何玉成1,
张晓恒1,,,
陈国庭2
1.华中农业大学经济管理学院/华中农业大学湖北农村发展研究中心 武汉 430070
2.华中农业大学信息学院/作物遗传改良国家重点实验室 武汉 430070
基金项目: 国家自然科学基金项目71573098
国家自然科学基金项目71173085
现代农业产业技术体系建设专项CARS-21
详细信息
作者简介:闫桂权, 主要研究方向为农业资源与环境经济。E-mail:otayu@webmail.hzau.edu.cn
通讯作者:张晓恒, 主要研究方向为农业生产与农产品贸易研究。E-mail:xuyizxh@163.com
中图分类号:F062.2计量
文章访问数:228
HTML全文浏览量:19
PDF下载量:106
被引次数:0
出版历程
收稿日期:2020-04-23
录用日期:2020-07-15
刊出日期:2020-11-01
Biased green technology progress in China's scale pig breeding
YAN Guiquan1,,HE Yucheng1,
ZHANG Xiaoheng1,,,
CHEN Guoting2
1. College of Economics and Management, Huazhong Agricultural University/Research Centre of Hubei Rural Development, Huazhong Agricultural University, Wuhan 430070, China
2. College of Informatics, Huazhong Agricultural University/National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
Funds: National Natural Science Foundation of China71573098
National Natural Science Foundation of China71173085
Special Fund for the Industrial System Construction of Modern Agriculture of ChinaCARS-21
More Information
Corresponding author:ZHANG Xiaoheng, E-mail:xuyizxh@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:近年来中国生猪养殖面临粮食价格驱动的饲料成本上升、劳动力成本上升以及规模化经营趋势下粪污处理等现实挑战。中国生猪产业能否克服上述问题,实现可持续发展呢?理论上,有偏技术进步在优化资源配置、提升生猪养殖效率、促进规模生产和污染减排方面大有可观。本文基于2007—2017年中国小、中、大3种规模生猪养殖成本收益数据,计算考虑5种非合意产出的生猪养殖的投入偏向型技术进步指数;针对各区域生猪养殖可持续发展面临的现实问题和环境规制目标,划分多个中观地理单元;在此基础上,探讨技术进步所倚重的要素是否与区域资源禀赋相协调,进一步为各区域诱致生猪养殖技术进步方向和优化规模生产路径提供支持性证据。研究结果表明,1)不同规模生猪养殖均存在投入偏向型技术进步,且偏向型技术进步能够在中性技术进步的基础上促进绿色全要素生产率的提高;2)小、中、大3种规模生猪养殖的绿色技术进步的要素投入偏向呈现节约劳动力而使用精饲料趋势;3)大规模生猪养殖技术进步偏向性最高,对生猪养殖的绿色全要素生产率增长所发挥的正面作用最强。本文认为生猪养殖技术进步要素偏向主要由区域资源禀赋所决定,各区域应当基于其资源禀赋和环境规制目标诱致技术变迁。
关键词:规模生猪养殖/
技术进步偏向/
绿色全要素生产率/
资源禀赋
Abstract:Operation scales are an important aspect of modern livestock and poultry breeding programs in China. However, intensive breeding scales often increase the contradiction between pig breeding scale and eco-environmental factors. Thus, the future development of China's pig breeding industry depends on boosting the scale of operations and curbing the associated environmental pollution. Technological progress, especially green-biased technology, is highly beneficial and optimizes resource allocation, improves pig breeding efficiency, promotes scaled production, and abates pollution. Therefore, it is important to broaden our understanding of the green-biased technological progress in scale of pig breeding operations. This study used data from China's small-, medium-and large-scale pig breeding operations from 2007 to 2017 and systematically calculated the emission of five pollutants generated during the breeding process, which were included as undesirable outputs in the green total factor productivity (GTFP) accounting system. This study also aimed to increase the following marginal contributions to academic discussion. First, the GTFP and the biased technology progress were combined, and not only was the green-biased technological progress in the scale of pig breeding operations in China identified but also the input-oriented green technological progress index was calculated. Second, the input bias of green technology progress was discussed considering the labor force and the concentrated feed input, which affected the long-term survivability and profitability of the pig breeding scale. Third, this study divided the Mainland of China into several meso-geographical units (i.e., key development areas, restricted development areas, potential development areas, and moderate development areas) and discussed whether the green technology progress bias was in harmony with the regional factor endowments. We also presented supporting evidence for the direction of the technological progressions in each area. This paper documented an input-oriented technology progress bias in various scales of pig breeding operations across different areas, and notably, the biases in all areas did not lead to lower GTFP. However, GTFP improvement may stem from a bias for neutral technology progress. The uptrend of technology progress bias in large-scale pig breeding was significant; i.e., the positive effects of technology progress bias on GTFP in pig breeding were increasing. The green technology progress bias for small-, medium-and large-scale pig breeding saved labor by substitutive adoption of concentrated feed. The information presented here indicated that the regional resource endowments determined the biases of technological progress factors in the scale of pig breeding operations in China. Thus, each region should adopt changes in technology based on its resource endowment and environmental regulation objectives.
