删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

农田防护林对田间地表节肢动物分布的影响——以昌图县为例

本站小编 Free考研考试/2022-01-01

边振兴,
杨祎博,
果晓玉,
张宇飞,
于淼,
沈阳农业大学土地与环境学院 沈阳 110866
基金项目: 辽宁省自然科学基金项目01064219009

详细信息
作者简介:边振兴, 主要从事国土空间生态修复、耕地生态保护、农业景观生态方面研究。E-mail:zhx-bian@syau.edu.cn
通讯作者:于淼, 主要从事数理统计与景观生态方面研究。E-mail:yumiao77@163.com
中图分类号:P901

计量

文章访问数:267
HTML全文浏览量:3
PDF下载量:138
被引次数:0
出版历程

收稿日期:2020-09-29
录用日期:2020-10-08
刊出日期:2020-12-01

The effects of farmland shelterbelts on surface arthropod distribution: A case study in Changtu County, China

BIAN Zhenxing,
YANG Yibo,
GUO Xiaoyu,
ZHANG Yufei,
YU Miao,
College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
Funds: the Natural Science Foundation of Liaoning Province01064219009

More Information
Corresponding author:YU Miao, E-mail:yumiao77@163.com


摘要
HTML全文
(7)(5)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:提升农田生物多样性是当前生态农业研究的热点问题。为探讨农田防护林的生物多样性保护功能,本研究在辽宁省昌图县金家镇选取8个农田-防护林单元(每个单元即为1个田块),使用陷阱法调查了不同类型林带(完整型、残缺型、消亡型)相邻的农田中,距林带不同距离处(0 m、50 m、100 m、150 m、200 m)地表节肢动物的分布情况,同时记录林带内的植被群落特征。采用方差分析以及群落排序的方法,分析了林带类型、距离梯度以及林带植被结构对农田地表节肢动物分布的影响。研究结果表明:1)与消亡型相比,完整型和残缺型林带相邻的农田物种多度显著较高,物种多样性在各类型林带农田间无显著差异,与完整型及残缺型林带相邻的农田维持着区别于消亡型林带的地表节肢动物群落结构。2)完整型和残缺型林带相邻的农田物种多度梯度变化显著,随距林带距离的增加均呈由低到高的变化趋势;不同类型林带农田中,物种多样性随距林带距离的增加逐渐递减,边缘效应显著。3)林带中草本层物种多度和乔木层盖度是影响农田地表节肢动物群落分布的主要因子,共解释了35.4%的节肢动物数量变异;不同节肢动物物种对林带植被结构的响应存在差异,步甲和蜘蛛作为当地农业景观中主要的天敌类群,与上述林带植被结构因子关系密切:林带内较高的草本层物种多度有利于增加农田中某些步甲常见种的多样性,而较高的乔木层盖度有利于增加蜘蛛目常见科的多样性。研究结果表明,农田防护林作为研究区主要的非耕作生境类型,能够显著提升相邻农田中地表节肢动物的多度,对于物种多样性的提升作用则不明显;林带内草本层物种多度以及乔木层盖度对蜘蛛、步甲等多类天敌多样性保护具有积极作用。因此,加强农业景观中现有林地的改造和提升,如营造适宜盖度的上层林木以及丰富的林下植被,能够提升现有林地的生境质量,进一步发挥其对农田生物多样性的保育功能。
关键词:农田防护林/
昌图县/
地表节肢动物/
分布/
群落结构
Abstract:Improving farmland biodiversity is important for ecological agriculture. To explore how well farmland shelterbelts protect biodiversity, eight farmland shelterbelt units (unit=one field parcel; shelterbelt types:complete, incomplete, or extinct) in Jinjia Town, Changtu County, Liaoning Province, China were selected, and the surface arthropod distribution in adjacent farmlands was investigated using pitfall traps. Surface arthropods were sampled at 0, 50, 100, 150, and 200 m from the shelterbelt, and the shelterbelt vegetation characteristics were recorded. Analysis of variance and community ordination were used to analyze how the shelterbelt type, distance gradients, and shelterbelt vegetation structure affected the surface arthropod distribution. The results showed that the surface arthropod abundance was significantly higher in fields adjacent to complete and incomplete shelterbelts. The shelterbelt type had no significant effect on diversity; however, the surface arthropod community composition on the farmland adjacent to complete and incomplete shelterbelts differed from the extinct shelterbelts. The abundance gradient variation was significant in fields adjacent to complete and incomplete shelterbelts, demonstrating a low to high variation trend with away from shelterbelts. In all units, the diversity decreased as the distance toward the edge increased, and a significant edge effect was observed. Redundancy analysis (RDA) and Monte Carlo tests showed that the herb layer species abundance and the shelterbelt tree coverage were the primary factors affecting arthropod community distributions, accounting for 35.4% of the total surface arthropod population variation. Arthropod responses to the shelterbelt vegetation community significantly differed based on the species, carabids, and spiders present. The primary natural enemy of the local agricultural landscape was closely related to the shelterbelt vegetation structure; the carabid species diversity was positively associated with herb layer abundance, and the spider family diversity was positively associated with tree coverage. Farmland shelterbelts (a non-cropped habitat) significantly increased the number of surface arthropods in adjacent fields but did not affect species diversity. The herb layer abundance and shelterbelt tree coverage had a positive effect on natural enemy diversity (e.g., carabids and spiders). Strengthening agricultural landscape woodlands, such as increasing upper tree coverage and understory vegetation, improves the habitat quality and conserves farmland biodiversity, thereby promoting sustainable agriculture.
Key words:Farmland shelterbelts/
Changtu County/
Surface arthropods/
Distribution/
Community structure

