王选1,
曹玉博1, 2,
马林1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2018YFC0213300
国家重点研发计划项目2017YFD0801404-2
国家自然科学基金项目31902207
中国科学院STS项目KFJ-STS-ZDTP-053
中国科学院STS项目KFJ-STS-QYZD-160
河北省重点研发项目19227305D
河北省重点研发项目20327301D
河北省现代农业产业技术体系奶牛产业创新团队项目HBCT2018120206
河北省现代农业产业技术体系蛋肉鸡产业创新团队项目HBCT2018150209
详细信息
作者简介:刘泽龙, 主要从事粪污养分管理研究。E-mail:445770028@qq.com
通讯作者:马林, 主要从事农业生态学和养分管理研究。E-mail:malin1979@sjziam.ac.cn
中图分类号:X713计量
文章访问数:148
HTML全文浏览量:15
PDF下载量:109
被引次数:0
出版历程
收稿日期:2020-05-06
录用日期:2020-07-01
刊出日期:2020-12-01
Optimization of composting technology for vertical silo reactor
LIU Zelong1, 2,,WANG Xuan1,
CAO Yubo1, 2,
MA Lin1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key Research and Development Program of China2018YFC0213300
the National Key Research and Development Program of China2017YFD0801404-2
the National Natural Science Foundation of China31902207
the STS Project of Chinese Academy of SciencesKFJ-STS-ZDTP-053
the STS Project of Chinese Academy of SciencesKFJ-STS-QYZD-160
the Key R & D Projects of Hebei Province19227305D
the Key R & D Projects of Hebei Province20327301D
Hebei Dairy Cattle Innovation Team of Modern Agroindustry Technology Research SystemHBCT2018120206
Hebei Poultry Innovation Team of Modern Agroindustry Technology Research SystemHBCT2018150209
More Information
Corresponding author:MA Lin, E-mail:malin1979@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:反应器堆肥技术作为一种新型快速堆肥方式逐渐被人们所认可,该技术包括反应器堆肥处理和陈化两个阶段,但反应器堆肥时长和通气方式等工艺参数对堆肥全过程的影响尚不清楚。因此,本研究立足生产中的实际问题,利用12 m3立式堆肥反应器,开展了反应器堆肥工艺优化调控试验,以鸡粪和锯末为原料,分别研究了连续供气和间歇供气(风机开3 min,关7 min)两种供气方式下,反应器处理周期对堆肥有机质降解率、产品含水率、氮素损失和运行成本的影响。研究结果表明:反应器堆肥10 d比2 d的处理物料有机质降解率分别增加60.7%(间歇)和66.2%(连续),产品含水率分别降低41.2%(间歇)和40.7%(连续)。反应器堆肥阶段是物料降解的主要阶段,利用反应器堆肥的时长越长,堆肥产品生产时间越短;但运行成本的增加也对反应器堆肥时长造成了限制,同时增加反应器堆肥时长也会增加堆肥物料的氮素损失,其中连续供气反应器堆肥10 d比2 d氮素损失增加17.5%。连续供气方式可提高堆肥效率,较间歇供气处理堆肥周期平均缩短32.1%,产品全氮含量平均提高7.4%,虽然反应器堆肥阶段每日能耗较间歇供气高20.2%,但堆肥周期的缩短使全程连续供气平均运行成本降低16.5%。其中,连续供气下反应器中处理6 d、8 d和10 d,堆肥产品理化性质无显著差异。综合考虑堆肥效率、产品和经济,本试验建议选择“连续供气方式+反应器内堆肥8 d”处理,既可提高反应器堆肥处理效率,在实际生产中又具有较高的经济效益潜力。
关键词:堆肥反应器/
供气方式/
畜禽粪便/
快速堆肥/
陈化
Abstract:Reactor composting technology is a new and quick composting method. The reactor quickly degrades the material and kills pathogens; however, the reactor product is still unable to reach full maturity and requires further curing. The influence of process parameters, such as composting time, reactor discharge aeration mode, maturing treatment, and costs, on the reactor technology is still unclear. To investigate how the composting time and aeration mode affect the reactor efficiency, a pilot composting experiment was performed in a 12 m3 vertical composting reactor with chicken manure and sawdust using continuous and intermittent aeration modes (i.e., gas supply). The composting process was divided into two stages:reactor composting and curing. Five composting times (2, 4, 6, 8, and 10 days) were used in the reactor composting stage, and a static pile turned once per week was used for curing. Samples were taken every 2 days during the reactor composting stage and every 3 days during the curing stage. The temperature, moisture content, total nitrogen, organic matter, and germination index were measured, and the organic matter degradation rate, product moisture content, nitrogen loss, and operating costs were assessed. The results showed that the organic matter degradation rate in the 10-day compost increased by 60.7% (intermittent aeration) and 66.2% (continuous aeration) compared to the 2-day compost, and the product moisture content reduced by 41.2% (intermittent aeration) and 40.7% (continuous aeration). Most of the material degradation occurred during the reactor composting stage, and more time taken during this stage meant that less maturing time was required. However, the cost increased because of high energy consumption and a reduction in the composting reactor capacity. Increasing the reactor composting time also