Key words:Scale pig breeding/
Biased technology progress/
Green total factor productivity/
Resource endowment
HTML全文
表1不同规模生猪养殖绿色全要素生产率指标说明及描述性统计
Table1.Index description and descriptive statistics for green total factor productivity of pig breeding at different scales
准则层 Rule layer | 指标层 Index layer | 操作层 Operational layer | 小规模 Small-scale | 中规模 Medium-scale | 大规模 Large-scale | |||||
均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | |||||
投入 Input | 劳动力 Labor forces | 用工数量 Number of employment (persons·head?1) | 3.61 | 1.42 | 2.38 | 0.90 | 1.33 | 0.75 | ||
仔猪 Piglets | 仔猪重量 Piglets weight (kg·head?1) | 17.01 | 5.37 | 17.24 | 5.07 | 18.39 | 5.39 | |||
精饲料 Concentrated feed | 精饲料数量 Number of concentrated feed (kg·head?1) | 299.10 | 31.91 | 302.55 | 31.82 | 285.04 | 33.50 | |||
医疗防疫 Medical treatment and epidemics prevention | 医疗防疫费 Expense for medical treatment and epidemics prevention (¥ ·head?1) | 9.78 | 3.25 | 10.49 | 3.45 | 12.98 | 5.82 | |||
合意产出 Desirable output | 主产品净产量 Net output of main products | 主产品产量?仔猪重量 Output weight of main products piglets weight (kg·head ?1) | 97.64 | 10.41 | 98.37 | 10.36 | 93.15 | 10.81 | ||
非合意产出 Unde-sirable output | 面源污染 Non-point source pollution | 化学需氧量、总氮、总磷等标排放量 Standardized emissions of chemical oxygen demand, total nitrogen, total phosphorus (104g·head?1) | 847.55 | 268.68 | 537.90 | 202.13 | 441.40 | 178.82 | ||
重金属污染 Heavy metal pollu-tion | 铜、锌排放量 Emissions of Cu and Zn (104g·head?1) | 4.30 | 1.26 | 3.20 | 1.18 | 2.80 | 1.02 | |||
甲烷 Methane (CH4) | 排放量 Emission (kg·head?1) | 6.75 | 0.14 | 6.73 | 0.12 | 6.62 | 0.15 | |||
氧化亚氮 Nitrous oxide (N2O) | 排放量 Emission (kg·head?1) | 0.99 | 0.11 | 1.00 | 0.11 | 0.95 | 0.11 |
下载: 导出CSV
表2我国不同区域规模生猪养殖绿色全要素生产率指数及其分解
Table2.Green total factor productivity indexes and its decomposition of the scale pig breeding in different pig-breeding developing areas of China
养殖规模 Breeding scale | 指数 Index | 区域 Area | ||||
全国 Nationwide | 重点发展区 Key development areas | 约束发展区 Restricted development areas | 潜在增长区 Potential development areas | 适度发展区 Moderate development areas | ||
大规模 Large-scale | 绿色全要素生产率 Malmquist-Luenbeger index (ML) | 0.989 | 0.990 | 0.986 | 0.996 | 0.984 |
技术效率 Technical efficiency change indexs (EC) | 1.000 | 1.001 | 1.002 | 0.999 | 1.004 | |
技术进步 Technical change index (TC) | 0.989 | 0.989 | 0.985 | 0.997 | 0.981 | |
产出偏向型技术进步 Output-biased technical change index (OBTC) | 1.006 | 1.006 | 1.004 | 1.005 | 1.008 | |
投入偏向型技术进步 Input-biased technical change index (IBTC) | 1.032 | 1.033 | 1.036 | 1.013 | 1.030 | |
规模技术进步 Scale technical change index (MTC) | 0.955 | 0.954 | 0.950 | 0.980 | 0.947 | |
中规模 Me-dium-scale | 绿色全要素生产率 Malmquist-Luenbeger index (ML) | 1.007 | 0.995 | 1.003 | 1.006 | 0.998 |
技术效率 Technical efficiency change index (EC) | 0.999 | 1.000 | 1.002 | 1.006 | 1.002 | |
技术进步 Technical change index (TC) | 1.008 | 0.994 | 1.001 | 1.001 | 0.996 | |
产出偏向型技术进步 Output-biased technical change index (OBTC) | 1.004 | 1.004 | 1.002 | 1.003 | 1.007 | |
投入偏向型技术进步 Input-biased technical change index (IBTC) | 1.023 | 1.017 | 1.013 | 1.014 | 1.043 | |
规模技术进步 Scale technical change index (MTC) | 0.983 | 0.974 | 0.987 | 0.986 | 0.950 | |
小规模 Small-scale | 绿色全要素生产率 Malmquist-Luenbeger index (ML) | 1.003 | 0.992 | 1.001 | 1.000 | 1.001 |