HTML全文


图1研究区以及8个采样单元的位置示意图
Figure1.Location of the study area and distribution of 8 sampling units


下载: 全尺寸图片幻灯片


图2不同类型林带示意及采样单元内陷阱布设方案
Figure2.Sketch map of different shelterbelt types and trap layout scheme in the sampling unit


下载: 全尺寸图片幻灯片


图3不同类型林带农田地表节肢动物多度、物种数以及多样性
T1:完整型; T2:残缺型; T3:消亡型草地带; T4:消亡型裸地带。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure3.Abundance, species number and diversity of surface arthropods in adjacent farmlands with different shelterbelt types
T1: complete shelterbelt; T2: incomplete shelterbelt; T3: grass fields boundary; T4: bare fields boundary. Different lowercase letters indicate significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图4不同类型林带农田地表节肢动物群落非度量多维度分析(NMDS)
T1:完整型; T2:残缺型; T3:消亡型草地带; T4:消亡型裸地带。
Figure4.Non-metric multi-dimensional scaling (NMDS) based on Chord Measure for surface arthropods community in adjacent farmlands with different shelterbelt types
T1: complete shelterbelt; T2: incomplete shelterbelt; T3: grass fields boundary; T4: bare fields boundary.


下载: 全尺寸图片幻灯片


图5不同类型林带农田不同距离梯度处地表节肢动物多度分布
T1:完整型; T2:残缺型; T3:消亡型草地带; T4:消亡型裸地带。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure5.Species abundances of surface arthropods at different distance gradients in adjacent farmland with different shelterbelt types
T1: complete shelterbelt; T2: incomplete shelterbelt; T3: grass fields boundary; T4: bare fields boundary. Different lowercase letters indicate significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图6不同类型林带农田不同距离梯度处地表节肢动物多样性指数
T1:完整型; T2:残缺型; T3:消亡型草地带; T4:消亡型裸地带。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure6.Diversity indexes of surface arthropods at different distance gradients in adjacent farmland with different shelterbelt types
T1: complete shelterbelt; T2: incomplete shelterbelt; T3: grass fields boundary; T4: bare fields boundary. Different lowercase letters indicate significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图7农田地表节肢动物群落分布与2个关键解释变量[草本层物种多度(HA)和乔木层盖度(TC)]的RDA二维排序图
7a为所有物种与关键解释变量之间关系的二维排序图; 7b为优势及常见物种、关键解释变量以及样本三者关系的二维排序图。物种编号SP1-SP38同表 2。图中●代表与完整型林带相邻的农田; ■代表与残缺型林带相邻的农田; ◆代表与消亡型草地带相邻的农田; ▼代表与消亡型裸地带相邻的农田。
Figure7.RDA two-dimensional ordination diagram of the relationships between 2 key explanatory variables (herbaceous species abundance, HA; tree coverage, TC) with distribution of the surface arthropod community in farmland
7a is the two-dimensional ordination diagram of the relationships between all species and key explanatory variables; 7b is the two-dimensional ordination diagram of the relationships among dominant and common species, key explanatory variables, and samples. The species numbers SP1-SP38 are shown in the table 2. ● indicates the farmland adjacent to complete shelterbelt; ■ indicates the farmland adjacent to incomplete shelterbelt; ◆ indicates the farmland with grass fields boundary; ▼ indicates the farmland with bare fields boundary.


