删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于meta分析的放牧压力对内蒙古高原草地生态系统的影响

本站小编 Free考研考试/2022-01-01

詹天宇1, 2, 3,,
孙建1, 2,,,
张振超1, 2,
刘某承2
1.生态系统研究网络综合研究中心/生态网络观测与模拟重点实验室 北京 100101
2.中国科学院地理科学与资源研究所 北京 100101
3.北京师范大学地理科学学部陆地表层系统科学与可持续发展研究院 北京 100875
基金项目: 国家重点研发计划项目2017YFC0506402

详细信息
作者简介:詹天宇, 主要从事高原生态学研究。E-mail:zty5327@163.com
通讯作者:孙建, 主要从事高原植被地理研究。E-mail:sunjian@igsnrr.ac.cn
中图分类号:S812.6

计量

文章访问数:167
HTML全文浏览量:3
PDF下载量:111
被引次数:0
出版历程

收稿日期:2020-05-22
录用日期:2020-06-23
刊出日期:2020-12-01

Effects of grazing on temperate grassland ecosystem based on a meta-analysis

ZHAN Tianyu1, 2, 3,,
SUN Jian1, 2,,,
ZHANG Zhenchao1, 2,
LIU Moucheng2
1. Synthesis Research Centre of Chinese Ecosystem Research Network/Key Laboratory of Ecosystem Network Observation and Modelling, Beijing 100101, China
2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3. Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Funds: the National Key Research and Development Project of China2017YFC0506402

More Information
Corresponding author:SUN Jian, E-mail:sunjian@igsnrr.ac.cn


摘要
HTML全文
(4)(2)
参考文献(56)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:放牧是最主要的草地利用模式,直接或间接地影响草地物质循环和能量流动,放牧强度对草地的健康状况和演替方向起决定作用。本文基于40篇内蒙古草原放牧相关文献数据,通过meta分析探讨温带草原对放牧强度的响应特征。结果表明,与未放牧草地相比,轻度放牧草地对群落植物地上、地下生物量和土壤全氮和全磷含量无显著影响,而土壤有机碳、微生物生物量碳、细菌和真菌数量分别显著上升3.60%、7.80%、11.40%和10.83%(P < 0.05);中度放牧下群落植物地下生物量和土壤微生物数量无显著变化,而地上生物量和土壤有机碳、全氮、全磷和微生物生物量氮含量分别显著降低21.62%、4.44%、2.15%、8.35%和6.76%(P < 0.05);重度放牧下群落植物地上和地下生物量,土壤有机碳、全氮、全磷、微生物生物量碳含量,细菌和放线菌数量分别显著下降39.72%、16.30%、7.62%、6.46%、8.03%、8.76%、12.92%和18.27%(P < 0.05)。以上结果表明轻度放牧有利于土壤肥力和草地生产力的保持和提升,而当放牧干扰超出一定的限度时,草地各项功能均显著下降而发生退化。本研究可为内蒙古温带草原的合理利用和适应性管理提供理论基础。
关键词:meta分析/
温带草原/
放牧强度/
草地生产力/
土壤养分/
土壤微生物
Abstract:The temperate semi-arid grassland in Inner Mongolia is primarily used for grazing, which directly and indirectly affects material circulation and energy flow. Grazing intensity plays a decisive role in the health status and direction of grassland succession. Data from 40 studies about Inner Mongolia grassland grazing intensity were analyzed via a meta-analysis. The results showed that compared to the non-grazing grassland, light grazing did not affect the above- and below-ground biomass, soil total nitrogen, and total phosphorus, but significantly increased (P < 0.05) the soil organic carbon (3.60%), microbial carbon (7.80%), bacteria (11.40%), and fungi (10.83%). Moderate grazing did not affect the below-ground biomass and the number of microorganisms, but significantly reduced (P < 0.05) the above-ground biomass (21.62%), soil organic carbon (4.44%), total nitrogen (2.15%), total phosphorus (8.35%), and microbial biomass nitrogen (6.76%). Heavy grazing significantly decreased (P < 0.05) the above- and below-ground biomass (39.72% and 16.30%, respectively), soil organic carbon (7.62%), total nitrogen (6.46%), total phosphorus (8.03%), microbial biomass carbon (8.76%), bacteria (12.92%), and actinomyces (18.27%). These findings suggest that light grazing benefits soil fertility and grassland productivity; however, the grassland ecosystem's functional capacity weakens once the grazing intensity exceeds a certain threshold. This information is useful for adapting management strategies to prevent grassland degradation.
Key words:Meta-analysis/
Temperate grasslands/
Grazing intensity/
Grassland productivity/
Soil nutrient/
Soil microorganism

