删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

地下水位波动对不同施氮量农田土壤硝态氮运移影响

本站小编 Free考研考试/2022-01-01

刘静,
朱鑫宇,
李顺江,
康凌云,
马茂亭,
杜连凤,
北京市农林科学院植物营养与资源研究所 北京 100097
基金项目: 国家“十三五”重点研发计划项目2016YFD0800104
国家自然科学基金项目41907078
北京市自然科学基金项目8202020

详细信息
作者简介:刘静, 研究方向为农田面源污染防控。E-mail:liujing9712@163.com
通讯作者:杜连凤, 研究方向为农田面源污染防控。E-mail:dulianfengyzs@163.com
中图分类号:S273

计量

文章访问数:323
HTML全文浏览量:13
PDF下载量:183
被引次数:0
出版历程

收稿日期:2020-08-31
录用日期:2020-09-29
刊出日期:2021-01-01

Effects of groundwater fluctuation on nitrate nitrogen transport after nitrogen application in cropland soil

LIU Jing,
ZHU Xinyu,
LI Shunjiang,
KANG Lingyun,
MA Maoting,
DU Lianfeng,
Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Funds: the National Key Research and Development Project of China2016YFD0800104
the National Natural Science Foundation of China41907078
Beijing Natural Science Foundation8202020

More Information
Corresponding author:DU Lianfeng, E-mail: dulianfengyzs@163.com


摘要
HTML全文
(5)(0)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:明确地下水位波动对农田土壤剖面和地下水NO3--N运移的影响,可为减少土壤氮素淋失、降低地下水硝酸盐污染风险提供依据。本研究采用大型土柱温室种植甘蓝,研究2种水位波动(水位不变、水位每隔10 d波动20 cm)和3种施氮量[0 kg(N)·hm-2、225 kg(N)·hm-2、450 kg(N)·hm-2]对土壤含水量、土壤溶液NO3--N浓度、地下水NO3--N浓度和作物产量的影响。结果表明,水位波动和施氮肥对NO3--N运移的影响与土壤剖面深度有关。0~20 cm包气带土壤NO3--N含量受施氮量影响,过量施氮肥[450 kg(N)·hm-2]导致该剖面NO3--N累积。20~60 cm水位波动带土壤NO3--N含量受施氮量和水位波动的共同作用:施氮量增加提高NO3--N含量;水位波动降低剖面土壤NO3--N含量,水位上升和下降均促进土壤NO3--N随着水流运动向下层迁移;剖面土壤硝态氮含量高,增加NO3--N进入地下水的风险。60~80 cm淹水区剖面土壤NO3--N含量较低。作物产量受水位波动影响不显著。在地下水位埋深较浅的农业区进行氮素污染防控时,不可忽视水位波动对NO3--N运移的影响。
关键词:水位波动/
施氮量/
土壤溶液/
硝态氮/
运移/
地下水/
产量
Abstract:Understanding the effects of groundwater fluctuations on nitrate nitrogen (NO3--N) transport in the soil vertical profile is important for reducing nitrogen (N) leaching and nitrate pollution in croplands with shallow groundwater. This study investigated effects of groundwater fluctuations and nitrogen application rate in a greenhouse cabbage with large soil column experimental devices. Two groundwater fluctuation levels (W0, stable; W1, 20 cm fluctuation per 10 days) and three levels of nitrogen application (N0, 0 kg(N)·hm-2; N1, 225 kg(N)·hm-2; N2, 450 kg(N)·hm-2) were tested to determine water contents and NO3--N concentration changes at different soil depths, NO3--N concentration in groundwater, and crop yield. The results showed that fluctuating groundwater affected NO3--N transport depending on the soil depth and nitrogen application rate. At 0–20 cm depth (part of the vadose zone), excessive N application led to NO3--N accumulation in soil, but there was no correlation with groundwater fluctuation. At 20–60 cm depth (groundwater fluctuation zone), increased N fertilizer increased the soil NO3--N, and groundwater level changes promoted NO3--N migration into deeper soil, increasing the NO3--N groundwater pollution risk (especially in soil with already high NO3--N concentrations). At 60–80 cm depth (the flooding area), there was less NO3--N in soil, mainly due to denitrification. Crop yield did not significantly correlate with groundwater level changes. Groundwater fluctuations affected = NO3--N transport and should be considered in agricultural areas with shallow groundwater levels to prevent and control nitrogen pollution.
Key words:Groundwater fluctuation/
Nitrogen application rate/
Soil solution/
Nitrate nitrogen/
Transport/
Groundwater/
Yield