下载: 全尺寸图片幻灯片

表1林带类型划定表
Table1.Delineation of shelterbelt types
林带类型
Shelterbelt type
林带连续性
Continuity of shelterbelt (%)
草本层盖度
Herbaceous coverage (%)
林带编号
Serial number of shelterbelt
T1 完整型Complete shelterbelt 97.18±3.16 51.36±20.26 1W, 2E, 2W, 3S, 4S, 5E, 5S, 5W, 6E, 7W, 8N
T2 残缺型Incomplete shelterbelt 50.63±17.00 68.63±26.79 1N, 1E, 2S, 3W, 4N, 4E, 5N, 6N
T3 消亡型草地带Grass fields boundary 62.08±19.39 2N, 6S, 7E, 7S, 8S, 8W
T4 消亡型裸地带Bare fields boundary 3N, 3E, 6W, 7N, 8E
数字1-8代表图 1中的8个取样单元; 字母E、W、S、N分别代表取样单元内东侧、西侧、南侧、北侧林带。The numbers 1-8 represent 8 sampling units shown in the figure 1; the letters E, W, S, and N represent the east, west, south, and north shelterbelts within the sampling unit, respectively.


下载: 导出CSV
表2农田防护林内农田地表节肢动物类型及数量统计表
Table2.Types and quantities of surface arthropods in farmland with shelterbelts
类群
Group
物种编码
Species code
物种
Species
数量
Quantity
优势度
Degree of dominance
蝗科Acrididae SP1 中华蚱蜢Acrida cinerea 11 +
SP2 辽宁金色蝗Chrysacris liaoningensis 3 +
SP3 大垫尖翅蝗Epacromius coerulipes 45 +
SP4 笨蝗Haplotropis brunneriana 4 +
蜉金龟科Aphodiidae SP5 黑蜉金龟Aphodius breviusculus 2 +
步甲科Carabidae SP6 金星步甲Calosoma chinensis 404 ++
SP7 大星步甲Calosoma maximoviczi 420 ++
SP8 麻青步甲Chlaenius junceus 1 458 +++
SP9 附边青步甲Chlaenius prostenus 427 ++
SP10 赤褐婪步甲Harpalus rubefactus 20 +
SP11 中华婪步甲Harpalus sinicus 1 929 +++
虎甲科Cicindelidae SP12 斜斑虎甲Cicindela germanica 1 +
SP13 细虎甲Cicindela gracilis 15 +
瓢虫科Coccinellidae SP14 异色瓢虫Harmonia axyridis 11 +
SP15 龟纹瓢虫Propylea japonica 1 +
SP16 鞘翅目幼虫Coleoptera larvae 3 +
粪金龟科Geotrupidae SP17 戴锤角粪金龟Bolbotrypes davidis 10 +
蟋蟀科Gryllidae SP18 多伊棺头蟋Loxoblemmus doenitzi 33 +
SP19 黄脸油葫芦Teleogryllus emma 6 025 +++
蠼螋科Labiduridae SP20 蠼螋Labidura japonica 3 +
长蝽科Lygaeidae SP21 角红长蝽Lygaeus hanseni 1 +
鳃金龟科Melolonthidae SP22 东北大黑鳃金龟Holotrichia diomphalia 2 +
潮虫科Oniscidae SP23 鼠妇Armadillidium vulgare 14 +
螟蛾科Pyralidae SP24 亚洲玉米螟Ostrinia furnacalis 3 +
红蝽科Pyrrhocoridae SP25 地红蝽Pyrrhocoris tibialis 123 ++
金龟科Scarab SP26 婪嗡蜣螂Onthophagus lenzi 38 +
隐翅虫科Staphylinidae SP27 刺松隐翅虫Pinophilus punctatissimus 4 +
埋葬甲科Staphylinoidea SP28 日负葬甲Nicrophorus japonicus 6 +
拟步甲科Tenebrionindae SP29 沙潜Opatrum subaratum 29 +
叶蜂科Tenthredinidae SP30 麦叶蜂Dolerus tritici 2 +
蜘蛛目Araneae SP31 漏斗蛛科Agelenidae 107 +
SP32 近管蛛科Anyphaenidae 1 +
SP33 栉足蛛科Ctenidae 1 +
SP34 弱斑蛛科Ischnothyreus 22 +
SP35 皿蛛科Linyphiidae 73 +
SP36 狼蛛科Lycosidae 2 +
SP37 幽灵蛛科Pholcidae 801 ++
SP38 转蛛科Trochanteriidae 176 ++
合计Sum 12 230
+++表示个体数占总捕获量的10%以上, ++表示个体数占总捕获量的1%~10%, +表示个体数占总捕获量的1%以下。+++ indicates that the number of individuals accounts for more than 10% of the total captures; ++ indicates that the number of individuals accounts for 1%-10% of the total captures; + indicates that the number of individuals accounts for less than 1% of the total captures.


