删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北平原春绿豆-夏玉米种植模式经济效益和碳足迹评价

本站小编 Free考研考试/2022-01-01

王上,
李康利,
聂江文,
杨亚东,
臧华栋,
曾昭海,
中国农业大学农学院/农业农村部农作制度重点实验室 北京 100193
基金项目: 国家重点研发计划项目2016YFD0300205-01
国家自然科学基金项目31671640
国家自然科学基金项目31901470
中央高校基本科研业务费专项资金2019TC217

详细信息
作者简介:王上, 主要研究方向为新型种植制度构建。E-mail:wangshang@cau.edu.cn
通讯作者:曾昭海, 主要研究方向为豆禾轮作与土壤微生态。E-mail:zengzhaohai@cau.edu.cn
中图分类号:S344.13;S512.1+1

计量

文章访问数:504
HTML全文浏览量:12
PDF下载量:291
被引次数:0
出版历程

收稿日期:2019-12-27
录用日期:2020-02-03
刊出日期:2020-06-01

Economic benefits and carbon footprint of a spring mung bean-summer maize cropping system in the North China Plain

WANG Shang,
LI Kangli,
NIE Jiangwen,
YANG Yadong,
ZANG Huadong,
ZENG Zhaohai,
College of Agronomy and Biotechnology, China Agricultural University/Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
Funds: the National Key Research and Development Program of China2016YFD0300205-01
the National Natural Science Foundation of China31671640
the National Natural Science Foundation of China31901470
the Fundamental Research Funds for the Central Universities of China2019TC217

More Information
Corresponding author:ZENG Zhaohai, E-mail:zengzhaohai@cau.edu.cn


摘要
HTML全文
(4)(4)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:华北平原是我国重要的粮食生产基地,长期集约化的冬小麦-夏玉米种植导致氮肥施用过量、地下水超采及碳排放增加等生态环境问题日益突出。因此,调整现有种植结构,构建资源节约型种植制度对缓解该区域生态环境问题具有重要意义。为明确新型春绿豆-夏玉米模式的可行性,本研究基于大田试验和生命周期评价方法(life cycle assessment,LCA),定量评估了春绿豆-夏玉米模式与冬小麦-夏玉米模式的产量、经济效益、碳排放和碳足迹。结果表明,春绿豆-夏玉米模式中绿豆与玉米的产量分别为1 760.1 kg·hm-2和8 775.8 kg·hm-2,当量产量(换算为玉米产量)为18 833.4 kg·hm-2,比冬小麦-夏玉米模式低20.4%(P < 0.05);周年净收入为27 085 ¥·hm-2(包括每年7 500 ¥·hm-2的冬季休耕补贴),比冬小麦-夏玉米模式高20.2%;周年碳排放为4 642.1 kg(CO2-eq)·hm-2,比冬小麦-夏玉米模式低36.1%;单位产值碳足迹为0.17 kg(CO2-eq)·¥-1,比冬小麦-夏玉米模式低48.5%(P < 0.01)。综合来看,在华北平原引入春绿豆-夏玉米模式部分替代传统冬小麦-夏玉米模式,能够改善种植结构,同时提高农民收入、降低农业生产系统碳排放和碳足迹。
关键词:春绿豆-夏玉米/
冬小麦-夏玉米/
经济当量产量/
碳排放/
碳足迹/
生命周期评价
Abstract:The North China Plain is an area of major grain production in China. The intensive winter wheat-summer maize cropping system has led to increasingly excessive nitrogen fertilization, over-exploitation of groundwater, and increased carbon emissions. Therefore, adjusting the existed planting structure and constructing a resource-saving planting system is critical to alleviate the ecological problems of the region. Here, the yield, economic benefits, carbon emissions, and carbon footprint were evaluated between spring mung bean-summer maize (MM) and winter wheat-summer maize (WM) cropping systems based on a field experiment and life cycle assessment (LCA). The yields of mung bean and maize were 1 760.1 kg·hm-2 and 8 775.8 kg·hm-2 under the MM treatment, respectively. The annual economic equivalent yield and annual net income of the MM treatment were 18 833.4 kg·hm-2 and 27 085 ¥·hm-2, respectively, which were 20.4% lower (P < 0.05) and 20.2% higher than those under the WM treatment, respectively. The annual carbon emission from the MM treatment was 4 642.1 kg(CO2-eq)·hm-2, which was 36.1% lower than that from the WM. Additionally, the carbon footprint per unit of economic benefit of the MM treatment was 0.17 kg(CO2-eq)·¥-1, 48.5% lower (P < 0.01) than that of WM. Therefore, the introduction of MM systems to replace some WM systems could potentially increase the net income of farmers, as well as reduce carbon emissions and carbon footprint.
Key words:Spring mung bean-summer maize/
Winter wheat-summer maize/
Economic equivalent yield/
Carbon emission/
Carbon footprint/
Life cycle assessment