HTML全文


图1水位波动模拟试验土柱装置图
Figure1.Schematic diagram of soil column device for simulation test of groundwater level fluctuation


下载: 全尺寸图片幻灯片


图2水位波动下不同施氮量农田的土壤剖面体积含水率变化
W0:水位稳定在80 cm; W1:水位每10 d变化20 cm, 10 d、20 d、30 d、40 d、50 d、60 d的水位分别为80 cm、100 cm、80 cm、60 cm、40 cm、60 cm; N0:施氮量为0 kg(N)·hm-2; N1:施氮量为225 kg(N)·hm-2; N2:施氮量为450 kg(N)·hm-2。N1和N2处理第1 d施底肥, 第21 d和41 d追施氮肥。
Figure2.Volumetric water contents at different depths in soil vertical profile under different treatments of nitrogen application rate and groundwater level
W0: groundwater level is 80 cm; W1: groundwater level is 80 cm, 100 cm, 80 cm, 60 cm, 40 cm and 60 cm on the 10th, 20th, 30th, 40th, 50th and 60th days, respectively. N0: 0 kg(N)·hm-2 nitrogen fertilizer; N1: 225 kg(N)·hm-2 nitrogen fertilizer; N2: 450 kg(N)·hm-2 nitrogen fertilizer. For N1 and N2, base fertilizer was applied on the 1st day, and topdressing nitrogen fertilizer was applied on the 21th and 41th days, respectively.


下载: 全尺寸图片幻灯片


图3水位波动下不同施氮量农田土壤剖面溶液NO3--N含量变化
W0:水位稳定在80 cm; W1:水位每10 d变化20 cm, 10 d、20 d、30 d、40 d、50 d、60 d的水位分别为80 cm、100 cm、80 cm、60 cm、40 cm、60 cm; N0:施氮量为0 kg(N)·hm-2; N1:施氮量为225 kg(N)·hm-2; N2:施氮量为450 kg(N)·hm-2。N1和N2处理第1 d施底肥, 第21 d和41 d追施氮肥。
Figure3.NO3--N contents of soil solution at different depths in soil vertical profile under different treatments of nitrogen application rate and groundwater level
W0: groundwater level is 80 cm; W1: groundwater level is 80 cm, 100 cm, 80 cm, 60 cm, 40 cm and 60 cm on the 10th, 20th, 30th, 40th, 50th and 60th days, respectively. N0: 0 kg(N)·hm-2 nitrogen fertilizer; N1: 225 kg(N)·hm-2 nitrogen fertilizer; N2: 450 kg(N)·hm-2 nitrogen fertilizer. For N1 and N2, base fertilizer was applied on the 1st day, and topdressing nitrogen fertilizer was applied on the 21th and 41th days, respectively.


下载: 全尺寸图片幻灯片


图4水位波动下不同施氮量农田地下水NO3--N浓度变化
W0:水位稳定在80 cm; W1:水位每10 d变化20 cm, 10 d、20 d、30 d、40 d、50 d、60 d的水位分别为80 cm、100 cm、80 cm、60 cm、40 cm、60 cm; N0:施氮量为0 kg(N)·hm-2; N1:施氮量为225 kg(N)·hm-2; N2:施氮量为450 kg(N)·hm-2。N1和N2处理第1 d施底肥, 第21 d和41 d追施氮肥。
Figure4.NO3--N concentrations of farmland groundwater under different treatments of nitrogen application rate and groundwater level
W0: groundwater level is 80 cm; W1: groundwater level is 80 cm, 100 cm, 80 cm, 60 cm, 40 cm and 60 cm on the 10th, 20th, 30th, 40th, 50th and 60th days, respectively. N0: 0 kg(N)·hm-2 nitrogen fertilizer; N1: 225 kg(N)·hm-2 nitrogen fertilizer; N2: 450 kg(N)·hm-2 nitrogen fertilizer. For N1 and N2, base fertilizer was applied on the 1st day, and topdressing nitrogen fertilizer was applied on the 21th and 41th days, respectively.