下载: 导出CSV
表3林带类型及距离梯度对农田地表节肢动物分布影响的双因素方差分析
Table3.Two-way ANOVA of shelterbelt type and distance gradient on surface arthropods in adjacent farmland
因子
Factor
自由度
Degree of freedom
物种多度
Abundance
物种数
Number of species
多样性指数
Shannon-Wiener index
优势度指数
Simpson index
林带类型Shelterbelt type 3 9.041** 7.788** 4.183** 5.068**
距离梯度Distance gradient 4 1.386 2.547* 3.382* 1.672
林带类型×距离梯度Shelterbelt type × distance gradient 12 0.516 0.892 0.482 0.501
*和**分别表示P < 0.05和P < 0.01水平上影响显著。* and ** indicate significant effects at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表4不同类型林带农田地表节肢动物RDA各排序轴的特征值、物种与环境因子的相关系数
Table4.Eigenvalues of the RDA ordination axes and species-environment correlations of surface arthropods in adjacent farmland with different shelterbelt types
排序轴1 Axis 1 排序轴2 Axis 2 排序轴3 Axis 3 排序轴4 Axis 4
特征值Eigenvalues 0.380 0.047 0.027 0.003
物种与环境因子相关性
Species-environment correlations
0.806 0.573 0.548 0.233
累积解释物种变异百分数
Cumulative percentage of variation explained
38.01 42.72 45.40 45.65
累积解释物种和环境关系变异百分数
Cumulative percentage of fitted variation explained
82.92 93.19 99.03 99.58
第1典型轴显著性的蒙特卡洛置换检验
Monte-Carlo permutation test of significance of the 1st typical axis
F=14.7, P=0.002
所有典型轴显著性的蒙特卡洛置换检验
Monte-Carlo permutation test of significance of all the typical axes
F=4.1, P=0.002


下载: 导出CSV
表5林带植被结构因子对农田地表节肢动物群落分布独立影响作用的偏RDA分析
Table5.Partial RDA of relative contribution of shelterbelt vegetation structure factors to variation of surface arthropod community distribution in farmland with shelterbelts
植被结构因子Vegetation structure factor 解释率Explaination rate (%) F P
草本层物种多度
Herb species abundance
28.8 11.3 0.004
乔木层盖度Tree coverage 6.6 2.8 0.032
草本层盖度Herb coverage 4.2 1.8 0.136
边界带宽度Boundary width 2.6 1.1 0.316
草本层丰富度Herb richness 3.6 1.6 0.176