技术效率 Technical efficiency change index (EC) | 1.000 | 1.000 | 0.999 | 1.000 | 0.997 | |
技术进步 Technical change index (TC) | 1.003 | 0.991 | 1.001 | 1.000 | 1.005 | |
产出偏向型技术进步 Output-biased technical change index (OBTC) | 1.005 | 1.013 | 1.007 | 0.999 | 1.006 | |
投入偏向型技术进步 Input-biased technical change index (IBTC) | 1.022 | 1.025 | 1.016 | 1.005 | 1.024 | |
规模技术进步 Scale technical change index (MTC) | 0.978 | 0.957 | 0.979 | 0.996 | 0.978 |
下载: 导出CSV
表3我国规模生猪养殖技术进步节约要素偏向的省份分布
Table3.Province distribution of saving labor force or concentrated feed in the technology progress bias of scale pig breeding
年份 Year | 大规模 Large-scale | 中规模 Medium-scale | 小规模 Small-scale | |||||
精饲料 Concentrated feed | 劳动力 Labor force | 精饲料 Concentrated feed | 劳动力 Labor force | 精饲料 Concentrated feed | 劳动力 Labor force | |||
2008 | 9 | 20 | 11 | 17 | 6 | 19 | ||
2009 | 13 | 16 | 10 | 18 | 9 | 16 | ||
2010 | 17 | 12 | 12 | 16 | 8 | 17 | ||
2011 | 8 | 19 | 17 | 11 | 14 | 11 | ||
2012 | 14 | 14 | 11 | 17 | 6 | 19 | ||
2013 | 14 | 15 | 14 | 14 | 13 | 12 | ||
2014 | 11 | 18 | 10 | 18 | 12 | 13 | ||
2015 | 15 | 14 | 10 | 18 | 13 | 12 | ||
2016 | 18 | 11 | 11 | 17 | 9 | 16 | ||
2017 | 11 | 18 | 7 | 21 | 8 | 17 | ||
平均 Mean | 13 | 16 | 11 | 17 | 10 | 15 | ||
??表中的数字表示节约某项投入要素的省份数量, 由作者计算而得。 The data in the table are the number of provinces in which the technology progress bias of scale pig breeding tends to save labor force or concentrated feed, which is calculated by the author. |
下载: 导出CSV
表4我国不同区域不同时期不同规模生猪养殖技术进步节约要素偏向的省份分布
Table4.Province distribution of saving labor force or concentrated feed in the technology progress bias of pig breeding at different scales across different pig-breeding developing areas of China in different periods
区域Area | 年份Year | 大规模Large-scale | 中规模Medium-scale | 小规模Small-scale | |||||
精饲料Concentrated feed | 劳动力Labor force | 精饲料Concentrated feed | 劳动力Labor force | 精饲料Concentrated feed | 劳动力Labor force | ||||
重点发展区 Key development areas | 2008—2012 | 3 | 3 | 3 | 4 | 3 | 4 | ||
2013—2017 | 3 | 4 | 2 | 5 | 3 | 4 | |||
约束发展区 Restricted development areas | 2008—2012 | 3 | 7 | 4 | 5 | 3 | 4 | ||
2013—2017 | 5 | 5 | 4 | 5 | 3 | 4 | |||
潜力增长区 Potential development areas | 2008—2012 | 3 | 3 | 3 | 3 | 1 | 5 | ||
2013—2017 | 3 | 3 | 2 | 4 | 1 | 5 | |||
适度发展区 Moderate development areas | 2008—2012 | 2 | 3 | 2 | 4 | 1 | 4 | ||
2013—2017 | 3 | 2 | 2 | 4 | 3 | 2 | |||
??表中数字为节约某项投入要素的省份数量, 由作者计算而得。 The data in the table are the number of provinces in which the technology pro-gress bias of scale pig breeding tends to save labor force or concentrated feed, which is calculated by the author. |
下载: 导出CSV
参考文献
[1] | 张喜才, 张利庠.我国生猪产业链整合的困境与突围[J].中国畜牧杂志, 2010, 46(8):22-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxmzz201008007 ZHANG X C, ZHANG L X. Study on the live pig industrial chain integration of China[J]. Chinese Journal of Animal Science, 2010, 46(8):22-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxmzz201008007 |
[2] | 石敏俊, 王妍, 朱杏珍.能源价格波动与粮食价格波动对城乡经济关系的影响:基于城乡投入产出模型[J].中国农村经济, 2009, (5):4-13 http://www.cqvip.com/Main/Detail.aspx?id=30718916 SHI M J, WANG Y, ZHU X Z. The impacts of price fluctuation of energy and grain on the relation between urban and rural economy[J]. Chinese Rural Economy, 2009, (5):4-13 http://www.cqvip.com/Main/Detail.aspx?id=30718916 |
