删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

褐土区氮磷在土壤发生层中淋溶的差异性

本站小编 Free考研考试/2022-01-01

马琳杰1,,
霍晓兰2,
靳东升2,
刘平2,
霍晨1,
惠薇1,
李丽君2,,
1.山西大学生物工程学院 太原 030006
2.山西农业大学资源环境学院/山西省土壤环境与养分资源重点实验室 太原 030031
基金项目: 国家重点研发计划项目2016YFD0800105-5
第2次全国污染源普查项目091821103994212010

详细信息
作者简介:马琳杰, 主要研究方向为农业面源污染。E-mail:15143098957@163.com
通讯作者:李丽君, 主要研究方向为农业面源污染。E-mail:lilijun2005@163.com
中图分类号:S158

计量

文章访问数:306
HTML全文浏览量:3
PDF下载量:371
被引次数:0
出版历程

收稿日期:2020-07-19
录用日期:2020-09-25
刊出日期:2021-01-01

Nitrogen and phosphorus leaching differs among cinnamon soil layers

MA Linjie1,,
HUO Xiaolan2,
JIN Dongsheng2,
LIU Ping2,
HUO Chen1,
HUI Wei1,
LI Lijun2,,
1. School of Biological Engineering, Shanxi University, Taiyuan 030006, China
2. College of Resources and Environment, Shanxi Agricultural University/Provincial Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Taiyuan 030031, China
Funds: the National Key Research and Development Projects of China2016YFD0800105-5
the Second National Survey of Pollution Sources of China091821103994212010

More Information
Corresponding author:LI Lijun, E-mail: lilijun2005@163.com


摘要
HTML全文
(2)(5)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农业氮磷淋溶已经成为地下水污染最普遍和突出的问题。为揭示氮磷在包气带不同土层的淋溶特征,以典型褐土的5个土壤发生层(耕层、淋溶层、钙积层、黏化层和母质层)为研究对象,采用室内土柱模拟淋溶试验,在施肥量相同的条件下分析不同形态氮磷淋溶量,研究氮磷在不同土壤发生层中的迁移特征及其影响因素。结果表明:1)进行5次淋溶,耕层、淋溶层、钙积层、黏化层和母质层淋溶液中可溶性总氮总量分别为2412.63 mg·L-1、3028.94 mg·L-1、244.16 mg·L-1、3648.99 mg·L-1和3356.51 mg·L-1,淋溶层、黏化层和母质层可溶性总氮淋溶量显著高于耕层,而钙积层可溶性总氮淋溶量较耕层显著减少;耕层淋溶液中可溶性总磷总量为0.52 mg·L-1,且显著高于其他4层。2)在试验初期,耕层、淋溶层的硝态氮、可溶性总氮和正磷酸盐淋溶量显著高于黏化层和母质层,进行到第4、5次淋溶,黏化层、母质层的硝态氮和可溶性总氮淋溶量显著高于其他3层,而各发生层间正磷酸盐淋溶量无显著差异;单次淋溶黏化层和母质层铵态氮淋溶量均显著高于其他3层,而耕层可溶性总磷淋溶量始终显著高于其他各层。3)耕层和钙积层的淋溶液中硝态氮是氮素淋溶的主要形态,占可溶性总氮比例分别为69.0%和85.4%,而在淋溶层、黏化层和母质层中分别为41.3%、5.1%和4.6%;在可溶性磷中,以无机态正磷酸盐为主,最高占可溶性总磷的75.9%。4)土壤有机质含量、阳离子交换量、黏粒含量对土壤氮磷的迁移转化有明显主导作用。有机质与氮磷淋溶量呈显著正相关关系,有机质含量高,会增加淋溶初期氮磷的淋溶风险;而阳离子交换量和黏粒含量则与氮磷淋溶呈显著负相关关系,阳离子交换量大和黏粒多能减少氮磷素的淋溶风险。该试验结果说明,由于5种发生层土壤理化性质不同,各发生层氮磷淋溶特征及其淋溶形态也有差异,并且氮磷的淋溶受土壤本身阳离子交换量、黏粒和有机质含量的影响。
关键词:氮磷淋溶/
土壤发生层/
褐土/
淋溶量/
土壤性状/
地下水污染
Abstract:Leached agricultural N and P are the most prominent groundwater pollutants. Five cinnamon soil layers (cultivation, leaching, calcium, clay, and parent) were analyzed via leaching tests to investigate N and P migrations. After five tests, the amount of soluble total N in the leaching solutions were 2412.63 mg·L-1 in cultivation layer, 3028.94 mg·L-1 in leaching layer, 244.16 mg·L-1 in calcium layer, 3648.99 mg·L-1 in clay layer, and 3356.51 mg·L-1 in parent layer. The amount of soluble total N in the leaching, clay, and parent layers was significantly higher than that in the cultivation layer but that of soluble total N in the calcium layer was significantly lower than that in the cultivation layer. The amount of soluble total P in the cultivation layer leaching solution was 0.52 mg·L-1, which was significantly higher than that in all other layers. In the 1st to 3rd leaching time, the leached amounts of nitrate nitrogen, soluble total N, and orthophosphate in the cultivation and leaching layers were significantly higher than those in the clay and parent layers. However, in the 4th and 5th leaching time, the leached amounts of nitrate nitrogen and soluble total N in the clay and parent layers were significantly higher than those in the other layers, and the leached orthophosphate amount did not differ among layers. The amount of leached ammonium nitrogen in the clay and parent layers was significantly higher than that in the other layers after each test, and that of soluble total P in the cultivation layer was always significantly higher than that in the other layers. Nitrate nitrogen was the primary form of leached N in the cultivation and calcium layers, accounting for 69.0% and 85.4% of the total amount of N, respectively; the nitrate nitrogen percentages in the other layers were 41.3% (leaching layer), 5.1% (clay layer), and 4.6% (parent layer). Inorganic orthophosphate was the primary form of soluble P, accounting for 75.9% of the total amount of soluble P. The soil organic matter content, cation exchange capacity (CEC), and clay content affected the migration and transformation of soil N and P. There was a significant positive correlation between organic matter and N and P leaching, and more organic matter content increased the leaching risk in the initial leaching stage. The CEC and clay content were negatively correlated with N and P leaching, and increased CEC and soil clay particles reduced the leaching risk. The physical and chemical properties and N and P leaching characteristics differed among soil layers, and leaching was affected by soil CEC, clay and organic matter contents.
Key words:Nitrogen and phosphorus leaching/
Soil occurrence layers/
Cinnamon soil/
Leaching amount/
Soil properties/
Groundwater pollution