HTML全文


图1放牧强度对内蒙古草原植物群落生物量的影响
AGB:地上生物量; BGB:地下生物量; LG:轻度放牧; MG:中度放牧; HG:重度放牧。当95%置信区间与0不重叠, 则说明效应具有显著性。*表示显著影响。
Figure1.Effects of grazing intensity on vegetation biomass of grassland in Inner Mongolia
AGB: above-ground biomass; BGB: below-ground biomass; LG: light grazing; MG: moderate grazing; HG: heavy grazing. If the 95% confidence interval of the effect size did not overlap with zero, a significant effect was considered; * indicates significant impact.


下载: 全尺寸图片幻灯片


图2放牧强度对内蒙古草原土壤化学性质的影响
SOC:土壤有机碳; STN:土壤全氮; STP:土壤全磷。LG:轻度放牧; MG:中度放牧; HG:重度放牧。当95%置信区间与0不重叠, 则说明效应具有显著性。*表示显著影响。
Figure2.Effects of grazing intensity on soil chemical properties of grassland in Inner Mongolia
SOC: soil organic carbon; STN: soil total nitrogen; STP: soil total phosphorus. LG: light grazing; MG: moderate grazing; HG: heavy grazing. If the 95% confidence interval of the effect size did not overlap with zero, a significant effect was considered; * indicates significant impact.


下载: 全尺寸图片幻灯片


图3放牧强度对内蒙古草原土壤微生物的影响
MBC:微生物生物量碳; MBN:微生物生物量氮; Bacteria:细菌; Fungus:真菌; Actinomyces:放线菌。LG:轻度放牧; MG:中度放牧; HG:重度放牧。当95%置信区间与0不重叠, 则说明效应具有显著性。*表示显著影响。
Figure3.Effects of grazing intensity on microorganisms of grassland in Inner Mongolia
MBC: microbial biomass carbon; MBN: microbial biomass nitrogen. LG: light grazing; MG: moderate grazing; HG: heavy grazing. If the 95% confidence interval of the effect size did not overlap with zero, a significant effect was considered; * indicates significant impact.


下载: 全尺寸图片幻灯片


图4内蒙古草原土壤有机碳效应值与微生物量碳和土壤全氮效应值的关系
LG:轻度放牧; MG:中度放牧; HG:重度放牧。
Figure4.Relationship between soil organic carbon response effect size with response ratios of microbial biomass carbon and soil total nitrogen of grassland in Inner Mongolia
LG: light grazing; MG: moderate grazing; HG: heavy grazing.