increased nitrogen loss. The 10-day composted material with a continuous gas supply lost 17.5% more nitrogen than the 2-day composted material. Compared with an intermittent gas supply, a continuous gas supply improved the composting efficiency, shortened the composting cycle by 32.1%, and increased the product total nitrogen content by 7.4% on average. The daily energy consumption during the reactor composting stage was 20.2% higher with the continuous gas supply, compared with the intermittent gas supply, but a shorter composting cycle reduced the average operating costs by 16.5%. Based on these results, the "continuous gas supply mode + 8-d in-reactor composting (R8-C)" is recommended to improve the reactor composting efficiency and costs.
Key words:Compost reactor/
Gas supply strategy/
Livestock and poultry manure/
Rapid compost/
Maturity
HTML全文
图1试验设备: 12 m3智能堆肥反应器示意图
Figure1.Physical picture of 12 m3 intelligent composting reactor
下载: 全尺寸图片幻灯片
图2反应器通气方式和堆肥时长对堆肥温度的影响(a:间歇供气反应器堆肥阶段; b:连续供气反应器堆肥阶段; c:间歇供气陈化阶段; d:连续供气陈化阶段)
图c和d中, 箭头指示陈化阶段的翻堆时间。R2:反应器处理2 d; R4:反应器处理4 d; R6:反应器处理6 d; R8:反应器处理8 d; R10:反应器处理10 d; C:连续供气; I:间歇供气。
Figure2.Impact of aeration pattern and processing time of reactor on temperature during composting processing (a: intermittent aeration at reactor composting stage; b: continuous aeration at reactor composting stage; c: intermittent gas supply at maturing stage; d: continuous gas supply at maturing stage)
In figure c and d, the arrows showed the turn over times of compost at maturing stage. R2: reactor composting for 2 days; R4: reactor composting for 4 days; R6: reactor composting for 6 days; R8: reactor composting for 8 days; R10: reactor composting for 10 days; C: continuous aeration; I: intermittent aeration.
下载: 全尺寸图片幻灯片
图3反应器通气方式和堆肥时长对物料有机质降解率的影响
R2:反应器处理2 d; R4:反应器处理4 d; R6:反应器处理6 d; R8:反应器处理8 d; R10:反应器处理10 d; C:连续供气; I:间歇供气。当发芽指数≥70%时, 即认为陈化结束。a-d为图柱整体显著性分析结果, 不同小写字母表示处理间差异显著(P < 0.05)。
Figure3.Impact of aeration pattern and processing time of reactor on the total organic matter degradation during composting processing
R2: reactor composting for 2 days; R4: reactor composting for 4 days; R6: reactor composting for 6 days; R8: reactor composting for 8 days; R10: reactor composting for 10 days; C: continuous aeration; I: intermittent aeration. When the material germination index ≥70%, it is considered that the maturing stage is over. a-d above the bars are the overall significance analysis results. Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
图4反应器通气方式和堆肥时长对物料含水率的影响
RM:待处理的混合物料; R2:反应器处理2 d; R4:反应器处理4 d; R6:反应器处理6 d; R8:反应器处理8 d; R10:反应器处理10 d; C:连续供气; I:间歇供气。当发芽指数≥70%时, 即认为陈化结束。a-g为图柱整体显著性分析结果, 不同小写字母表示处理间差异显著(P < 0.05)。
Figure4.Impact of aeration pattern and processing time of reactor on the moisture content of composted materials during composting processing
RM: mixture to be processed; R2: reactor composting for 2 days; R4: reactor composting for 4 days; R6: reactor composting for 6 days; R8: reactor composting for 8 days; R10: reactor composting for 10 days; C: continuous aeration; I: intermittent aeration. When the material germination index ≥70%, it is considered that the maturing stage is over. a-g above the bars are the overall significance analysis results. Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
图5不同反应器通气方式和堆肥时长下堆肥物料对水芹发芽指数的影响
RM:待处理的混合物料; R2:反应器处理2 d; R4:反应器处理4 d; R6:反应器处理6 d; R8:反应器处理8 d; R10:反应器处理10 d; C:连续供气; I:间歇供气。图柱上方的数字为该处理物料发芽指数达70%所需陈化的时间。
Figure5.Impact of composted materials on the germination index of cress with different aeration patterns and composting times of reactor
RM: mixture to be processed; R2: reactor composting for 2 days; R4: reactor composting for 4 days; R6: reactor composting for 6 days; R8: reactor composting for 8 days; R10: reactor composting for 10 days; C: continuous aeration; I: intermittent aeration. The number on the bar is the maturing time when the germination index reaches 70%.