下载: 全尺寸图片幻灯片


图5水位波动下不同施氮量农田的作物产量
W0:水位稳定在80 cm; W1:水位每10 d变化20 cm, 10 d、20 d、30 d、40 d、50 d、60 d的水位分别为80 cm、100 cm、80 cm、60 cm、40 cm、60 cm; N0:施氮量为0 kg(N)·hm-2; N1:施氮量为225 kg(N)·hm-2; N2:施氮量为450 kg(N)·hm-2。N1和N2处理第1 d施底肥, 第21 d和41 d追施氮肥。
Figure5.Crop yields under different treatments of nitrogen application rate and groundwater level
W0: groundwater level is 80 cm; W1: groundwater level is 80 cm, 100 cm, 80 cm, 60 cm, 40 cm and 60 cm on the 10th, 20th, 30th, 40th, 50th and 60th days, respectively. N0: 0 kg(N)·hm-2 nitrogen fertilizer; N1: 225 kg(N)·hm-2 nitrogen fertilizer; N2: 450 kg(N)·hm-2 nitrogen fertilizer. For N1 and N2, base fertilizer was applied on the 1st day, and topdressing nitrogen fertilizer was applied on the 21th and 41th days, respectively.


下载: 全尺寸图片幻灯片


参考文献(22)
[1]ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10):636-639 doi: 10.1038/ngeo325
[2]张卫峰, 马林, 黄高强, 等.中国氮肥发展、贡献和挑战[J].中国农业科学, 2013, 46(15):3161-3171 doi: 10.3864/j.issn.0578-1752.2013.15.010
ZHANG W F, MA L, HUANG G Q, et al. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country[J]. Scientia Agricultura Sinica, 2013, 46(15):3161-3171 doi: 10.3864/j.issn.0578-1752.2013.15.010
[3]ZHOU J Y, GU B J, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6:25088, doi: 10.1038/srep25088
[4]JU X T, KOU C L, ZHANG F S, et al. Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2006, 143(1):117-125 doi: 10.1016/j.envpol.2005.11.005
[5]赵同科, 刘宝存.泛环渤海地区地下水硝酸盐格局与控制[M].北京:科学出版社, 2014:64-67
ZHAO T K, LIU B C. Situation of nitrate in groundwater in regions of the Pan-Bohai Sea and its control[M]. Beijing:Science Press, 2014:64-67
[6]SUGITA F, NAKANE K. Combined effects of rainfall patterns and porous media properties on nitrate leaching[J]. Vadose Zone Journal, 2007, 6(3):548-553 doi: 10.2136/vzj2006.0095
[7]KAOWN D, KOH D C, MAYER B, et al. Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea)[J]. Agriculture Ecosystems & Environment, 2009, 132(1/3):223-231 http://www.cabdirect.org/abstracts/20093208274.html
[8]ZHANG L D, GAO L H, ZHANG L X, et al. Alternate furrow irrigation and nitrogen level effects on migration of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse[J]. Scientia Horticulturae, 2012, 138:43-49 doi: 10.1016/j.scienta.2012.02.003
[9]ASHWORTH D J, SHAW G. Effect of moisture content and redox potential on in situ Kd values for radioiodine in soil[J]. Science of the Total Environment, 2006, 359(1/3):244-254 http://www.ncbi.nlm.nih.gov/pubmed/15927237
[10]ASHWORTH D J, MOORE J, SHAW G. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil[J]. Journal of Environmental Radioactivity, 2008, 99(7):1136-1142 doi: 10.1016/j.jenvrad.2008.01.009
[11]ZHANG B, GAO X P, LI L, et al. Groundwater depth affects phosphorus but not carbon and nitrogen concentrations of a desert phreatophyte in Northwest China[J]. Frontiers in Plant Science, 2018, 9:338 doi: 10.3389/fpls.2018.00338
[12]李翔, 杨天学, 白顺果, 等.地下水位波动对包气带中氮素运移影响规律的研究[J].农业环境科学学报, 2013, 32(12):2443-2450 doi: 10.11654/jaes.2013.12.018