下载: 全尺寸图片幻灯片

表1文献内相关数据
Table1.Data in the literatures
文献题目
Title of literature
经度
Longitude
纬度
Latitude
海拔
Altitude (m)
年平均温度
Mean annual temperature (℃)
年均降雨
Mean annual precipitation (mm)
年份
Year
不同放牧率对冷篙小禾草草原土壤微生物数量和生物量的影响
Effect of stocking rates on soil microbial number and biomass in steppe
116°42′00″ 43°38 ′00″ 1 187 0.75 350 1999
放牧和补播对草地土壤有机碳和微生物量碳的影响
Effects of grassland managements on soil organic carbon and
microbial biomass carbon
115°16′00″ 43°02′00″ 1 225 1.0 350 2014
放牧对冷蒿根际微生物区系及土壤酶活性的影响
Effects of grazing intensity on soil microbial flora and soil enzyme activities in the Artemisia frigida rhizosphere
116°28′56.8″ 44°10′02.4″ 1 160 2.6 365.6 2017
不同放牧梯度下草甸草原土壤微生物和酶活性研究
Changes in microorganisms and enzyme activities in soil under different grazing intensities in meadow steppe, Inner Mongolia
119°56′521″ 49°19′349″ 673 -3.5 375 2011
草原土壤生态系统对放牧干扰的响应
Response of grassland soil ecosystem to grazing disturbance
116°33′00″ 43°33′00″ 1.5 375 2011
放牧强度对典型草原大针茅根际土壤的影响
The effort of grazing intensity to nutrition of Stipa grandis rhizosphere which is the mainly built plants of typical steppe
116°35′00″ 43°32′00″ -0.5 275 2001
放牧对荒漠草原土壤养分及微生物量的影响
Effects of grazing on soil nutrients and microbial biomass in desert steppe
112°01′50″ 41°46′35″ 1 450 6.3 280 2015
内蒙古草甸草原不同放牧强度下土壤微生物与土壤肥力关系的研究
Study on relationships between soil microorganism and fertilities under different grazing intensities in meadow steppe of Inner Mongolia
116°21′00″ 43°57′00″ 1 100 1.2 342.4 2007
放牧强度对典型草原土壤微生物特征的影响
Effects of grazing intensity on soil microbial characteristics of typical grassland
116°04′00″ 43°26′00″ 1 250 0.75 350 2013
不同利用方式对小针茅荒漠草原土壤活性有机碳的影响
Effects of different land-use types on soil active organic carbon in the Stipa klemenaii desert steppe of Inner Mongolia
112°40′00″ 42°46′00″ 1 079 3.9 181.2 2016
不同利用方式对内蒙古小针茅荒漠草原土壤有机碳库及其结构的影响
Effect of different land use types on storage and structure of soil organic carbon in Stipa klemenaii steppe in Inner Mongolia
112°40′00″ 42°46′00″ 1 079 3.9 181.2 2016
放牧对内蒙古锡林河流域草原土壤碳组分的影响
Impacts of grazing on soil carbon fractions in the grasslands of Xilin River Basin, Inner Mongolia
116°37′ 00″ 43° 33′ 00″ 987 1.0 350 2005
放牧对典型草原土壤中几种生态因子影响的研究
Effect of grazing on several ecological factors of the soil in typical steppe
116°39′00″ 43°26′00″ 1.5 375 2010
不同利用强度下草原土壤微生物的生物量和数量的动态研究
Dynamic of microorganisms and microbial biomass under different use intensity in steppe soil
116°33' 00″ 43°32'3 00″ 1.5 375 2011
利用强度对草原土壤酶活性和养分影响的动态研究
Dynamic research on the effect of grassland soil enzyme activities and nutrient under different use intensities
116°40′11.03″ 43°23′11″ 1.5 375 2011
内蒙古短花针茅草原不同放牧强度下土壤主要微生物类群、酶及养分的动态变化研究
Research on dynamic changes of soil microorganisms, soil enzymes and soil nutrition in different grazing intensities in Stipa breviflora desert steppe of Inner Mongolia
112°05′00″ 41°46′00″ 1 492 3 280 2005
短期放牧对草甸草原土壤微生物与土壤酶活性的影响
Effect of short-term grazing on soil microorganisms and soil enzyme activities in meadow steppe
119°56′521" 49°19′349" 673 -3.5 350 2012
Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe 116°34′00″ 43°50′00″ 1 100 -0.4 350 2010
Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia 111°53′00″ 41°47′00″ 1 450 3.4 280 2012
116°42′00″ 43°38′00″ 1 200 0.7 335
Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity 0.7 343 2008
Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe 107°31′00″ 37°43′00″ 1 312 6.9 262 2014