下载: 导出CSV

参考文献(42)
[1]MATSON P A, PARTON W J, POWER A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277(5325):504-509 doi: 10.1126/science.277.5325.504
[2]吴倩倩, 梁宗锁, 刘佳佳, 等.中国生境片段化对生物多样性影响研究进展[J].生态学杂志, 2017, 36(9):2605-2614 http://www.cnki.com.cn/Article/CJFDTotal-STXZ201709028.htm
WU Q Q, LIANG Z S, LIU J J, et al. Effects of habitat fragmentation on biodiversity in China[J]. Chinese Journal of Ecology, 2017, 36(9):2605-2614 http://www.cnki.com.cn/Article/CJFDTotal-STXZ201709028.htm
[3]ALTIERI M A. The ecological role of biodiversity in agroecosystems[J]. Agriculture, Ecosystems & Environment, 1999, 74(1/3):19-31 http://www.sciencedirect.com/science/article/pii/S0167880999000286
[4]FAHRIG L, BAUDRY J, BROTONS L, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters, 2011, 14(2):101-112 doi: 10.1111/j.1461-0248.2010.01559.x
[5]CARVALHEIRO L G, SEYMOUR C L, NICOLSON S W, et al. Creating patches of native flowers facilitates crop pollination in large agricultural fields:Mango as a case study[J]. Journal of Applied Ecology, 2012, 49(6):1373-1383 doi: 10.1111/j.1365-2664.2012.02217.x
[6]TSCHARNTKE T, KLEIN A M, KRUESS A, et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management[J]. Ecology Letters, 2005, 8(8):857-874 doi: 10.1111/j.1461-0248.2005.00782.x
[7]FIEDLER A K, LANDIS D A, WRATTEN S D. Maximizing ecosystem services from conservation biological control:The role of habitat management[J]. Biological Control, 2008, 45(2):254-271 doi: 10.1016/j.biocontrol.2007.12.009
[8]孙玉芳, 李想, 张宏斌, 等.农业景观生物多样性功能和保护对策[J].中国生态农业学报, 2017, 25(7):993-1001 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170706&flag=1
SUN Y F, LI X, ZHANG H B, et al. Functions and countermeasures of biodiversity conservation in agricultural landscapes:A review[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7):993-1001 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170706&flag=1
[9]朱教君, 郑晓.关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果[J].生态学杂志, 2019, 38(5):1600-1610 http://d.old.wanfangdata.com.cn/Periodical_stxzz201905039.aspx
ZHU J J, ZHENG X. The prospects of development of the Three-North Afforestation Program (TNAP):On the basis of the results of the 40-year construction general assessment of the TNAP[J]. Chinese Journal of Ecology, 2019, 38(5):1600-1610 http://d.old.wanfangdata.com.cn/Periodical_stxzz201905039.aspx
[10]张帅, 丁国栋, 高广磊, 等.基于数学期望的风向和风速对农田防护林网防风效能的影响[J].厦门大学学报:自然科学版, 2018, 57(4):510-516 http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201804011
ZHANG S, DING G D, GAO G L, et al. Influence of wind direction and speed on the windbreak efficiency of farmland shelterbelt networks based on mathematical expectation[J]. Journal of Xiamen University:Natural Science, 2018, 57(4):510-516 http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201804011
[11]史晓亮, 李颖, 邓荣鑫.基于RS和GIS的农田防护林对作物产量影响的评价方法[J].农业工程学报, 2016, 32(6):175-181 http://www.cqvip.com/QK/90712X/201606/668351828.html
SHI X L, LI Y, DENG R X. Evaluation method for effect of farmland shelterbelts on crop yield based on RS and GIS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6):175-181 http://www.cqvip.com/QK/90712X/201606/668351828.html
[12]孟平, 张劲松, 宋兆民, 等.农林复合模式蒸散耗水的研究[J].林业科学研究, 1996, 9(3):221-226 http://www.cqvip.com/Main/Detail.aspx?id=2097569
MENG P, ZHANG J S, SONG Z M, et al. Study on evapo-transpiration on agroforestry[J]. Forest Research, 1996, 9(3):221-226 http://www.cqvip.com/Main/Detail.aspx?id=2097569