HTML全文


图1不同土壤发生层铵态氮(A)、硝态氮(B)和可溶性总氮(C)的淋溶量变化
同次淋溶不同小写字母表示不同土壤发生层间差异显著(P<0.05)。
Figure1.Changes of ammonium nitrogen (A), nitrate nitrogen (B) and soluble total nitrogen (C) leaching amounts in different soil occurrence layers
Different lowercase letters in the same leaching indicate significant differences among soil occurrence layers at P<0.05 level.


下载: 全尺寸图片幻灯片


图2不同土壤发生层正磷酸盐(A)和可溶性总磷(B)淋溶量变化
同次淋溶不同小写字母表示不同土壤发生层间差异显著(P<0.05)。
Figure2.Changes of orthophosphate (A) and soluble total phosphorus (B) leaching amounts in different soil occurrence layers
Different lowercase letters in the same leaching indicate significant differences among different soil occurrence layers at P<0.05 level.


下载: 全尺寸图片幻灯片

表1试验区石灰性褐土不同土壤发生层的理化性质
Table1.Physicochemical properties of different soil occurrence layers of calcareous cinnamon soil in the study area
土壤发生层
Soil occurrence layer
容重
Bulk density
(g·cm-3)
阳离子交换量
Cation exchange capacity
(cmol·kg-1)
CaCO3
(g·kg-1)
机械组成
Mechanical components
(g·kg-1)
pH 土壤有机质
Soil organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
NO3--N
(mg·kg-1)
NH4+-N
(mg·kg-1)
有效磷
Olsen-P
(mg·kg-1)
砂粒
Sand
粉粒
Silt
黏粒
Clay
耕层
Cultivation layer
1.30 38.04 33.58 64.97 22.41 12.62 7.63 30.60 1.73 1.23 6.87 2.84 12.40
钙积层
Calcium layer
1.41 33.70 38.38 49.71 7.98 42.31 7.97 6.28 0.54 1.28 5.31 4.66 1.20
黏化层
Clay layer
1.43 16.30 22.82 39.68 20.33 39.99 7.53 0.85 0.43 0.44 12.52 7.73 1.20
淋溶层
Leaching layer
1.34 29.02 49.85 69.11 5.96 24.93 7.78 25.77 1.60 0.64 4.87 4.68 2.00
母质层
Parent layer
1.46 20.54 26.09 35.56 20.24 44.20 7.68 1.57 0.47 0.36 16.42 3.08 2.80