Vegetation traits and soil properties in response to utilization patterns of grassland in Hulun Buir City, Inner Mongolia, China 116°35′6.1″ 48°29′25″ 2014
117°02′32.1″ 48°29′25.3″
118°04′9.4″ 48°20′33″
118°59′25″ 48°04′0.2″
119°30′4.2″ 49°26′27.2″
119°15′17″ 49°54′24″
放牧对小针茅荒漠草原枯落物及植被生产力的影响
The influence of grazing intensities on litter storage and vegetation productivity of Stipa klemenzii desert steppe
112°46′00″ 42°47′00″ 4.3 180 2016
不同放牧时间对荒漠草原群落地下生物量的影响
Effect of different grazing time on under-ground biomass of plant communities in desert steppe
112°47′16.9″ 42°16′26.2″ 1 125 4.3 180 2016
不同放牧强度对短花针茅荒漠草原地上生物量和枯落物量的影响
Effects of different grazing intensity on aboveground biomass and litterfall amount in Inner Mongolia Stipa breviflora desert steppe
111°53′46″ 41°47′17″ 1 450 244.6 2019
不同载畜率和模拟降水对荒漠草原土壤养分的影响
Effects of different stocking rates and simulated precipitation on soil nutrient of desert steppe
111°53′46″ 41°47′17″ 1 450 244.6 2019
短花针茅荒漠草原植物地上地下生物量对载畜率和降水的响应
Responses of plant above and underground productivity of Stipa breviflora desert steppe to stocking rates and precipitation
111°53′46″ 41°47′17″ 337 2018
放牧对内蒙古荒漠草原草地植被及土壤养分的影响
Effect of grazing on vegetation and soil nutrients of a desert steppe in Inner Mongolia
111°53′46″ 41°47′17″ 280 2018
放牧强度对内蒙古大针茅典型草原地下生物量及其垂直分布的影响
Effects of different grazing intensities on the underground biomass and its vertical distribution of the typical Stipa grandis steppe
116°42′00″ 43°38′00″ 1 100 -0.4 350 2011
荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究
Study on dynamics of soil enzyme activity and nutrient of desert steppe under different grazing intensities
112°05′00″ 41°46′00″ 2007
温带典型草原土壤理化性质及微生物量对放牧强度的响应
Response of soil properties and microbial biomass to different grazing intensities in temperate typical steppe
116°20′00″ 44°08′00″ 1 100 3 250 2018
不同放牧强度下短花针茅荒漠草原植被-土壤系统有机碳组分储量特征
Organic carbon storage properties in Stipa breviflora desert steppe vegetation soil systems under different grazing intensities
110°21′00″ 42°00′00″ 3.4 281 2016
不同放牧强度下土壤氨氧化和反硝化微生物的变化特征
Responses of soil ammonia oxidizers and denitrifiers to different grazing intensities
111°53′46″ 41°47′17″ 1 450 3.4 180 2018
不同放牧强度对短花针茅荒漠草原地上生物量和枯落物量的
影响
Effects of different grazing intensity on aboveground biomass and litterfall amount in Inner Mongolia Stipa breviflora desert steppe
111°53′46″ 41°47′17″ 1 450 3.4 220 2019
放牧强度对无芒隐子草小尺度空间分布特征的影响
Effects of grazing intensities on Cleistogenes songorica spatial distribution characteristics at small scales
111°53′46″ 41°47′17″ 1 450 3.4 280 2018
短花针茅荒漠草原不同载畜率对土壤的影响
Effect of stocking rate on Stipa breviflora desert steppe soil
111°53′46″ 41°47′17″ 1 450 3.4 280 2016
短期放牧强度对典型草原土壤理化性质的影响
The effects of short term grazing intensities on soil physical and chemical properties in the Inner Monglia typical steppe
115°16′00″ 42°09′00″ 1 400 1.9 363 2014
放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响
Influences of grazing intensity on carbon and nitrogen contents in desert steppe
115°16′00″ 42°09′00″ 1 400 1.9 363 2011
乌拉特荒漠草原群落物种多样性和生物量关系对放牧强度的响应
Response of relationship between community species diversity and aboveground biomass to grazing intensity in the Urat desert steppe in North China
106°58′00″ 41°25′00″ 1 650 5.3 180 2020
重度放牧对欧亚温带草原东缘生态样带土壤氮矿化及其温度敏感性的影响
Effects of heavy grazing on soil nitrogen mineralization and temperature sensitivity along the Eastern Eurasia Steppe Transect
115°02′00″ 41°50′00″ 1 382 2.6 380 2019
116°40′00″ 43°33′00″ 1 249 2.4 346
116°07′00″ 44°55′00″ 880 1.4 239