[3] | 周晶, 青平, 颜廷武.技术进步、生产方式转型与中国生猪养殖温室气体减排[J].华中农业大学学报:社会科学版, 2018, (4):38-45 http://d.old.wanfangdata.com.cn/Periodical_hznydxxb-shkxb201804006.aspx ZHOU J, QING P, YAN T W. The impacts of price fluctuation of energy and grain on the relation between urban and rural economy[J]. Journal of Huazhong Agricultural University:Social Sciences Edition, 2018, (4):38-45 http://d.old.wanfangdata.com.cn/Periodical_hznydxxb-shkxb201804006.aspx |
[4] | 赵文, 程杰.农业生产方式转变与农户经济激励效应[J].中国农村经济, 2014, (2):4-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201402002 ZHAO W, CHENG J. Agricultural production mode and farmers' economic incentive effect[J]. Chinese Rural Economy, 2014, (2):4-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201402002 |
[5] | 张晓恒, 周应恒, 张蓬.中国生猪养殖的环境效率估算:以粪便中氮盈余为例[J].农业技术经济, 2015, (5):92-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsjj201505010 ZHANG X H, ZHOU Y H, ZHANG P. Estimation of environmental efficiency of pig breeding in China:Taking nitrogen surplus in feces as an example[J]. Journal of Agrotechnical Economics, 2015, (5):92-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsjj201505010 |
[6] | ZHANG X H, CHU F, YU X H, et al. Changing structure and sustainable development for China's hog sector[J]. Sustainability, 2017, 9(1):69 http://www.chemeurope.com/en/publications/1043058/ |
[7] | QIAO F B, HUANG J K, WANG D, et al. China's hog production:From backyard to large-scale[J]. China Economic Review, 2016, 38:199-208 doi: 10.1016/j.chieco.2016.02.003 |
[8] | 周晶, 陈玉萍, 丁士军. "一揽子"补贴政策对中国生猪养殖规模化进程的影响:基于双重差分方法的估计[J].中国农村经济, 2015, (4):29-43 http://www.cnki.com.cn/Article/CJFDTotal-ZNJJ201504005.htm ZHOU J, CHEN Y P, DING S J. Effect of series of subsidy policies on the scale process of pig breeding in China based on the DID method[J]. Chinese Rural Economy, 2015, (4):29-43 http://www.cnki.com.cn/Article/CJFDTotal-ZNJJ201504005.htm |
[9] | BAI Z H, MA L, QIN W, et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses[J]. Environmental Science & Technology, 2014, 48(21):12742-12749 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0f80fbc205e799f36f400a119f71b23 |
[10] | HARCHAOUI S, CHATZIMPIROS P. Reconstructing production efficiency, land use and trade for livestock systems in historical perspective:The case of France, 1961-2010[J]. Land Use Policy, 2017, 67:378-386 doi: 10.1016/j.landusepol.2017.05.028 |
[11] | LASSALETTA L, ESTELLéS F, BEUSEN A H W, et al. Future global pig production systems according to the Shared Socioeconomic Pathways[J]. Science of the Total Environment, 2019, 665:739-751 doi: 10.1016/j.scitotenv.2019.02.079 |
[12] | 王欢, 乔娟.中国生猪生产布局变迁的经济学分析[J].经济地理, 2017, 37(8):129-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=673083782 WANG H, QIAO J. An economic analysis on the changes in the distribution of pig production in China[J]. Economic Geography, 2017, 37(8):129-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=673083782 |
[13] | 赵俊伟, 陈永福, 余乐, 等.中国生猪养殖业地理集聚时空特征及影响因素[J].经济地理, 2019, 39(2):180-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl201902022 ZHAO J W, CHEN Y F, YU L, et al. Spatial-temporal characteristics and affecting factors of swine breeding industry in China[J]. Economic Geography, 2019, 39(2):180-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl201902022 |