下载: 导出CSV
表2每次试验不同土壤形成层收集的淋溶液量
Table2.Leachate amounts of different soil occurrence layers in each leaching test ?mL
土壤发生层
Soil occurrence layer
第1次淋溶
First leaching
第2次淋溶
Second leaching
第3次淋溶
Third leaching
第4次淋溶
Fourth leaching
第5次淋溶
Fifth leaching
耕层Cultivation layer 850 573 630 503 502
钙积层Calcium layer 397 477 485 525 537
黏化层Clay layer 505 458 497 527 528
淋溶层Leaching layer 517 502 402 418 417
母质层Parent layer 563 470 520 532 543
每次的淋洗水量为700 mL。The water for each leaching is 700 mL.


下载: 导出CSV
表3间歇淋溶试验5次淋洗的可溶性总氮和可溶性总磷的淋溶总量
Table3.Leaching amount of soluble total nitrogen and soluble total phosphorus for five leaches of the intermittent leaching test
土壤发生层
Soil occurrence layer
可溶性总氮Soluble total nitrogen 可溶性总磷Soluble total phosphorus
淋溶量
Leaching amount
(mg·L-1)
占施氮比
Ratio to nitrogen fertilizer
(%)
淋溶量
Leaching amount
(mg·L-1)
占施磷比
Ratio to phosphorus fertilizer
(%)
耕层Cultivation layer 2412.63±19.69c 20.7 0.52±0.06a 0.0092
钙积层Calcium layer 244.16±15.91d 2.1 0.27±0.01c 0.0047
黏化层Clay layer 3648.99±12.58a 31.3 0.25±0.02c 0.0044
淋溶层Leaching layer 3028.94±20.50b 26.0 0.37±0.07b 0.0064
母质层Parent layer 3356.51±58.45ab 28.8 0.30±0.03bc 0.0052
同列不同小写字母表示不同土壤发生层间差异显著(P<0.05)。Different lowercase letters in the same line indicate significant differences among different soil occurrence layers at P<0.05 level.


下载: 导出CSV
表4不同发生层土壤氮磷淋溶形态特征
Table4.Morphology of nitrogen and phosphorus leaching in different soil occurrence layers
土壤发生层
Soil occurrence layer
铵态氮NH4+-N 硝态氮NO3--N 正磷酸盐PO43+-P
淋溶量
Leaching amount
(mg·L-1)
占可溶性总氮比
Ratio to soluble total nitrogen
(%)
淋溶量
Leaching amount
(mg·L-1)
占可溶性总氮比
Ratio to soluble total nitrogen
(%)
淋溶量
Leaching amount
(mg·L-1)
占可溶性总磷比
Ratio to soluble total phosphorus
(%)
耕层
Cultivation layer
1.55±0.17b 0.06 1663.78±16.65a 68.96 0.33±0.01a 63.25
钙积层
Calcium layer
2.33±0.36b 0.95 208.45±14.97c 85.38 0.19±0.01b 71.47
黏化层
Clay layer
25.73±1.58a 0.71 185.35±3.05c 5.08 0.19±0.01b 75.94
淋溶层
Leaching layer
2.95±0.40b 0.10 1250.15±14.61b 41.27 0.18±0.02b 49.74
母质层
Parent layer
22.28±4.72a 0.66 154.00±17.06c 4.59 0.21±0.02b 69.55
不同小写字母表示不同土壤发生层间差异显著(P<0.05)。Different lowercase letters mean significant differences among different soil occurrence layers at P<0.05 level.