下载: 导出CSV
表2放牧强度划分标准
Table2.Criterion of grazing intensity
放牧强度
Grazing intensity
牧草利用率
Utilization of forage grass (%)
食草动物数
Herbivore number (·hm-2)
水源距离
Distance to water source
未放牧No grazing 0 0
轻度Light 0~30 0~6.25 远Far
中度Moderate 30~60 6.25~12.5 中等Medium
重度Heavy > 60 > 12.5 近Nearby


下载: 导出CSV

参考文献(56)
[1]ZHAN T Y, ZHANG Z C, SUN J, et al. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China's grassland ecosystems[J]. Applied Soil Ecology, 2020, 147:103438 doi: 10.1016/j.apsoil.2019.103438
[2]WANG D, WU G L, ZHU Y J, et al. Grazing exclusion effects on above- and below-ground C and N pools of typical grassland on the Loess Plateau (China)[J]. Catena, 2014, 123:113-120 doi: 10.1016/j.catena.2014.07.018
[3]方精云, 杨元合, 马文红, 等.中国草地生态系统碳库及其变化[J].中国科学:生命科学, 2010, 40(7):566-576
FANG J Y, YANG Y H, MA W H, et al. Ecosystem carbon stocks and their changes in China's grasslands[J]. Science China Life Sciences, 2010, 53(7):757-765
[4]LYSENG M P, BORK E W, HEWINS D B, et al. Long-term grazing impacts on vegetation diversity, composition, and exotic species presence across an aridity gradient in northern temperate grasslands[J]. Plant Ecology, 2018, 219(6):649-663 doi: 10.1007/s11258-018-0824-4
[5]王普昶, 王志伟, 丁磊磊, 等.贵州喀斯特人工草地土壤水分空间异质性对放牧强度的响应[J].水土保持学报, 2016, 30(3):291-296
WANG P C, WANG Z W, DING L L, et al. The response of small scale spatial variability of pasture soil moisture to grazing intensity in karst grassland of Guizhou[J]. Journal of Soil and Water Conservation, 2016, 30(3):291-296
[6]刘建军, 浦野忠朗, 鞠子茂, 等.放牧对草原生态系统地下生产力及生物量的影响[J].西北植物学报, 2005, 25(1):88-93
LIU J J, URANO T, MARIKO S, et al. Influence of grazing pressures on belowground productivity and biomass in Mongolia steppe[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(1):88-93
[7]李凤霞, 李晓东, 周秉荣, 等.放牧强度对三江源典型高寒草甸生物量和土壤理化特征的影响[J].草业科学, 2015, 32(1):11-18
LI F X, LI X D, ZHOU B R, et al. Effects of grazing intensity on biomass and soil physical and chemical characteristics in alpine meadow in the source of three rivers[J]. Pratacultural Science, 2015, 32(1):11-18
[8]HAN G D, HAO X Y, ZHAO M L, et al. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia[J]. Agriculture, Ecosystems & Environment, 2008, 125(1/4):21-32
[9]尚占环, 姚爱兴.草原生物多样性研究及其保护[J].宁夏农学院学报, 2002, 23(2):70-75
SHANG Z H, YAO A X. Studies on rangeland biodiversity and conservation[J]. Journal of Ningxia Agricultural College, 2002, 23(2):70-75
[10]高永恒, 陈槐, 罗鹏, 等.放牧强度对川西北高寒草甸植物生物量及其分配的影响[J].生态与农村环境学报, 2008, 24(3):26-32
GAO Y H, CHEN H, LUO P, et al. Effect of grazing intensity on biomass of alpine meadow and its allocation in the northwestern Sichuan[J]. Journal of Ecology and Rural Environment, 2008, 24(3):26-32
[11]白永飞, 许志信, 李德新.内蒙古高原针茅草原群落α多样性研究[J].生物多样性, 2000, 8(4):353-360
BAI Y F, XU Z X, LI D X. Study on α diversity of four Stipa communities in Inner Mongolia Plateau[J]. Chinese Biodiversity, 2000, 8(4):353-360
[12]DAMIEN H, NATHALIE V, FRéDéRIQUE L, et al. How does soil particulate organic carbon respond to grazing intensity in permanent grasslands?[J]. Plant and Soil, 2015, 394(1):239-255