[14] | 潘丹, 孔凡斌.养殖户环境友好型畜禽粪便处理方式选择行为分析——以生猪养殖为例[J].中国农村经济, 2015, (9):17-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201509003 PAN D, KONG F B. Environmentally friendly way choice behavior analysis of farmers:Based on pigs breeding[J]. Chinese Rural Economy, 2015, (9):17-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201509003 |
[15] | 王建华, 杨晨晨, 唐建军.养殖户损失厌恶与病死猪处理行为:基于404家养殖户的现实考察[J].中国农村经济, 2019, (4):130-144 http://www.cnki.com.cn/Article/CJFDTotal-ZNJJ201904009.htm WANG J H, YANG C C, TANG J J. Farmers' loss aversion and treatment of dead hogs:An investigation of 404 hog farmers[J]. Chinese Rural Economy, 2019, (4):130-144 http://www.cnki.com.cn/Article/CJFDTotal-ZNJJ201904009.htm |
[16] | XIAO H B, WANG J M, OXLEY L, et al. The evolution of hog production and potential sources for future growth in China[J]. Food Policy, 2012, 37(4):366-377 doi: 10.1016/j.foodpol.2012.02.002 |
[17] | ACEMOGLU D. Directed technical change[J]. The Review of Economic Studies, 2002, 69(4):781-809 doi: 10.1111/1467-937X.00226 |
[18] | 郭剑雄.农业技术进步类型的一个扩展及其意义[J].农业经济问题, 2004, (3):25-27 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjjwt200403005 GUO J X. An extension of the type of agricultural technology progress and its significance[J]. Issues in Agricultural Economy, 2004, (3):25-27 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjjwt200403005 |
[19] | CECHURA L, KROUPOVA Z, RUDINSKAYA T. Factors determining TFP changes in Czech agriculture[J]. Agricultural Economics, 2015, 61(12):543-551 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88f6f25ff9d276aab953355ec5cabc32 |
[20] | MA H Y, HU Q L, LI W, et al. Hog production in China:Technological bias and factor demand[J]. Agricultural Sciences in China, 2011, 10(3):468-479 doi: 10.1016/S1671-2927(11)60027-8 |
[21] | 王林辉, 袁礼.要素丰裕度、技术进步偏向性与中国农业部门要素收入分配结构[J].东北师大学报:哲学社会科学版, 2015, (1):70-80 http://d.wanfangdata.com.cn/Periodical/dbsdxb-zxsh201501014 WANG L H, YUAN L. Factor abundance, directed technical change and the factor income distribution structure of agriculture in China[J]. Journal of Northeast Normal University:Philosophy and Social Sciences, 2015, (1):70-80 http://d.wanfangdata.com.cn/Periodical/dbsdxb-zxsh201501014 |
[22] | 付明辉, 祁春节.要素禀赋、技术进步偏向与农业全要素生产率增长——基于28个国家的比较分析[J].中国农村经济, 2016, (12):76-90 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201612006 FU M H, QI C J. Factor endowment, technological progress bias and agricultural TFP Growth:A comparative analysis of 28 countries[J]. Chinese Rural Economy, 2016, (12):76-90 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201612006 |
[23] | 刘岳平, 钟世川.技术进步方向、资本-劳动替代弹性对中国农业经济增长的影响[J].财经论丛, 2016, (9):3-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=669906412 LIU Y P, ZHONG S C. The impact of the direction of technological progress, the substitution elasticity between capital and labor on the growth of agricultural economics[J]. Collected Essays on Finance and Economics, 2016, (9):3-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=669906412 |
[24] | ZHU S, XU X, REN X J, et al. Modeling technological bias and factor input behavior in China's wheat production sector[J]. Economic Modelling, 2016, 53:245-253 doi: 10.1016/j.econmod.2015.11.027 |