下载: 导出CSV
表5不同淋溶试验土壤氮磷淋溶量与土壤性状的相关性
Table5.Correlation between nitrogen and phosphorus leaching and soil properties of different leaching test
土壤养分
Soil nutrient
第1次淋溶
First leaching
第2次淋溶
Second leaching
第3次淋溶
Third leaching
第4次淋溶
Fourth leaching
第5次淋溶
Fifth leaching
第1次淋溶
First leaching
第2次淋溶
Second leaching
第3次淋溶
Third leaching
第4次淋溶
Fourth leaching
第5次淋溶
Fifth leaching
CaCO3 阳离子交换Cation exchange
NH4+-N -0.184 -0.742 -0.778 -0.804 -0.821 -0.869 -0.956* -0.963** -0.938* -0.921*
NO3--N 0.578 0.696 0.823 0.489 -0.715 0.784 0.653 0.355 -0.273 -0.969**
TDN 0.803 0.508 -0.336 -0.766 -0.814 0.295 0.213 -0.844 -0.961** -0.913*
PO43+-P 0.117 0.408 0.310 0.397 0.391 0.794 0.642 -0.306 -0.219 0.327
TDP 0.697 0.676 0.713 0.526 0.540 0.808 0.756 0.488 0.669 0.689
土壤养分
Soil nutrient
黏粒Clay有机质Organic matter
NH4+-N 0.773 0.661 0.605 0.571 0.635 -0.714 -0.771 -0.750 -0.738 -0.771
NO3--N -0.977** -0.932* -0.667 -0.218 0.605 0.990** 0.987** 0.798 0.322 -0.720
TDN -0.638 -0.794 0.199 0.581 0.628 0.763 0.808 -0.276 -0.720 -0.760
PO43+-P -0.828 -0.963** 0.576 0.033 -0.905* 0.740 0.905* -0.355 0.132 0.869
TDP -0.861 -0.945* -0.823 -0.987** -0.970** 0.953* 0.999** 0.912* 0.986** 0.985**
*: P<0.05; **: P<0.01; TDN:可溶性总氮; TDP:可溶性总磷; PO43+-P正磷酸盐。TDN: soluble total nitrogen; TDP: soluble total phosphorus; PO43+-Porthophosphate