[13]CHEN J B, HOU F J, CHEN X J, et al. Stocking rate and grazing season modify soil respiration on the Loess Plateau, China[J]. Rangeland Ecology & Management, 2015, 68(1):48-53
[14]STEFFENS M, K?LBL A, TOTSHE K U, et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P. R. China)[J]. Geoderma, 2008, 143(1/2):63-72
[15]张蒙, 李晓兵.放牧对土壤有机碳的影响及相关过程研究进展[J].草地学报, 2018, 26(2):267-276
ZHANG M, LI X B. A review:Effects of grazing on soil organic carbon and the related processes[J]. Acta Agrestia Sinica, 2018, 26(2):267-276
[16]VAN OIJEN M, SCHAPENDONK A, H?GLIND M. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation[J]. Annals of Botany, 2010, 105(5):793-797 doi: 10.1093/aob/mcq039
[17]LEZAMA F, BAEZA S, ALTESOR A, et al. Variation of grazing-induced vegetation changes across a large-scale productivity gradient[J]. Journal of Vegetation Science, 2014, 25(1):8-21 doi: 10.1111/jvs.12053
[18]马红彬, 余治家.放牧草地植物补偿效应的研究进展[J].农业科学研究, 2006, 27(1):63-67
MA H B, YU Z J. Review on the research of plant compensation effect for grazing grassland[J]. Journal of Agricultural Sciences, 2006, 27(1):63-67
[19]周萍, 刘国彬, 薛萐.草地生态系统土壤呼吸及其影响因素研究进展[J].草业学报, 2009, 18(2):184-193
ZHOU P, LIU G B, XUE S. Review of soil respiration and the impact factors on grassland ecosystem[J]. Acta Prataculturae Sinica, 2009, 18(2):184-193
[20]GRIFFITHS B S, RITZ K, WHEATLEY R E, et al. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities[J]. Soil Biology and Biochemistry, 2001, 33(12/13):1713-1722
[21]GLASER K, KUPPARDT A, BOENIGK J, et al. The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient[J]. Science of the Total Environment, 2015, 537:33-42 doi: 10.1016/j.scitotenv.2015.07.158
[22]POTTHOFF M, STEENWERTH K L, JACKSON L E, et al. Soil microbial community composition as affected by restoration practices in California grassland[J]. Soil Biology and Biochemistry, 2006, 38(7):1851-1860 doi: 10.1016/j.soilbio.2005.12.009
[23]WILSON C H, STRICKLAND M S, HUTCHINGS J A, et al. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland[J]. Global Change Biology, 2018, 24(7):2997-3009 doi: 10.1111/gcb.14070
[24]闫宝龙, 吕世杰, 赵萌莉, 等.草原生态安全评价方法研究进展[J].中国草地学报, 2019, 41(5):164-171
YAN B L, LYU S J, ZHAO M L, et al. Advances in the research on assessment methods of grassland ecological security[J]. Chinese Journal of Grassland, 2019, 41(5):164-171
[25]李博.内蒙古地带性植被的基本类型及其生态地理规律[J].内蒙古大学学报:自然科学版, 1962, (2):41-50 http://www.cqvip.com/Main/Detail.aspx?id=78777188495754504850484854
LI B. The basic types and ecological geography of zonal vegetation in Inner Mongolia[J]. Journal of Inner Mongolia University:Natural Science Edition, 1962, (2):41-50 http://www.cqvip.com/Main/Detail.aspx?id=78777188495754504850484854
[26]高雪峰, 武春燕, 韩国栋.放牧对典型草原土壤中几种生态因子影响的研究[J].干旱区资源与环境, 2010, 24(4):130-133
GAO X F, WU C Y, HAN G D. Effect of grazing on several ecological factors of the soil in typical steppe[J]. Journal of Arid Land Resources and Environment, 2010, 24(4):130-133
[27]HE N P, HAN X G, YU G R, et al. Divergent changes in plant community composition under 3-decade grazing exclusion in continental steppe[J]. PLoS One, 2011, 6(11):e26506