[25] | 陈苏, 胡浩, 傅顺.要素价格变化对农业技术进步及要素替代的影响——以玉米生产为例[J].湖南农业大学学报:社会科学版, 2018, 19(3):24-31 http://www.cnki.com.cn/article/cjfdtotal-hnns201803005.htm CHEN S, HU H, FU S. Effect of the price variation of factor on agricultural technological progress and factor substitution:A case study of corn[J]. Journal of Hunan Agricultural University:Social Sciences, 2018, 19(3):24-31 http://www.cnki.com.cn/article/cjfdtotal-hnns201803005.htm |
[26] | 左永彦, 冯兰刚.中国规模生猪养殖全要素生产率的时空分异及收敛性——基于环境约束的视角[J].经济地理, 2017, 37(7):166-174 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672756805 ZUO Y Y, FENG L G. The total factor productivity's spatial-temporal variation and its convergence of scale pig breeding in China:Under the view of environmental constraints[J]. Economic Geography, 2017, 37(7):166-174 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672756805 |
[27] | 张俊, 钟春平.偏向型技术进步理论:研究进展及争议[J].经济评论, 2014, (5):148-160 http://www.cqvip.com/QK/82170X/20145/662207589.html ZHANG J, ZHONG C P. Biased technological change theory:Research progress and controversy[J]. Economic Review, 2014, (5):148-160 http://www.cqvip.com/QK/82170X/20145/662207589.html |
[28] | 林毅夫.新结构经济学——重构发展经济学的框架[J].经济学(季刊), 2011, 10(1):1-32 LIN Y F. New structural economics:Reconstructing the framework of development economics[J]. China Economic Quarterly, 2011, 10(1):1-32 |
[29] | 吴丽丽, 李谷成, 周晓时.要素禀赋变化与中国农业增长路径选择[J].中国人口·资源与环境, 2015, 25(8):144-152 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201508018 WU L L, LI G C, ZHOU X S. Change of factor endowments and China agricultural growth path selection[J]. China Population, Resources and Environment, 2015, 25(8):144-152 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201508018 |
[30] | 胡向东, 王济民.我国生猪饲料耗粮量估算及结构分析[J].农业技术经济, 2015, (10):4-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsjj201510001 HU X D, WANG J M. Estimation and structure analysis of feed consumption for pigs in China[J]. Journal of Agrotechnical Economics, 2015, (10):4-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsjj201510001 |
[31] | MCAULIFFE G A, TAKAHASHI T, MOGENSEN L, et al. Environmental trade-offs of pig production systems under varied operational efficiencies[J]. Journal of Cleaner Production, 2017, 165:1163-1173 doi: 10.1016/j.jclepro.2017.07.191 |
[32] | TIAN X, SUN F F, ZHOU Y H. Technical efficiency and its determinants in China's hog production[J]. Journal of Integrative Agriculture, 2015, 14(6):1057-1068 doi: 10.1016/S2095-3119(14)60989-8 |
[33] | 赵连阁, 钟搏.基于SFA的中国生猪养殖成本效率研究[J].中国畜牧杂志, 2015, 51(4):31-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxmzz201504006 ZHAO L G, ZHONG B. Study of pig-breeding cost-efficiency in China based on SFA method[J]. Chinese Journal of Animal Science, 2015, 51(4):31-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxmzz201504006 |
[34] | 周晶, 陈玉萍, 丁士军.中国生猪养殖业规模化影响因素研究[J].统计与信息论坛, 2014, 29(1):63-69 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjyxxlt201401011 ZHOU J, CHEN Y P, DING S J. Analysis on influencing factors of pig livestock intensification in China[J]. Statistics & Information Forum, 2014, 29(1):63-69 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjyxxlt201401011 |
[35] | GALANOPOULOS K, AGGELOPOULOS S, KAMENIDOU I, et al. Assessing the effects of managerial and production practices on the efficiency of commercial pig farming[J]. Agricultural Systems, 2006, 88(2/3):125-141 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=961cbae5a43d2c159d081c030c0d967f |