下载: 导出CSV

参考文献(35)
[1]左欣, 江涛, 张岱伟.基于农业生产胁迫下的地下水脆弱性评价与分析[J].环境污染与防治, 2017, 39(5):472-479 https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201705004.htm
ZUO X, JIANG T, ZHANG D W. Vulnerability assessment of groundwater under the stress of agricultural production[J]. Environmental Pollution and Control, 2017, 39(5):472-479 https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201705004.htm
[2]薛禹群, 张幼宽.地下水污染防治在我国水体污染控制与治理中的双重意义[J].环境科学学报, 2009, 29(3):474-481 doi: 10.3321/j.issn:0253-2468.2009.03.002
XUE Y Q, ZHANG Y K. Twofold significance of ground water pollution prevention in China's water pollution control[J]. Acta Scientiae Circumstantiae, 2009, 29(3):474-481 doi: 10.3321/j.issn:0253-2468.2009.03.002
[3]李吉平, 徐勇峰, 陈子鹏, 等.洪泽湖地区麦稻两熟农田及杨树林地降雨径流对地下水水质的影响[J].中国生态农业学报(中英文), 2019, 27(7):1097-1104 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0712&flag=1
LI J P, XU Y F, CHEN Z P, et al. Effects of rainfall and runoff on the groundwater quality in farmland and poplar forestland in the area of Hung-tse Lake[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7):1097-1104 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0712&flag=1
[4]杨林章, 吴永红.农业面源污染防控与水环境保护[J].中国科学院院刊, 2018, 33(2):168-176 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802008.htm
YANG L Z, WU Y H. Prevention and control of agricultural non-point source pollution and aquatic environmental protection[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(2):168-176 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802008.htm
[5]袁丽金, 巨晓棠, 张丽娟, 等.设施蔬菜土壤剖面氮磷钾积累及对地下水的影响[J].中国生态农业学报, 2010, 18(1):14-19 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201001004.htm
YUAN L J, JU X T, ZHANG L J, et al. NPK accumulation in greenhouse soil and its effect on groundwater[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):14-19 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201001004.htm
[6]李美璇, 王观竹, 郭平.生物炭对冻融黑土中铵态氮和硝态氮淋失的影响[J].农业环境科学学报, 2016, 35(7):1360-1367 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607019.htm
LI M X, WANG G Z, GUO P. Effects of biochar on ammonium nitrogen and nitrate nitrogen leaching from black soil under freeze-thaw cycle[J]. Journal of Agro-Environment Science, 2016, 35(7):1360-1367 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607019.htm
[7]刘飞, 杨柯, 李括, 等.我国四种典型土类有机碳剖面分布特征[J].地学前缘, 2011, 18(6):20-26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201106005.htm
LIU F, YANG K, LI K, et al. Profile distribution of organic carbon of four typical soils in China[J]. Earth Science Frontiers, 2011, 18(6):20-26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201106005.htm
[8]赵秀娟, 任意, 张淑香. 25年来褐土区土壤养分演变特征[J].核农学报, 2017, 31(8):1647-1655 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201708024.htm
ZHAO X J, REN Y, ZHANG S X. Evolution characteristics of cinnamon soil nutrients in 25 years[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(8):1647-1655 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201708024.htm
[9]黄昌勇, 徐建明.土壤学[M].第3版.北京:中国农业出版社, 2010:101-102
HUANG C Y, XU J M. Soil Science[M]. 3rd ed. Beijing:China Agricultural Press, 2010:101-102
[10]同延安, 石维, 吕殿青, 等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报, 2005, 11(4):435-441 doi: 10.3321/j.issn:1008-505X.2005.04.002
TONG Y A, SHI W, LYU D Q, et al. Relationship between soil texture and nitrate distribution and accumulation in three types of soil profile in Shaanxi[J]. Plant Nutrition and Fertilizer Science, 2005, 11(4):435-441 doi: 10.3321/j.issn:1008-505X.2005.04.002
[11]李久生, 杨风艳, 栗岩峰.层状土壤质地对地下滴灌水氮分布的影响[J].农业工程学报, 2009, 25(7):25-31 doi: 10.3969/j.issn.1002-6819.2009.07.005
LI J S, YANG F Y, LI Y F. Water and nitrogen distribution under subsurface drip fertigation as affected by layered-textural soils[J]. Transactions of the CSAE, 2009, 25(7):25-31 doi: 10.3969/j.issn.1002-6819.2009.07.005
[12]沈仁芳, 蒋柏藩.黄淮海地区潮土对磷的吸附和解吸特性[J].土壤, 1993, 25(2):68-70 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA199302003.htm
SHEN R F, JIANG B F. Adsorption and desorption characteristics of phosphorus from tidal soils in Huang-Huai-Hai area[J]. Soils, 1993, 25(2):68-70 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA199302003.htm