[28]LUO Y Q, HUI D F, ZHANG D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis[J]. Ecology, 2006, 87(1):53-63 doi: 10.1890/04-1724
[29]HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental[J]. Ecology, 1999, 80(4):1150-1156 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[30]BAI Y F, HAN X G, WU J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431(7005):181-184 doi: 10.1038/nature02850
[31]FERRARO D O, OESTERHELD M. Effect of defoliation on grass growth. A quantitative review[J]. Oikos, 2002, 98(1):125-133 doi: 10.1034/j.1600-0706.2002.980113.x
[32]TILMAN D, DOWNING J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461):363-365 doi: 10.1038/367363a0
[33]RAUTIO P, HUHTA A P, PⅡPPO S, et al. Overcompensation and adaptive plasticity of apical dominance in Erysimum strictum (Brassicaceae) in response to simulated browsing and resource availability[J]. Oikos, 2005, 111(1):179-191 doi: 10.1111/j.0030-1299.2005.14045.x
[34]YAN L, ZHOU G S, Zhang F. Effects of different grazing intensities on grassland production in China:a meta-analysis[J]. PLoS One, 2013, 8:e81466 doi: 10.1371/journal.pone.0081466
[35]王向涛, 张世虎, 陈懂懂, 等.不同放牧强度下高寒草甸植被特征和土壤养分变化研究[J].草地学报, 2010, 18(4):510-516
WANG X T, ZHANG S H, CHEN D D, et al. The effects of natural grazing intensity on plant community and soil nutrients in alpine meadow[J]. Acta Agrestia Sinica, 2010, 18(4):510-516
[36]SHIYOMI M, OKADA M, TAKAHASHI S, et al. Spatial pattern changes in aboveground plant biomass in a grazing pasture[J]. Ecological Research, 1998, 13(3):313-322 doi: 10.1046/j.1440-1703.1998.00266.x
[37]年勇, 马玉寿, 李世雄, 等.夏季放牧对大通河上游高寒沼泽草甸植被和土壤化学计量特征的影响[J].青海畜牧兽医杂志, 2019, 49(1):14-18
NIAN Y, MA Y S, LI S X, et al. Effects of summer grazing on vegetation and soil stoichiometric characteristics of alpine marsh meadow in the upper reaches of Datong river[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(1):14-18
[38]白可喻, 韩建国, 王培, 等.放牧强度对新麦草人工草地植物地下部分生物量及其氮素含量动态的影响[J].中国草地, 2000, (2):15-20
BAI K Y, HAN J G, WANG P, et al. The dynamic of nitrogen content and biomass of root and tiller on Russian wildryegrass pasture as influenced by grazing[J]. Grassland of China, 2000, (2):15-20
[39]黄国胜, 杨正荣.不同放牧强度对高寒草甸的影响[J].畜牧兽医科学, 2019, (6):9-10
HUANG G S, YANG Z R. Effects of different grazing intensity on alpine meadows[J]. Graziery Veterinary Sciences, 2019, (6):9-10
[40]许岳飞, 益西措姆, 付娟娟, 等.青藏高原高山嵩草草甸植物多样性和土壤养分对放牧的响应机制[J].草地学报, 2012, 20(6):1026-1032
XU Y F, YIXI C M, FU J J, et al. Response of plant diversity and soil nutrient to grazing intensity in Kobresia pygmaea meadow of Qinghai-Tibet Plateau[J]. Acta Agrestia Sinica, 2012, 20(6):1026-1032
[41]EVJU M, AUSTRHEIM G, HALVORSEN R, et al. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem[J]. Oecologia, 2009, 161(1):77-85 doi: 10.1007/s00442-009-1358-1
[42]YANG Z N, XIONG W, XU Y Y, et al. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China[J]. Environmental Monitoring and Assessment, 2016, 188(12):678 doi: 10.1007/s10661-016-5663-y