[36] | LANSINK A O, REINHARD S. Investigating technical efficiency and potential technological change in Dutch pig farming[J]. Agricultural Systems, 2004, 79(3):353-367 doi: 10.1016/S0308-521X(03)00091-X |
[37] | CHEN P C. Measurement of technical efficiency in farrow-to-finish swine production using multi-activity network data envelopment analysis:Evidence from Taiwan[J]. Journal of Productivity Analysis, 2012, 38(3):319-331 doi: 10.1007/s11123-012-0267-1 |
[38] | PETERS D, TINH N T, HOAN M T, et al. Rural income generation through improving crop-based pig production systems in Vietnam:Diagnostics, interventions, and dissemination[J]. Agriculture & Human Values, 2005, 22(1):73-85 doi: 10.1007/s10460-004-7232-1 |
[39] | LABBé M C. The economics of technologies in Swedish pig production[D]. Uppsala: Swedish University of Agricultural Sciences, 2003 |
[40] | NOYA I, GONZáLEZ-GARCíA S, BACENETTI J, et al. Environmental impacts of the cultivation-phase associated with agricultural crops for feed production[J]. Journal of Cleaner Production, 2018, 172:3721-3733 doi: 10.1016/j.jclepro.2017.07.132 |
[41] | PIERER M, AMON B, WINIWARTER W. Adapting feeding methods for less nitrogen pollution from pig and dairy cattle farming:Abatement costs and uncertainties[J]. Nutrient Cycling in Agroecosystems, 2016, 104(2):201-220 doi: 10.1007/s10705-016-9767-0 |
[42] | KOOL D M, WRAGE N, ZECHMEISTER-BOLTENSTERN S, et al. Nitrifier denitrification can be a source of N2O from soil:A revised approach to the dual-isotope labelling method[J]. European Journal of Soil Science, 2010, 61(5):759-772 doi: 10.1111/j.1365-2389.2010.01270.x |
[43] | 杨慧娟, 万大娟, 许振成.不同饲粮对生猪产污情况的影响[J].生态与农村环境学报, 2011, 27(1):109-111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201101022 YANG H J, WAN D J, XU Z C. Effects of type of feed on pollutant generation of swine[J]. Journal of Ecology and Rural Environment, 2011, 27(1):109-111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201101022 |
[44] | 周天墨, 付强, 诸云强, 等.中国分省畜禽产污系数优化及污染物构成时空特征分析[J].地理研究, 2014, 33(4):762-776 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201404015 ZHOU T M, FU Q, ZHU Y Q, et al. Optimizing pollutant generation coefficients of livestock industry and mapping patterns of the pollutant constitution in China[J]. Geographical Research, 2014, 33(4):762-776 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201404015 |
[45] | 祝其丽, 李清, 胡启春, 等.猪场清粪方式调查与沼气工程适用性分析[J].中国沼气, 2011, 29(1):26-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzq201101006 ZHU Q L, LI Q, HU Q C, et al. Investigation and analysis of animal manure collection methods on pig farms and their applicability to the anaerobic digestion[J]. China Biogas, 2011, 29(1):26-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzq201101006 |
[46] | 封永刚, 彭珏, 邓宗兵, 等.面源污染、碳排放双重视角下中国耕地利用效率的时空分异[J].中国人口·资源与环境, 2015, 25(8):18-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201508003 FENG Y G, PENG Y, DENG Z B, et al. Spatial-temporal variation of cultivated land's utilization efficiency in China based on the dual perspective of non-point source pollution and carbon emission[J]. China Population, Resources and Environment, 2015, 25(8):18-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201508003 |