HTML全文


图1试验周期内研究区日平均气温和降水量
Figure1.Daily mean air temperature and precipitation during the experiment period in the study area


下载: 全尺寸图片幻灯片


图2春绿豆-夏玉米与冬小麦-夏玉米模式周年生产碳足迹计算边界
Figure2.System boundary for calculating carbon footprint in spring mung bean-summer maize and winter wheat-summer maize rotation systems


下载: 全尺寸图片幻灯片


图3春绿豆-夏玉米和冬小麦-夏玉米模式的投入产出
柱状图上的误差线为标准误(n=3)。
Figure3.Input and output values comparison of spring mung bean-summer maize and winter wheat-summer maize rotation systems
The error bars represent the standard error of the mean value (n= 3).


下载: 全尺寸图片幻灯片


图4春绿豆-夏玉米和冬小麦-夏玉米轮作模式的碳排放来源
Figure4.Composition of carbon emission in spring mung bean-summer maize and winter wheat-summer maize rotation systems


下载: 全尺寸图片幻灯片

表1春绿豆-夏玉米与冬小麦-夏玉米模式农资投入量及价格
Table1.Amounts and prices of agricultural materials input in spring mung bean-summer maize and winter wheat-summer maize cropping systems
农资
Agricultural material
投入量Amount 价格Price
春绿豆-夏玉米
Spring mung bean-summer maize
冬小麦-夏玉米
Winter wheat-summer maize
尿素Urea 430 kg·hm–2 574 kg·hm–2 1.8 ¥·kg–1
磷酸二铵(NH4)2HPO4 235 kg·hm–2 535 kg·hm–2 3.5 ¥·kg–1
过磷酸钙Ca(H2PO4)2 375 kg·hm–2 0 0.8 ¥·kg–1
硫酸钾K2SO4 525 kg·hm–2 450 kg·hm–2 3.0 ¥·kg–1
电力Electricity 1 200 kWh·hm–2 3 600 kWh·hm–2 0.55 ¥·kWh–1
农用地膜Mulch film 41 kg·hm–2 0 4.0 ¥·kg–1
柴油Diesel 139 kg·hm–2 196 kg·hm–2 7.6 ¥·kg–1
农药Pesticides 1.19 kg·hm–2 4.75 kg·hm–2 7.5 ¥·kg–1
小麦种子Wheat seeds 0 300 kg·hm–2 7.0 ¥·kg–1
玉米种子Maize seeds 30 kg·hm–2 30 kg·hm–2 20.0 ¥·kg–1
绿豆种子Mung bean seeds 37.5 kg·hm–2 0 22.0 ¥·kg–1


下载: 导出CSV
表2春绿豆-夏玉米与冬小麦-夏玉米模式农资的碳排放参数
Table2.Index of greenhouse gas emission of different agricultural materials input in spring mung bean-summer maize and winter wheat-summer maize cropping systems
项目Item 排放参数Index of carbon emission
氮肥N fertilizer1) 1.53 kg(CO2-eq)·kg–1
磷肥P fertilizer 1.14 kg(CO2-eq)·kg–1[17]
钾肥K fertilizer 0.66 kg(CO2-eq)·kg–1[17]
农药Pesticides 6.58 kg(CO2-eq)·kg–1[17]
电力Electricity 0.92 kg(CO2-eq)·kW·h-1[17]
柴油Diesel 3.32 kg(CO2-eq)·kg–1[17]
农用地膜Mulch film2) 22.72 kg(CO2-eq)·kg–1
小麦种子Wheat seeds 1.16 kg(CO2-eq)·kg–1[17]
玉米种子Maize seeds 1.22 kg(CO2-eq)·kg–1[17]
绿豆种子Mung bean seeds3) 0
1)数据来源为CLCD (中国生命周期基础数据库) v0.7; 2)数据来源为Ecoinvent v0.2; 3)绿豆种子属自繁种, 故认为碳排放记为0。1) The data is from CLCD v0.7; 2) The data is from Ecoinvent v0.2; 3) Mung bean seeds are self-breeding, so the index of carbon emission is zero.