[43]林丽, 张德罡, 曹广民, 等.放牧强度对高寒嵩草草甸土壤养分特性的影响[J].生态学报, 2016, 36(15):4664-4671
LIN L, ZHANG D G, CAO G M, et al. Responses of soil nutrient traits to grazing intensities in alpine Kobresia meadows[J]. Acta Ecologica Sinica, 2016, 36(15):4664-4671
[44]李红琴, 毛绍娟, 祝景彬, 等.放牧强度对高寒草甸群落碳氮磷化学计量特征的影响[J].草业科学, 2017, 34(3):449-455
LI H Q, MAO S J, ZHU J B, et al. Effects of grazing intensity on the ecological stoichiometry characteristics of alpine meadow[J]. Pratacultural Science, 2017, 34(3):449-455
[45]ZHANG T, ZHANG Y J, XU M J, et al. Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau[J]. Scientific Reports, 2015, 5(1):15949 doi: 10.1038/srep15949
[46]AN H, LI G Q. Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China[J]. Journal of Arid Land, 2015, 7(3):341-349 doi: 10.1007/s40333-014-0049-x
[47]陶贞, 次旦朗杰, 张胜华, 等.草原土壤有机碳含量的控制因素[J].生态学报, 2013, 33(9):2684-2694
TAO Z, CIDAN L J, ZHANG S H, et al. Controls over soil organic carbon content in grasslands[J]. Acta Ecologica Sinica, 2013, 33(9):2684-2694
[48]杨丽丽, 龚吉蕊, 王忆慧, 等.内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J].植物生态学报, 2016, 40(8):748-759
YANG L L, GONG J R, WANG Y H, et al. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(8):748-759
[49]KLEINEBECKER T, WEBER H, H?LZEL N. Effects of grazing on seasonal variation of aboveground biomass quality in calcareous grasslands[J]. Plant Ecology, 2011, 212(9):1563-1576 doi: 10.1007/s11258-011-9931-1
[50]LI C L, HAO X Y, ZHAO M L, et al. Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia[J]. Agriculture, Ecosystems & Environment, 2008, 128(1/2):109-116
[51]YANG Z N, ZHU Q A, ZHAN W, et al. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau[J]. Ecological Engineering, 2018, 110:128-136 doi: 10.1016/j.ecoleng.2017.11.001
[52]焦婷, 常根柱, 鱼小军, 等.温性荒漠草原土壤酶与肥力的关系[J].中国草地学报, 2011, 33(5):88-93
JIAO T, CHANG G Z, YU X J, et al. Study on relationship between soil enzymes and soil fertilities on temperate desertificated grassland[J]. Chinese Journal of Grassland, 2011, 33(5):88-93
[53]柴晓虹, 姚拓, 王理德, 等.围栏封育对高寒草地土壤微生物特性的影响[J].草原与草坪, 2014, 34(5):26-31
CHAI X H, YAO T, WANG L D, et al. Impact of enclosure on soil microbial characteristics of alpine grassland[J]. Grassland and Turf, 2014, 34(5):26-31
[54]赵吉.不同放牧率对冷蒿小禾草草原土壤微生物数量和生物量的影响[J].草地学报, 1999, 7(3):223-227
ZHAO J. Effect of stocking rates on soil microbial number and biomass in steppe[J]. Acta Agrestia Sinica, 1999, 7(3):223-227
[55]孙波, 王晓玥, 吕新华.我国60年来土壤养分循环微生物机制的研究历程——基于文献计量学和大数据可视化分析[J].植物营养与肥料学报, 2017, 23(6):1590-1601
SUN B, WANG X Y, LYU X H. The historical venation in research on microbial mechanisms of soil nutrient cycling in the past 60 years-Based on bibliometric analysis and big data visualization[J]. Plant Nutrition and Fertilizer Science, 2017, 23(6):1590-1601
[56]王启兰, 曹广民, 王长庭.放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J].植物营养与肥料学报, 2007, 13(5):856-864
WANG Q L, CAO G M, WANG C T. The impact of grazing on the activities of soil enzymes and soil environmental factors in alpine Kobresia pygmaea meadow[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5):856-864

相关话题/土壤 微生物 植物 生态 内蒙古