[13]DAINESE M, INCLáN LUNA D, SITZIA T, et al. Testing scale-dependent effects of seminatural habitats on farmland biodiversity[J]. Ecological Applications, 2015, 25(6):1681-1690 http://smartsearch.nstl.gov.cn/paper_detail.html?id=5dbb4ad4b476d64cadcdbeaf2e76d709
[14]DUFLOT R, DANIEL H, AVIRON S, et al. Adjacent woodlands rather than habitat connectivity influence grassland plant, carabid and bird assemblages in farmland landscapes[J]. Biodiversity and Conservation, 2018, 27(8):1925-1942 doi: 10.1007/s10531-018-1517-y
[15]GELLING M, MACDONALD D W, MATHEWS F. Are hedgerows the route to increased farmland small mammal density? Use of hedgerows in British pastoral habitats[J]. Landscape Ecology, 2007, 22(7):1019-1032 doi: 10.1007/s10980-007-9088-4
[16]CRITCHLEY C N R, WILSON L A, MOLE A C, et al. A functional classification of herbaceous hedgerow vegetation for setting restoration objectives[J]. Biodiversity and Conservation, 2013, 22(3):701-717 doi: 10.1007/s10531-013-0440-5
[17]NEUMANN J L, GRIFFITHS G H, HOODLESS A, et al. The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes[J]. Landscape Ecology, 2015, 31(2):301-315 doi: 10.1007/s10980-015-0244-y
[18]MAUDSLEY M J. A review of the ecology and conservation of hedgerow invertebrates in Britain[J]. Journal of Environmental Management, 2000, 60(1):65-76 doi: 10.1006/jema.2000.0362
[19]MORANDIN L A, KREMEN C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields[J]. Ecological Applications, 2013, 23(4):829-839 doi: 10.1890/12-1051.1
[20]赵紫华, 欧阳芳, 贺达汉.农业景观中不同生境界面麦蚜天敌的边缘效应与溢出效应[J].中国科学:生命科学, 2012, 42(10):825-840 http://qikan.cqvip.com/Qikan/Article/Detail?id=43752640
ZHAO Z H, OUYANG F, HE D H. Edge effects and spillover effects of natural enemies on different habitat interfaces of agricultural landscape[J]. Scientia Sinica Vitae, 2012, 42(10):825-840 http://qikan.cqvip.com/Qikan/Article/Detail?id=43752640
[21]FU S L, ZOU X M, COLEMAN D. Highlights and perspectives of soil biology and ecology research in China[J]. Soil Biology and Biochemistry, 2009, 41(5):868-876 doi: 10.1016/j.soilbio.2008.10.014
[22]宋立宁, 朱教君, 闫巧玲.防护林衰退研究进展[J].生态学杂志, 2009, 28(9):1684-1690 http://d.wanfangdata.com.cn/Periodical/stxzz200909003
SONG L N, ZHU J J, YAN Q L. Review on the shelter forest decline[J]. Chinese Journal of Ecology, 2009, 28(9):1684-1690 http://d.wanfangdata.com.cn/Periodical/stxzz200909003
[23]朱教君.防护林学研究现状与展望[J].植物生态学报, 2013, 37(9):872-888 http://d.wanfangdata.com.cn/Periodical/zwstxb201309009
ZHU J J. A review of the present situation and future prospect of science of protective forest[J]. Chinese Journal of Plant Ecology, 2013, 37(9):872-888 http://d.wanfangdata.com.cn/Periodical/zwstxb201309009
[24]尹文英, 胡圣豪, 沈韫芬, 等.中国土壤动物检索图鉴[M].北京:科学出版社, 1998
YIN W Y, HU S H, SHEN Y F, et al. Pictorical Keys to Soil Animals of China[M]. Beijing:Science Press, 1998
[25]宋大祥.中国农区蜘蛛[M].北京:农业出版社, 1987
SONG D X. Spiders from Agricultural Regions of China[M]. Beijing:Agriculture Publishing House, 1987
[26]黄其林, 田立新, 杨连芳.农业昆虫鉴定[M].上海:上海科学技术出版社, 1984
HUANG Q L, TIAN L X, YANG L F. Agricultural Insect Identification[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984
[27]张治良, 赵颖, 丁秀云.沈阳昆虫原色图鉴[M].沈阳:辽宁民族出版社, 2009
ZHANG Z L, ZHAO Y, DING X Y. Color Atios of Insect in Shenyang[M]. Shenyang:Liaoning Nationality Publishing House, 2009
[28]张巍巍.昆虫家谱[M].重庆:重庆大学出版社, 2014
ZHANG W W. Insect Genealogy[M]. Chongqing:Chongqing University Press, 2014
[29]黄冰, HARPER D A T, HAMMER φ.定量古生物学软件PAST及其常用功能[J].古生物学报, 2013, 52(2):161-181 http://www.irgrid.ac.cn/handle/1471x/745986?mode=full&submit_simple=Show+full+item+record