下载: 全尺寸图片幻灯片
图6反应器通气方式和堆肥时长对物料全氮含量的影响
RM:待处理的混合物料; R2:反应器处理2 d; R4:反应器处理4 d; R6:反应器处理6 d; R8:反应器处理8 d; R10:反应器处理10 d; C:连续供气; I:间歇供气。当发芽指数≥70%时, 即认为陈化结束。a-f为图柱整体显著性分析结果, 不同小写字母表示处理间差异显著(P < 0.05).
Figure6.Impact of aeration pattern and processing time of reactor on the total nitrogen content of composted materials during composting processing
RM: mixture to be processed; R2: reactor composting for 2 days; R4: reactor composting for 4 days; R6: reactor composting for 6 days; R8: reactor composting for 8 days; R10: reactor composting for 10 days; C: continuous aeration; I: intermittent aeration. When the material germination index≥70%, it is considered that the maturing stage is over. a-f above the bars are the overall significance analysis results. Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
图7反应器通气方式和堆肥时长对物料氮素损失的影响
R2:反应器处理2 d; R4:反应器处理4 d; R6:反应器处理6 d; R8:反应器处理8 d; R10:反应器处理10 d; C:连续供气; I:间歇供气。当发芽指数≥70%时, 即认为陈化结束。a-e为显著性分析结果, 不同小写字母表示处理间差异显著(P < 0.05)。
Figure7.Impact of aeration pattern and processing time of reactor on the nitrogen loss of composted materials during composting processing
R2: reactor composting for 2 days; R4: reactor composting for 4 days; R6: reactor composting for 6 days; R8: reactor composting for 8 days; R10: reactor composting for 10 days; C: continuous aeration; I: intermittent aeration. When the material germination index≥70%, it is considered that the maturing stage is over. a-e above the bars are the overall significance analysis results. Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
表1堆肥原料的物理和化学性质(以干重计)
Table1.Physical and chemical properties of compost raw materials (dry basis)
堆肥原料 Compost raw material | pH | 电导率 Electrical conductivity (mS·cm-1) | 总有机碳 Total organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳/氮 C/N | 水分含量 Moisture content (%) |
鸡粪?Chicken manure | 8.72±0.12 | 5.32±0.24 | 227.43±0.52 | 27.82±0.72 | 8.18±0.23 | 76.42±0.36 |
锯末?Sawdust | 7.25±0.09 | 1.30±0.33 | 520.34±0.13 | 3.02±0.14 | 172.30±2.35 | 24.30±0.31 |
下载: 导出CSV
表2反应器处理时长及供气方式对生产有机肥运行成本的影响
Table2.Impact of aeration pattern and processing time of reactor on the operating cost of organic fertilizer production
反应器堆肥阶段 Reactor processing stage | 陈化阶段 Maturing stage | 总处理时长 Total processing time (d) | 有机肥产量 Organic fertilizer output (t·d-1) | 处理成本 Total cost of chicken manure (¥·t-1) | 运营成本 Operating cost for organic fertilizer production (¥·t-1) | |||||
通气方式 Ventilation method | 时长 Composting time (d) | 处理量 Processing capacity (t·d-1) | 运行成本 Operating cost (¥·t-1) | 时间 Time (d; GI≥70%) | 成本 Cost (¥) | |||||
间歇供气Intermittent aeration | 2 | 5.4 | 33.10 | > 21 | 200 | > 23 | ||||
4 | 2.7 | 41.30 | > 21 | 200 | > 25 | |||||
6 | 1.8 | 49.50 | 21 | 200 | 27 | 1.3 | 138.6 | 191.9 | ||
8 | 1.4 | 57.70 | 21 | 200 | 29 | 1.0 | 184.1 | 257.7 | ||
10 | 1.1 | 65.90 | 18 | 150 | 28 | 0.8 | 196.2 | 269.8 | ||
连续供气Continuous aeration | 2 | 5.4 | 35.20 | > 21 | 200 | > 23 | ||||
4 | 2.7 | 45.40 | 21 | 200 | 25 | 1.9 | 90.9 | 129.2 | ||
6 | 1.8 | 55.60 | 18 | 150 | 24 | 1.3 | 114.3 | 158.2 | ||
8 | 1.4 | 65.80 | 12 | 150 | 20 | 1.0 | 154.3 | 216.0 | ||