下载: 导出CSV
表3春绿豆-夏玉米与冬小麦-夏玉米模式的作物产量及当量产量
Table3.Grain yield and economic equivalent yield of spring mung bean-summer maize and winter wheat-summer maize cropping systems
作物生长季Crop season 产量Grain yield (kg·hm-2) 经济当量产量Economic equivalent yield [kg(maize)·hm-2]
春绿豆-夏玉米
Spring mung bean-summer maize
冬小麦-夏玉米
Winter wheat- summer maize
春绿豆-夏玉米
Spring mung bean- summer maize
冬小麦-夏玉米
Winter wheat- summer maize
非玉米季Non-maize season 1 760.1±126.8 7 902.7±376.7 10 057.7±724.6a 12 418.6±592.0a
玉米季Maize season 8 775.8±445.4 11 251.0±571.7 8 775.8±445.4b 11 251.0±571.7a
周年Rotation system 18 833.4±1 155.8b 23 669.6±1 068.7a
由于两种轮作模式的作物种类不同, 产量直接相加无实际意义, 故实际周年产量一栏空缺; 按照小麦/玉米/绿豆=2.2/1.4/8.0的经济价值将冬小麦和春绿豆的实际产量换算为玉米经济当量产量。表中数值为平均值±标准误(n=3), 每行不同小写字母表示不同种植模式之间差异显著(P < 0.05)。Due to the different crop types of the two rotation systems, the direct addition of the grain yield has no practical significance, so the rotation system grain yield column is vacant. The grain yield of winter wheat and spring mung bean were converted to maize economic equivalent yield according to the economic value of wheat/maize/mung bean=2.2/1.4/8.0. The values in the table are the mean ± standard error (n = 3). Different lowercase letters in the same line represent significant differences between two rotation systems (P < 0.05).


下载: 导出CSV
表4春绿豆-夏玉米和冬小麦-夏玉米轮作模式的单位面积碳排放和碳足迹
Table4.Carbon emission and footprint of spring mung bean-summer maize and winter wheat-summer maize rotation systems
种植模式
Rotation system
作物生长季
Crop season
单位面积碳排放
Carbon emission per unit area [kg(CO2-eq)·hm–2]
单位产量碳足迹
Carbon footprint per unit yield [kg(CO2-eq)·kg–1]
单位产值碳足迹
Carbon footprint per unit output value [kg(CO2-eq)·¥–1]
春绿豆-夏玉米
Spring mung bean-summer maize
非玉米季Non-maize season 2 867.0 1.65±0.12 0.16±0.01
玉米季Maize season 1 775.1 0.30±0.01 0.20±0.02
周年Rotation system 4 642.1 0.44±0.02 0.17±0.01
冬小麦-夏玉米
Winter wheat- summer maize
非玉米季Non-maize season 4 349.5 0.55±0.03 0.40±0.03
玉米季Maize season 2 913.3 0.26±0.01 0.26±0.02
周年Rotation system 7 262.8 0.38±0.01 0.33±0.02