[13]李祖荫, 吕家珑.碳酸钙与物理粘粒固磷特性的研究[J].土壤, 1995, 27(6):304-310 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA506.005.htm
LI Z Y, LYU J L. Study of calcium carbonate and clay physical properties of phosphorus fixation[J]. Soils, 1995, 27(6):304-310 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA506.005.htm
[14]郭晓冬, 张雪琴, 杨玲.甘肃省主要农业区土壤对磷的吸附与解吸特性[J].西北农业学报, 1997, 6(2):7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX702.002.htm
GUO X D, ZHANG X Q, YANG L. Phosphorus sorption and desorption properties of agricultural soils in Gansu Province[J]. Acta Agriculturae Boreali-occidentalis Sinica, 1997, 6(2):7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX702.002.htm
[15]KOWALENKO C G, YU S. Solution, exchangeable and clay-fixed ammonium in south coast British Columbia soils[J]. Canadian Journal of Soil Science, 1996, 76(4):473-483 doi: 10.4141/cjss96-059
[16]沃飞, 陈效民, 方堃, 等.太湖地区两种典型水稻土中氮、磷迁移转化的研究[J].土壤通报, 2007, 38(6):1058-1063 doi: 10.3321/j.issn:0564-3945.2007.06.004
WO F, CHEN X M, FANG K, et al. Transference and transformation of nitrogen and phosphorus in two typical paddy soils in Tai-Lake region[J]. Chinese Journal of Soil Science, 2007, 38(6):1058-1063 doi: 10.3321/j.issn:0564-3945.2007.06.004
[17]纪雄辉, 郑圣先, 石丽红, 等.洞庭湖区不同稻田土壤及施肥对养分淋溶损失的影响[J].土壤学报, 2008, 45(4):663-671 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200804012.htm
JI X H, ZHENG S X, SHI L H, et al. Effect of fertilization on nutrient leaching loss from different paddy soils in Dongting Lake Area[J]. Acta Pedologica Sinica, 2008, 45(4):663-671 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200804012.htm
[18]牛新湘, 马兴旺.农田土壤养分淋溶的研究进展[J].中国农学通报, 2011, 27(3):451-456 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201103092.htm
NIU X X, MA X W. Research advances on leaching of fertilizer nutrients from agricultural soils[J]. Chinese Agricultural Science Bulletin, 2011, 27(3):451-456 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201103092.htm
[19]闫春妮, 黄娟, 李稹, 等.湿地植物根系及其分泌物对土壤脲酶、硝化-反硝化的影响[J].生态环境学报, 2017, 26(2):303-308 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201702016.htm
YAN C N, HUANG J, LI Z, et al. Effect of plant roots and its exudates on urease activity, nitrification and denitrification in wetland soil[J]. Ecology and Environmental Sciences, 2017, 26(2):303-308 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201702016.htm
[20]曾立雄, 黄志霖, 肖文发, 等.三峡库区不同土地利用类型氮磷流失特征及其对环境因子的响应[J].环境科学, 2012, 33(10):3390-3396 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201210016.htm
ZENG L X, HUANG Z L, XIAO W F, et al. Nitrogen and phosphorus loss in different land use types and its response to environmental factors in the Three Gorges Reservoir Area[J]. Environmental Science, 2012, 33(10):3390-3396 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201210016.htm
[21]徐梦, 刘鸿雁, 吴攀, 等.黔中水利枢纽不同土地利用类型土壤养分淋溶特征[J].水土保持研究, 2017, 24(1):25-30 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201701005.htm
XU M, LIU H Y, WU P, et al. Characteristics of soil nutrient leaching in different land use types of hydro-junction in central Guizhou Province[J]. Research of Soil and Water Conservation, 2017, 24(1):25-30 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201701005.htm
[22]蒋小欣, 阮晓红, 邢雅囡, 等.城市重污染河道上覆水氮营养盐浓度及DO水平对底质氮释放的影响[J].环境科学, 2007, 28(1):87-91 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200701016.htm
JIANG X X, RUAN X H, XING Y N, et al. Effects of nutrient concentration and DO status of heavily polluted urban stream water on nitrogen release from sediment[J]. Environmental Science, 2007, 28(1):87-91 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200701016.htm
[23]鲍俊丹, 石美, 张妹婷, 等.中国典型土壤硝化作用与土壤性质的关系[J].中国农业科学, 2011, 44(7):1390-1398 doi: 10.3864/j.issn.0578-1752.2011.07.011
BAO J D, SHI M, ZHANG M T, et al. Nitrification of main soils in china and its relationship with soil properties[J]. Scientia Agricultura Sinica, 2011, 44(7):1390-1398 doi: 10.3864/j.issn.0578-1752.2011.07.011
[24]陈效民, 吴华山, 沃飞.利用染色分析法确定农田土壤中硝态氮垂直运移的研究[J].水土保持学报, 2007, 21(5):21-24 doi: 10.3321/j.issn:1009-2242.2007.05.006