LI X, YANG T X, BAI S G, et al. The effects of groundwater table fluctuation on nitrogen migration in Aeration Zone[J]. Journal of Agro-Environment science, 2013, 32(12):2443-2450 doi: 10.11654/jaes.2013.12.018
[13]颜晓元, 周伟.长江三角洲农田地下水反硝化对硝酸盐的去除作用[J].土壤学报, 2019, 56(2):350-363 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201902010.htm
YAN X Y, ZHOU W. Groundwater nitrate removal through denitrification under farmland in Yangtze River Delta[J]. Acta Pedologica Sinica, 2019, 56(2):350-363 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201902010.htm
[14]LIU J, BI X Q, MA M T, et al. Precipitation and irrigation dominate soil water leaching in cropland in Northern China[J]. Agricultural Water Management, 2019, 211:165-171 doi: 10.1016/j.agwat.2018.09.053
[15]DAI J, WANG Z H, LI M H, et al. Winter wheat grain yield and summer nitrate leaching:Long-term effects of nitrogen and phosphorus rates on the Loess Plateau of China[J]. Field Crops Research, 2016, 196:180-190 doi: 10.1016/j.fcr.2016.06.020
[16]BASSO B, RITCHIE J T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan[J]. Agriculture Ecosystem & Environment, 2005, 108(4):329-341 http://europepmc.org/abstract/AGR/IND43716332
[17]张慧霞, 周怀平, 杨振兴, 等.长期施肥对旱地土壤剖面硝态氮分布和累积的影响[J].山西农业科学, 2014, 42(5):465-469 doi: 10.3969/j.issn.1002-2481.2014.05.14
ZHANG H X, ZHOU H P, YANG Z X, et al. Effect of long-term fertilization to distribution and accumulation of NO3--N in dryland soil[J]. Journal of Shanxi Agricultural Sciences, 2014, 42(5):465-469 doi: 10.3969/j.issn.1002-2481.2014.05.14
[18]张朝, 车玉萍, 李忠佩.水稻土模拟土柱中肥料氮素的迁移转化特征[J].应用生态学报, 2011, 22(12):3236-3242 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201112023.htm
ZHANG C, CHE Y P, LI Z P. Translocation and transformation characteristics of fertilizer nitrogen in paddy soil:A study with simulated soil column[J]. Chinese Journal of Applied Ecology, 2011, 22(12):3236-3242 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201112023.htm
[19]盖霞普, 刘宏斌, 翟丽梅, 等.长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响[J].中国农业科学, 2018, 51(12):2336-2347 doi: 10.3864/j.issn.0578-1752.2018.12.010
GAI X P, LIU H B, ZHAI L M, et al. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk[J]. Scientia Agricultura Sinica, 2018, 51(12):2336-2347 doi: 10.3864/j.issn.0578-1752.2018.12.010
[20]胡春胜, 董文旭, 张玉铭, 等.华北山前平原农田生态系统氮通量与调控[J].中国生态农业学报, 2011, 9(19):997-1003 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105003.htm
HU C S, DONG W X, ZHANG Y M, et al. Nitrogen flux and its manipulation in the cropland ecosystem of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 9(19):997-1003 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105003.htm
[21]刘亥扬.有机物料对稻田土壤硝化活性及N2O排放的影响[D].杭州: 浙江大学, 2019: 47-59
LIU H Y. The effects of organic materials on nitrification activity and N2O emissions in paddy soil[D]. Hangzhou: Zhe-jiang University, 2019: 47-59
[22]刘秋丽.灌施条件下尿素在土壤中的迁移转化规律研究[D].太原: 太原理工大学, 2012: 1-7
LIU Q L. Migration and transformation of urea in the soil under the conditions of irrigation and fertilization[D]. Taiyuan: Taiyuan University of Technology, 2012: 1-7

相关话题/土壤 农田 图片 作物 污染