10 | 1.1 | 76.00 | 9 | 100 | 19 | 0.8 | 160.2 | 220.3 | ||
??GI:发芽指数。由于不同堆肥反应器的型号不同, 各耗电系统电机功率略有差距, 不同处理间经济成本的差值可能由于电机功率的加大而增大。GI: germination indexs. Due to the different types of compost reactors, the motor power of each power consumption system is slightly different. The difference in economic cost between different treatments shown in the experiment may increase due to the increase in motor power. |
下载: 导出CSV
参考文献
[1] | CHADWICK D, JIA W, TONG Y A, et al. Improving manure nutrient management towards sustainable agricultural intensification in China[J]. Agriculture, Ecosystems & Environment, 2015, 209:34-46 |
[2] | 冯康, 孟海波, 周海宾, 等.一体化好氧发酵设备研究现状与展望[J].中国农业科技导报, 2018, 20(6):69-79 FENG K, MENG H B, ZHOU H B, et al. Research status and prospect of integrated aerobic fermentation equipment[J]. Journal of Agricultural Science and Technology, 2018, 20(6):69-79 |
[3] | IYENGAR S R, BHAVE P P. In-vessel composting of household wastes[J]. Waste Management, 2006, 26(10):1070-1080 doi: 10.1016/j.wasman.2005.06.011 |
[4] | 侯超, 李永彬, 徐鹏翔, 等.筒仓式堆肥反应器不同通风量对堆肥效果的影响[J].环境工程学报, 2017, 11(8):4737-4744 HOU C, LI Y B, XU P X, et al. Composting effects of using pilot silo reactor by different ventilation rate[J]. Chinese Journal of Environmental Engineering, 2017, 11(8):4737-4744 |
[5] | 迟文慧, 任勇翔, 陈威, 等.梨形筒式好氧堆肥反应器的开发与应用[J].环境工程学报, 2013, 7(9):3561-3566 CHI W H, REN Y X, CHEN W, et al. Development and application of a pyriform rotating drum reactor for aerobic composting[J]. Chinese Journal of Environmental Engineering, 2013, 7(9):3561-3566 |
[6] | 王涛, 姚爱萍, 徐锦大, 等.小型多层塔式堆肥反应器的设计与试验[J].中国农机化学报, 2017, 38(8):68-73. WANG T, YAO A P, XU J D, et al. Design and test of small multilayer tower composting reactor[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8):68-73 |
[7] | 赵明杰, 孙长征, 李星, 等.堆肥反应器处理农村养殖场鸡粪的实践[J].中国家禽, 2014, 36(7):52-54 ZHAO M J, SUN C Z, LI X, et al. Practice of treating chicken manure in rural farms by composting reactor[J]. China Poultry, 2014, 36(7):52-54 |
[8] | 黄川, 黄珊, 李家祥.不同堆肥方式对鸡粪与秸秆混合堆肥效果[J].环境工程学报, 2013, 7(10):4090-4096 HUANG C, HUANG S, LI J X. Effects of different composting models on co-composting chicken manure and maize straw[J]. Chinese Journal of Environmental Engineering, 2013, 7(10):4090-4096 |
[9] | TONG B X, WANG X, WANG S Q, et al. Transformation of nitrogen and carbon during composting of manure litter with different methods[J]. Bioresource Technology, 2019, 293:122046 doi: 10.1016/j.biortech.2019.122046 |
[10] | JIANG T, LI G X, TANG Q, et al. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale[J]. Journal of Environmental Sciences, 2015, 31:124-132 doi: 10.1016/j.jes.2014.12.005 |
[11] | 徐鹏翔.反应器堆肥过程中氮素的转化特征及工艺优化研究[D].北京: 中国农业大学, 2019 XU P X. Study on nitrogen conversion characteristics and process optimization during composting in reactors[D]. Beijing: China Agricultural University, 2019 |
[12] | LIU Z L, WANG X, WANG F H, et al. The progress of composting technologies from static heap to intelligent reactor:benefits and limitations[J]. Journal of Cleaner Production, 2020, 270:122328 doi: 10.1016/j.jclepro.2020.122328 |