CHEN X M, WU H S, WO F. Study on vertical transport of Nitrate-N with soil coloration analysis in farmland[J]. Journal of Soil and Water Conservation, 2007, 21(5):21-24 doi: 10.3321/j.issn:1009-2242.2007.05.006
[25]王静, 付伟章, 葛晓红, 等.玉米生物炭和改性炭对土壤无机氮磷淋失影响的研究[J].农业环境科学学报, 2018, 37(12):2810-2820 doi: 10.11654/jaes.2018-0030
WANG J, FU W Z, GE X H, et al. Effects of corn biochar and modified carbon on leaching of inorganic nitrogen and phosphorus in soil[J]. Journal of Agro-Environment Science, 2018, 37(12):2810-2820 doi: 10.11654/jaes.2018-0030
[26]丁洪, 蔡贵信, 王跃思, 等.华北平原几种主要类型土壤的硝化及反硝化活性[J].农业环境保护, 2001, 20(6):390-393 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200106001.htm
DING H, CAI G X, WANG Y S, et al. Nitrification and denitrification potential in different types of soils in the North China Plain[J]. Agro-Environmental Protection, 2001, 20(6):390-393 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200106001.htm
[27]夏天翔, 李文朝.抚仙湖北岸有机与常规种植菜地土壤氮、磷流失及累积特征[J].中国生态农业学报, 2008, 16(3):560-564 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200803006.htm
XIA T X, LI W C. Nitrogen and phosphorus loss and accumulation in organic and conventional vegetable fields in northern bank of Fuxian Lake[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3):560-564 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200803006.htm
[28]刘光栋, 吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究[J].中国生态农业学报, 2003, 11(1):91-93 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200301026.htm
LIU G D, WU W L. The dynamics of soil nitrate nitrogen leaching and contamination of the groundwater in high-yield farmland[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1):91-93 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200301026.htm
[29]宋春, 韩晓增.长期施肥条件下土壤磷素的研究进展[J].土壤, 2009, 41(1):21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200901005.htm
SONG C, HAN X Z. Advances in phosphorus in long-term fertilized soil[J]. Soils, 2009, 41(1):21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200901005.htm
[30]王甜, 黄志霖, 曾立雄, 等.不同施肥处理对三峡库区柑橘园土壤氮磷淋失影响[J].水土保持学报, 2018, 32(5):53-57 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201805009.htm
WANG T, HUANG Z L, ZENG L X, et al. Effects of different fertilization on nitrogen and phosphorus leaching of citrus orchard soil in the Three Gorges Reservoir Area[J]. Journal of Soil and Water Conservation, 2018, 32(5):53-57 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201805009.htm
[31]王经纬, 王艳玲, 姚怡, 等.长期施肥对旱地红壤团聚体磷素固持与释放能力的影响[J].土壤学报, 2017, 54(5):1240-1250 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201705018.htm
WANG J W, WANG Y L, YAO Y, et al. Effects of long-term fertilization on phosphorus retention and release of soil aggregates in upland red soils[J]. Acta Pedologica Sinica, 2017, 54(5):1240-1250 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201705018.htm
[32]夏文建, 冀建华, 刘佳, 等.长期不同施肥红壤磷素特征和流失风险研究[J].中国生态农业学报, 2018, 26(12):1876-1886 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201812015.htm
XIA W J, JI J H, LIU J, et al. Effect of long-term fertilization on soil phosphorus characteristics and loss risk of red soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12):1876-1886 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201812015.htm
[33]王静, 丁树文, 李朝霞, 等.丹江库区典型土壤磷的淋溶模拟研究[J].农业环境科学学报, 2008, 27(2):692-697 doi: 10.3321/j.issn:1672-2043.2008.02.053
WANG J, DING S W, LI Z X, et al. Simulated study on phosphorus leaching of typical soils in Danjiang Reservoir Area[J]. Journal of Agro-Environment Science, 2008, 27(2):692-697 doi: 10.3321/j.issn:1672-2043.2008.02.053
[34]HECKRATH G, BROOKES P C, POULTON P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk Experiment[J]. Journal of Environmental Quality, 1995, 24(5):904-910 doi: 10.2134/jeq1995.00472425002400050018x
[35]杨学云, 古巧珍, 马路军, 等.塿土磷素淋移的形态研究[J].土壤学报, 2005, 42(5):792-798 doi: 10.3321/j.issn:0564-3929.2005.05.012
YANG X Y, GU Q Z, MA L J, et al. Forms of phosphorus leaching in loessial soil[J]. Acta Pedologica Sinica, 2005, 42(5):792-798 doi: 10.3321/j.issn:0564-3929.2005.05.012

相关话题/土壤 农业 污染 环境科学 农田