下载: 导出CSV

参考文献(44)
[1]中国知网.中国经济社会大数据研究平台[DB/OL].中国知网.[2019-12-27].http://lib.tcu.edu.cn/info/1075/1911.htm
CNKI. China economic and social big data research platform[DB/OL]. CNKI.[2019-12-27]. http://lib.tcu.edu.cn/info/1075/1911.htm
[2]裴宏伟, 沈彦俊, 刘昌明.华北平原典型农田氮素与水分循环[J].应用生态学报, 2015, 26(1): 283–296 http://d.old.wanfangdata.com.cn/Periodical/yystxb201501036
PEI H W, SHEN Y J, LIU C M. Nitrogen and water cycling of typical cropland in the North China Plain[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 283–296 http://d.old.wanfangdata.com.cn/Periodical/yystxb201501036
[3]钟茜, 巨晓棠, 张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J].植物营养与肥料学报, 2006, 12(3): 285–293 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb200603001
ZHONG Q, JU X T, ZHANG F S. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 285–293 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb200603001
[4]张光辉, 连英立, 刘春华, 等.华北平原水资源紧缺情势与因源[J].地球科学与环境学报, 2011, 33(2): 172–176 http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201102012
ZHANG G H, LIAN Y L, LIU C H, et al. Situation and origin of water resources in short supply in North China Plain[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 172–176 http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201102012
[5]张凯, 周婕, 赵杰, 等.华北平原主要种植模式农业地下水足迹研究——以河北省吴桥县为例[J].中国生态农业学报, 2017, 25(3): 328–336 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170303&flag=1
ZHANG K, ZHOU J, ZHAO J, et al. Agricultural groundwater footprint of the major cropping system in the North China Plain: A case study of Wuqiao County, Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 328–336 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170303&flag=1
[6]姜雨林, 陈中督, 遆晋松, 等.华北平原不同轮作模式固碳减排模拟研究[J].中国农业大学学报, 2018, 23(1): 19–26 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201801003
JIANG Y L, CHEN Z D, TI J S, et al. Simulation of soil carbon storage and greenhouse gas emission under different rotation systems in the North China Plain[J]. Journal of China Agricultural University, 2018, 23(1): 19–26 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201801003
[7]曾昭海.豆科作物与禾本科作物轮作研究进展及前景[J].中国生态农业学报, 2018, 26(1): 57–61 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20180107&flag=1
ZENG Z H. Progress and perspective of legume-gramineae rotations[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 57–61 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20180107&flag=1
[8]FOX J E, GULLEDGE J, ENGELHAUPT E, et al. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(24): 10282–10287 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b8390ae8ba73348e59b7be597688555
[9]DRURY C F, REYNOLDS W D, TAN C S, et al. Impacts of 49–51 years of fertilization and crop rotation on growing season nitrous oxide emissions, nitrogen uptake and corn yields[J]. Canadian Journal of Soil Science, 2014, 94(3): 421–433 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b18290415fd0bafaae0e698025616db2
[10]GAN Y T, HAMEL C, O'DONOVAN J T, et al. Diversifying crop rotations with pulses enhances system productivity[J]. Scientific Reports, 2015, 5: 14625 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2134/cs2016-49-0402
[11]ZHANG K, ZHAO J, WANG X Q, et al. Estimates on nitrogen uptake in the subsequent wheat by above-ground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain[J]. Journal of Integrative Agriculture, 2019, 18(3): 571–579 http://d.old.wanfangdata.com.cn/Periodical/zgnykx-e201903009
[12]BEHNKE G D, ZUBER S M, PITTELKOW C M, et al. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA[J]. Agriculture, Ecosystems & Environment, 2018, 261: 62–70 http://cn.bing.com/academic/profile?id=4028478c842681ad05b2c0df29a286c1&encoded=0&v=paper_preview&mkt=zh-cn
[13]ZHAO J, YANG Y D, ZHANG K, et al. Does crop rotation yield more in China? A meta-analysis[J]. Field Crops Research, 2020, 245: 107659 http://cn.bing.com/academic/profile?id=a8b9afad97345ce9177019a3c6c1f0dd&encoded=0&v=paper_preview&mkt=zh-cn
[14]段义忠, 张雄, 亢福仁, 等.绿豆抗旱指标鉴选与评价[J].干旱地区农业研究, 2014, 32(6): 256–261 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201406042
DUAN Y Z, ZHANG X, KANG F R, et al. Evaluation and selection of drought resistance of mung bean (Vigna radiate L.)[J]. Agricultural Research in the Arid Areas, 2014, 32(6): 256–261 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201406042