[13] | 中华人民共和国农业农村部. NY/T 3442-2019畜禽粪便堆肥技术规范[S].北京: 中国农业出版社, 2019 Ministry of Agriculture and Rural Affairs of the People's Republic of China. NY/T 3442-2019 Technical Specification for Animal Manure Composting[S]. Beijing: China Agriculture Press, 2019 |
[14] | BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22):5444-5453 doi: 10.1016/j.biortech.2008.11.027 |
[15] | YANG X, LIU E, ZHU X M, et al. Impact of composting methods on nitrogen retention and losses during dairy manure composting[J]. International Journal of Environmental Research and Public Health, 2019, 16(18):3324 doi: 10.3390/ijerph16183324 |
[16] | WANG X, BAI Z H, YAO Y, et al. Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential[J]. Journal of Cleaner Production, 2018, 195:448-457 doi: 10.1016/j.jclepro.2018.05.146 |
[17] | GAO M C, LI B, YU A, et al. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust[J]. Bioresource Technology, 2010, 101(6):1899-1903 doi: 10.1016/j.biortech.2009.10.027 |
[18] | RAUT M P, WILLIAM S P M P, BHATTACHARYYA J K, et al. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-A compost maturity analysis perspective[J]. Bioresource Technology, 2008, 99(14):6512-6519 doi: 10.1016/j.biortech.2007.11.030 |
[19] | CHEN R R, WANG Y M, WANG W, et al. N2O emissions and nitrogen transformation during windrow composting of dairy manure[J]. Journal of Environmental Management, 2015, 160:121-127 |
[20] | PETRIC I, SELIMBA?I? V. Development and validation of mathematical model for aerobic composting process[J]. Chemical Engineering Journal, 2008, 139(2):304-317 doi: 10.1016/j.cej.2007.08.017 |
[21] | LUO Y, LIANG J, ZENG G M, et al. Seed germination test for toxicity evaluation of compost:Its roles, problems and prospects[J]. Waste Management, 2018, 71:109-114 doi: 10.1016/j.wasman.2017.09.023 |
[22] | CHEN Y. Sewage sludge aerobic composting technology research progress[J]. AASRI Procedia, 2012, 1:339-343 doi: 10.1016/j.aasri.2012.06.052 |
[23] | SUN Q H, CHEN J, WEI Y Q, et al. Effect of semi-continuous replacements of compost materials after inoculation on the performance of heat preservation of low temperature composting[J]. Bioresource Technology, 2019, 279:50-56 doi: 10.1016/j.biortech.2019.01.090 |
[24] | 杨海君, 许云海, 肖为, 等.温度和物料配比对城市园林绿化废物与鸡粪水浴法好氧堆肥的影响[J].水土保持通报, 2019, 39(6):35-43 YANG H J, XU Y H, XIAO W, et al. Effects of temperature and substrate composition on aerobic composting of urban landscape waste and chicken manure using water bath method[J]. Bulletin of Soil and Water Conservation, 2019, 39(6):35-43 |
[25] | WANG M J, AWASTHI M K, WANG Q, et al. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis[J]. Bioresource Technology, 2017, 243:520-527 doi: 10.1016/j.biortech.2017.06.158 |
[26] | WANG Y J, NIU W J, AI P. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface[J]. Waste Management, 2016, 58:144-151 doi: 10.1016/j.wasman.2016.09.018 |
[27] | DE GUARDIA A, PETIOT C, BENOIST J C, et al. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration[J]. Waste Management, 2012, 32(6):1091-1105 doi: 10.1016/j.wasman.2011.12.028 |