast China[J]. Meteorological Monthly, 2013, 39(6):782-788 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201306015 |
[16] | 左琛, 宋锋惠, 史彦江, 等.新疆平欧杂种榛种植气候区划[J].中国农业气象, 2020, 41(3):146-155 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx202003004 ZUO C, SONG F H, SHI Y J, et al. Climate regionalization of hybrid Hazel planting in Xinjiang[J]. Chinese Journal of Agrometeorology, 2020, 41(3):146-155 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx202003004 |
[17] | 张玥滢, 刘布春, 邱美娟, 等.气候变化背景下中国苹果适宜种植区北移西扩:基于高分辨率格点气象数据的区划分析[J].中国农业气象, 2019, 40(11):678-691 http://www.cnki.com.cn/Article/CJFDTotal-ZGNY201911002.htm ZHANG Y Y, LIU B C, QIU M J, et al. Areas suitable for growing apples moved northward and westward in China under the background of climate change:Climatic degionalization of apple based on high-resolution meteorological grid data[J]. Chinese Journal of Agrometeorology, 2019, 40(11):678-691 http://www.cnki.com.cn/Article/CJFDTotal-ZGNY201911002.htm |
[18] | 杨凯, 陈彬彬, 陈惠, 等.基于寒害过程的福建芒果种植气候风险区划[J].中国农业气象, 2019, 40(11):723-732 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201911006 YANG K, CHEN B B, CHEN H, et al. Climatic risk regionalization of mango planting in Fujian Province based on cold injury process[J]. Chinese Journal of Agrometeorology, 2019, 40(11):723-732 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyqx201911006 |
[19] | 徐敏, 吴洪颜, 张佩, 等.基于气候适宜度的江苏水稻气候年景预测方法[J].气象, 2018, 44(9):1200-1207 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201809008 XU M, WU H Y, ZHANG P, et al. Long-term prediction method of rice annual agricultural climate status in Jiangsu Province based on climatic suitability[J]. Meteorological Monthly, 2018, 44(9):1200-1207 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201809008 |
[20] | 易灵伟, 杨爱萍, 余焰文, 等.基于气候适宜指数的江西晚稻产量动态预报模型构建及应用[J].气象, 2016, 42(7):885-891 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201607012 YI L W, YANG A P, YU Y W, et al. Dynamic prediction and its application for late rice yield based on climate suitability index in Jiangxi[J]. Meteorological Monthly, 2016, 42(7):885-891 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201607012 |
[21] | WANG Y, ZHANG Q, WANG S P, et al. Characteristics of agro-meteorological disasters and their risk in Gansu Province against the background of climate change[J]. Natural Hazards, 2017, 89(2):899-921 doi: 10.1007/s11069-017-2999-8 |
[22] | WU M H, CHEN Y N, WANG H J, et al. Characteristics of meteorological disasters and their impacts on the agricultural ecosystems in the northwest of China:A case study in Xinjiang[J]. Geoenvironmental Disasters, 2015, 2(1):3 doi: 10.1186/s40677-015-0015-8 |
[23] | 王仰仁, 李松敏, 王文龙, 等.基于概念模型的麦田土壤水分动态模拟研究[J].气象, 2010, 36(12):102-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201012015 WANG Y R, LI S M, WANG W L, et al. Simulation of dynamic soil moisture of winter wheat based on conceptual model[J]. Meteorological Monthly, 2010, 36(12):102-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201012015 |
[24] | 王泽, 颜于川, 蒋平安, 等.不同因子对玛纳斯河流域农田土壤水分的影响[J].新疆农业科学, 2013, 50(10):1879-1886 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykx201310017 WANG Z, YAN Y C, JIANG P A, et al. Effects of different factors on soil moisture content of farmland in Manas River basin[J]. Xinjiang Agricultural Sciences, 2013, 50(10):1879-1886 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykx201310017 |
[25] | 朱阳春, 赵学勇, 连杰, 等.河套灌区不同土地利用方式下土壤有机碳的差异[J].生态学杂志, 2016, 35(1):158-163 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201601021 ZHU Y C, ZHAO X Y, LIAN J, et al. Differences in soil total organic carbon under different land-use patterns in the Hetao Irrigation Region[J]. Chinese Journal of Ecology, 2016, 35(1):158-163 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201601021 |
[26] | 包凤琴, 李佑国, 李晶, 等.内蒙古河套地区土壤环境质量评价[J].现代地质, 2012, 26(5):947-952 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201205014 BAO F Q, LI Y G, LI J, et al. Evaluation on soil environmental quality in the Hetao area of Inner Mongolia[J]. Geoscience, 2012, 26(5):947-952 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201205014 |
[27] | 杨文柱, 焦燕, 杨铭德, 等.内蒙古河套灌区盐碱土壤N2O排放特征[J].中国环境科学, 2019, 39(3):948-953 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201903006 YANG W Z, JIAO Y, YANG M D, et al. N2O emissions from saline-alkaline soil with different saline-alkaline levels in the Hetao Irrigation District of Inner Mongolia[J]. China Environmental Science, 2019, 39(3):948-953 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201903006 |
[28] | 杨文柱, 焦燕, 杨铭德, 等.内蒙古河套灌区不同盐碱程度土壤CH4吸收规律[J].环境科学, 2019, 40(4):1950-1956 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201904052 YANG W Z, JIAO Y, YANG M D, et al. CH4 uptake in different saline-alkaline soils in Hetao Irrigation District, Inner Mongolia[J]. Environmental Science, 2019, 40(4):1950-1956 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201904052 |
[29] | 夏如良.巴彦淖尔地区水资源有效配置的政策和制度安排分析[D].北京: 首都经济贸易大学, 2008 XIA R L. Analysis of policy and system arrangement of effective allocation of water resources in Bayannur region[D]. Beijing: Capital University of Economics and Business, 2008 |
[30] | 童文杰.河套灌区作物耐盐性评价及种植制度优化研究[D].北京: 中国农业大学, 2014 TONG W J. Study on salt tolerance of crops and cropping system optimization in Hetao Irrigation District[D]. Beijing: China Agricultural University, 2014 |
[31] | 刘新宪, 朱道立.选择与判断:AHP(层次分析法)决策[M].上海:上海科学普及出版社, 1990 LIU X X, ZHU D L. Selection and Judgment:AHP (Analytic Hierarchy Process) Decision Making[M]. Shanghai:Shanghai Science Popularization Press, 1990 |
[32] | 韩慧杰, 夏学齐, 吴海东, 等.基于GIS和土地质量地球化学数据的水稻种植适宜性评价——以安徽省青阳县为例[J].中国生态农业学报(中英文), 2019, 27(4):591-600 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0410&flag=1 HAN H J, XIA X Q, WU H D, et al. Evaluation of rice planting suitability using GIS and geochemical land quality data-A case study of Qingyang County, Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4):591-600 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0410&flag=1 |
[33] | 孙园园, 徐富贤, 孙永健, 等.四川稻作区优质稻生产气候生态条件适宜性评价及空间分布[J].中国生态农业学报, 2015, 23(4):506-513 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015415&flag=1 SUN Y Y, XU F X, SUN Y J, et al. Suitability evaluation of eco-climatic conditions for high quality rice production in Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4):506-513 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015415&flag=1 |