[15]王上, 郑瑛, 杨国威, 等.黑龙港低平原地区绿豆高产品种筛选[J].河北农业科学, 2019, 23(2): 79–85 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201902021
WANG S, ZHENG Y, YANG G W, et al. Screening of high-yield mungbean varieties in Heilonggang Low Plain area[J]. Journal of Hebei Agricultural Sciences, 2019, 23(2): 79–85 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201902021
[16]GAN Y T, LIANG C, CHAI Q, et al. Improving farming practices reduces the carbon footprint of spring wheat production[J]. Nature Communications, 2014, 5: 5012 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0f71430f472c12a4fa0c09d175d3004
[17]刘巽浩, 徐文修, 李增嘉, 等.农田生态系统碳足迹法:误区、改进与应用——兼析中国集约农作碳效率[J].中国农业资源与区划, 2013, 34(6): 1–11 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205028
LIU X H, XU W X, LI Z J, et al. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1–11 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205028
[18]史磊刚, 陈阜, 孔凡磊, 等.华北平原冬小麦-夏玉米种植模式碳足迹研究[J].中国人口·资源与环境, 2011, 21(9): 93–98 http://d.old.wanfangdata.com.cn/Periodical/zgrkzyyhj201109016
SHI L G, CHEN F, KONG F L, et al. The carbon footprint of winter wheat-summer maize cropping pattern on North China Plain[J]. China Population, Resources and Environment, 2011, 21(9): 93–98 http://d.old.wanfangdata.com.cn/Periodical/zgrkzyyhj201109016
[19]王占彪, 王猛, 陈阜.华北平原作物生产碳足迹分析[J].中国农业科学, 2015, 48(1): 83–92 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501009
WANG Z B, WANG M, CHEN F. Carbon footprint analysis of crop production in North China Plain[J]. Scientia Agricultura Sinica, 2015, 48(1): 83–92 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501009
[20]LIU K, JOHNSON E N, BLACKSHAW R E, et al. Improving the productivity and stability of oilseed cropping systems through crop diversification[J]. Field Crops Research, 2019, 237: 65–73 http://cn.bing.com/academic/profile?id=78b5493bb4b534ec9e4e879a6f06ac9d&encoded=0&v=paper_preview&mkt=zh-cn
[21]王占彪, 陈静, 张立峰, 等.河北省棉花生产碳足迹分析[J].棉花学报, 2016, 28(6): 594–601 http://d.old.wanfangdata.com.cn/Periodical/mhxb201606009
WANG Z B, CHEN J, ZHANG L F, et al. Carbon footprint analysis of cotton production in Hebei Province[J]. Cotton Science, 2016, 28(6): 594–601 http://d.old.wanfangdata.com.cn/Periodical/mhxb201606009
[22]EGGLESTON S, BUENDIA L, MIWA K, et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Tokyo, Japan: IGES, 2006
[23]范保杰, 刘长友, 曹志敏, 等.绿豆新品种冀绿13号选育及丰产稳产性分析[J].河北农业科学, 2017, 21(2): 92–95 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201702025
FAN B J, LIU C Y, CAO Z M, et al. Breeding and productivity analysis of a new mung bean variety Jilv No.13[J]. Journal of Hebei Agricultural Sciences, 2017, 21(2): 92–95 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201702025
[24]GAO F, LI B, REN B Z, et al. Effects of residue management strategies on greenhouse gases and yield under double cropping of winter wheat and summer maize[J]. Science of the Total Environment, 2019, 687: 1138–1146 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1e4a9cc891d3004a292483519ba993c
[25]王韵翔, 吴裕如, 王承, 等.播期对夏玉米生长发育及产量的影响[J].湖南农业大学学报:自然科学版, 2019, 45(5): 461–465 http://d.old.wanfangdata.com.cn/Periodical/hunannydx201905003
WANG Y X, WU Y R, WANG C, et al. Effects of sowing dates on the growth and yield for summer maize varieties[J]. Journal of Hunan Agricultural University: Natural Sciences, 2019, 45(5): 461–465 http://d.old.wanfangdata.com.cn/Periodical/hunannydx201905003
[26]于德花, 陈小芳, 毕云霞, 等.种植密度对不同株型青贮玉米产量及相关性状的影响[J].草业科学, 2018, 35(6): 1465–1471 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201806018
YU D H, CHEN X F, BI Y X, et al. Effect of planting density on yield and related traits of silage maize with different plant types[J]. Pratacultural Science, 2018, 35(6): 1465–1471 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201806018
[27]周琦, 张富仓, 李志军, 等.施氮时期对夏玉米生长、干物质转运与产量的影响[J].干旱地区农业研究, 2018, 36(1): 76–82 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201801012
ZHOU Q, ZHANG F C, LI Z J, et al. Effects of nitrogen application at different stages on growth, yield, and dry matter transportation of summer maize[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 76–82 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201801012
[28]张兵, 李丹, 张宁.黄淮海地区大豆主要种植模式及效益分析[J].大豆科学, 2011, 30(6): 987–992 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddkx201106021