HUANG B, HARPER D A T, HAMMER φ. Introduction to PAST, a comprehensive statistics software package for paleontological data analysis[J]. Acta Palaeontologica Sinica, 2013, 52(2):161-181 http://www.irgrid.ac.cn/handle/1471x/745986?mode=full&submit_simple=Show+full+item+record
[30]刘云慧, 宇振荣, 王长柳, 等.坝上地区农田和恢复生境地表甲虫多样性[J].生态学报, 2011, 31(2):465-473 http://www.cnki.com.cn/Article/CJFDTotal-STXB201102018.htm
LIU Y H, YU Z R, WANG C L, et al. The diversity of ground-dwelling beetles at cultivated land and restored habitats on the Bashang Plateau[J]. Acta Ecologica Sinica, 2011, 31(2):465-473 http://www.cnki.com.cn/Article/CJFDTotal-STXB201102018.htm
[31]LEP? J, ?MILAUER P. Multivariate Analysis of Ecological Data using CANOCO[M]. Cambridge:Cambridge University Press, 2003:6-15
[32]李凯.农林复合生态系统林带对捕食性节肢动物种群动态的影响[D].北京: 北京林业大学, 2010: 6-7
LI K. The influence of forest belts on population dynamics of predatory arthropods in agroforestry system[D]. Beijing: Beijing Forestry University, 2010: 6-7
[33]GRAHAM L, GAULTON R, GERARD F, et al. The influence of hedgerow structural condition on wildlife habitat provision in farmed landscapes[J]. Biological Conservation, 2018, 220:122-131 doi: 10.1016/j.biocon.2018.02.017
[34]CéBRON A, CORTET J, CRIQUET S, et al. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators[J]. Research in Microbiology, 2011, 162(9):896-907 doi: 10.1016/j.resmic.2011.02.011
[35]GARRATT M P D, SENAPATHI D, COSTON D J, et al. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context[J]. Agriculture, Ecosystems & Environment, 2017, 247:363-370 http://www.sciencedirect.com/science/article/pii/S0167880917302918
[36]张旭珠, 张鑫, 宋潇, 等.植被边界带对相邻麦田地表步甲和蜘蛛分布及蚜虫发生的影响[J].生态学报, 2018, 38(23):8442-8454 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=STXB201823020
ZHANG X Z, ZHANG X, SONG X, et al. Effects of vegetated field margins on the distribution of epigaeic carabid beetles and spiders and aphid development in adjacent wheat fields[J]. Acta Ecologica Sinica, 2018, 38(23):8442-8454 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=STXB201823020
[37]常虹, 张旭珠, 段美春, 等.北京密云农业景观步甲群落空间分布格局[J].应用生态学报, 2012, 23(6):1545-1550 http://www.cqvip.com/QK/90626A/201206/41988272.html
CHANG H, ZHANG X Z, DUAN M C, et al. Spatial distribution pattern of carabid assemblage in agricultural landscape of Miyun County, Beijing[J]. Chinese Journal of Applied Ecology, 2012, 23(6):1545-1550 http://www.cqvip.com/QK/90626A/201206/41988272.html
[38]JONASON D, SMITH H G, BENGTSSON J, et al. Landscape simplification promotes weed seed predation by carabid beetles (Coleoptera:Carabidae)[J]. Landscape Ecology, 2013, 28(3):487-494 doi: 10.1007/s10980-013-9848-2
[39]THIES C, ROSCHEWITZ I, TSCHARNTKE T. The landscape context of cereal aphid-parasitoid interactions[J]. Proceedings of the Royal Society B:Biological Sciences, 2005, 272(1559):203-210 doi: 10.1098/rspb.2004.2902
[40]FOURNIER E, LOREAU M. Effects of newly planted hedges on ground-beetle diversity (Coleoptera, Carabidae) in an agricultural landscape[J]. Ecography, 1999, 22(1):87-97 doi: 10.1111/j.1600-0587.1999.tb00457.x/abstract
[41]戴漂漂, 张旭珠, 肖晨子, 等.农业景观害虫控制生境管理及植物配置方法[J].中国生态农业学报, 2015, 23(1):9-19 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015102&flag=1l
DAI P P, ZHANG X Z, XIAO C Z, et al. Habitat management and plant configuration for biological pest control in agricultural landscapes[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1):9-19 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015102&flag=1l
[42]TSCHARNTKE T, BRANDL R. Plant-insect interactions in fragmented landscapes[J]. Annual Review of Entomology, 2004, 49:405-430 doi: 10.1146/annurev.ento.49.061802.123339

相关话题/农田 农业 结构 生态 图片