[47] | 杜红梅, 王明春, 胡梅梅.不同规模生猪养殖绿色全要素生产率的时空差异——基于非径向、非角度SBM生产率指数模型[J].湖南农业大学学报:社会科学版, 2019, 20(2):16-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunannydx-shkx201902004 DU H M, WANG M C, HU M M. Spatial-time disparities of green total factor productivity of hog breeding of different scale:Based on non-radial and non-angular SBM productivity rate model[J]. Journal of Hunan Agricultural University:Social Sciences, 2019, 20(2):16-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunannydx-shkx201902004 |
[48] | 林杰, 赵连阁, 王学渊.水资源约束视角下生猪养殖环境技术效率分析——基于中国18个生猪养殖优势省份的研究[J].农村经济, 2014, (8):47-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncjj201408010 LIN J, ZHAO L G, WANG X Y. Environmental technical efficiency of pig breeding from the perspective of water resources constraint analysis:Based on the study of 18 predominance provinces of pig breeding in China[J]. Rural Economy, 2014, (8):47-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncjj201408010 |
[49] | F?RE R, GROSSKOPF S, NORRIS M, et al. Productivity growth, technical progress, and efficiency change in industrialized countries[J]. American Economic Review, 1994, 84(1):66-83 |
[50] | F?RE R, GRIFELL-TATJé E, GROSSKOPF S, et al. Biased technical change and the malmquist productivity index[J]. Scandinavian Journal of Economics, 1997, 99(1):119-127 doi: 10.1111/1467-9442.00051 |
[51] | WEBER W L, DOMAZLICKY B R. Total factor productivity growth in manufacturing:A regional approach using linear programming[J]. Regional Science and Urban Economics, 1999, 29(1):105-122 http://www.sciencedirect.com/science/article/pii/S0166046298000131 |
[52] | 王班班, 齐绍洲.中国工业技术进步的偏向是否节约能源[J].中国人口·资源与环境, 2015, 25(7):24-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201507004 WANG B B, QI S Z. Does the bias of China's industrial technical change energy-saving[J]. China Population, Resources and Environment, 2015, 25(7):24-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201507004 |
[53] | 闫振宇, 陶建平, 徐家鹏.我国生猪规模化养殖发展现状和省际差异及发展对策[J].农业现代化研究, 2012, 33(1):13-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CASS_40590808 YAN Z Y, TAO J P, XU J P. Scale production of live pig in China:Provincial difference, problem and development countermeasure[J]. Research of Agricultural Modernization, 2012, 33(1):13-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CASS_40590808 |
[54] | 吴林海, 刘平平, 裘光倩, 等.基于饲料成本与或有损失比较视角的生猪养殖户饲料选择购买行为研究[J].中国人口·资源与环境, 2019, 29(2):106-113 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201902013 WU L H, LIU P P, QIU G Q, et al. Study on pig farmers' feed choice and purchase behavior from the comparative perspective of feed cost and loss contingency[J]. China Population, Resources and Environment, 2019, 29(2):106-113 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201902013 |
[55] | 曾琳, 琳李晓云.生猪养殖粮改饲效果探析——基于长江中下游地区生猪养殖的思考[J].农业展望, 2017, 13(8):58-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyhjwz201708013 ZENG L L, LI X Y. Effect of pig breeding mode of green fodder replacing grain:Based on the thinking of pig breeding in Middle and Lower Reaches of the Changjiang River[J]. Agricultural Outlook, 2017, 13(8):58-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyhjwz201708013 |