ZHANG B, LI D, ZHANG N. Soybean planting patterns and benefit analysis of Huang-Huai-Hai region[J]. Soybean Science, 2011, 30(6): 987–992 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddkx201106021
[29]张晶, 史怡宁, 韩沁沁.我国轮作休耕政策实施状况与优化研究[J].黑龙江农业科学, 2019, (6): 142–147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljnykx201906034
ZHANG J, SHI Y N, HAN Q Q. Implementation status and optimization research of China's crop rotation and fallow policy[J]. Heilongjiang Agricultural Sciences, 2019, (6): 142–147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljnykx201906034
[30]张凯.华北平原禾豆复种水氮利用与氮转移研究——以小麦-花生复种为例[D].北京: 中国农业大学, 2017
ZHANG K. Water/nitrogen utilization and nitrogen translocation of cereal-legume multi-cropping systems in the North China Plain: A case study on wheat-peanut double cropping[D]. Beijing: China Agricultural University, 2017
[31]李国祥. 2003年以来中国农产品价格上涨分析[J].中国农村经济, 2011, (2): 11–21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201102003
LI G X. Analysis of the increase of Chinese agricultural product price since 2003[J]. Chinese Rural Economy, 2011, (2): 11–21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201102003
[32]NELSON R G, HELLWINCKEL C M, BRANDT C C, et al. Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004[J]. Journal of Environmental Quality, 2009, 38(2): 418–425 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a5f912b534578ad1c9de7e658e154d41
[33]HILLIER J, WHITTAKER C, DAILEY G, et al. Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses[J]. Global Change Biology Bioenergy, 2009, 1(4): 267–281 doi: 10.1111-j.1757-1707.2009.01021.x/
[34]GRASSINI P, ESKRIDGE K M, CASSMAN K G. Distinguishing between yield advances and yield plateaus in historical crop production trends[J]. Nature Communications, 2013, 4: 2918 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29951f0e0b76babed1cfbbf722d223c9
[35]GAN Y T, LIANG C, CAMPBELL C A, et al. Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie[J]. European Journal of Agronomy, 2012, 43: 175–184 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea6532263933998f4ea7f2356440f727
[36]LAL R. Carbon emission from farm operations[J]. Environment International, 2004, 30(7): 981–990 http://cn.bing.com/academic/profile?id=007f88a7ac40e51d9de116f6c26f96c8&encoded=0&v=paper_preview&mkt=zh-cn
[37]CUI J X, SUI P, WRIGHT D L, et al. Carbon emission of maize-based cropping systems in the North China Plain[J]. Journal of Cleaner Production, 2019, 213: 300–308 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a41ae4874e542632e28ce271f48718d9
[38]MEISTERLING K, SAMARAS C, SCHWEIZER V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat[J]. Journal of Cleaner Production, 2009, 17(2): 222–230 http://cn.bing.com/academic/profile?id=0918e7ab67d926a259f53659352ce3a3&encoded=0&v=paper_preview&mkt=zh-cn
[39]王钰乔, 赵鑫, 李可嘉, 等.华北平原小麦生产的碳足迹变化动态的研究[J].中国人口·资源与环境, 2015, 25(S2): 258–261
WANG Y Q, ZHAO X, LI K J, et al. Dynamics of carbon footprint for wheat production in the North China Plain[J]. China Population, Resources and Environment, 2015, 25(S2): 258–261
[40]CHENG K, YAN M, NAYAK D, et al. Carbon footprint of crop production in China: An analysis of national statistics data[J]. The Journal of Agricultural Science, 2015, 153(3): 422–431 http://cn.bing.com/academic/profile?id=a1522f5d88971610c395e33e478901ca&encoded=0&v=paper_preview&mkt=zh-cn
[41]DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2): 217–227 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1365-2486.1998.00128.x
[42]ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375–8380 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3666697
[43]武玉环.绿豆主产区农户生产决策行为研究——以吉林白城为例[D].北京: 中国农业科学院, 2017
WU Y H. Behavior analysis of farmers production decision-making in main mung bean-producing areas——take Baicheng of Jilin Province as an example[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017
[44]张丽华, 姚艳荣, 范保杰, 等.不同基因型夏播绿豆田间耗水特性研究[J].河北农业科学, 2013, 17(5): 16–20 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201305005
ZHANG L H, YAO Y R, FAN B J, et al. Study on the character of water deprivation of different genenal types summer sowing mung bean in field[J]. Journal of Hebei Agricultural Sciences, 2013, 17(5): 16–20 http://d.old.wanfangdata.com.cn/Periodical/hebnykx201305005

相关话题/作物 经济 生产 种子 农业