删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

镉-乙草胺胁迫对蚯蚓-土壤-玉米系统的影响

本站小编 Free考研考试/2022-01-01

刘嫦娥1,,
秦媛儒1,
孟祥怀1,
董红娟2,
王朋1,
岳敏慧1,
肖艳兰1,
汪元凤1,
段昌群1,,
1.云南大学生态与环境学院/云南省高原山地生态与退化环境修复重点实验室/云南省高原湖泊生态修复及流域管理国际联合研究中心 昆明 650091
2.云南大学科技咨询中心 昆明 650091
基金项目: 国家自然科学基金项目31660169
云南省科技计划重点研发项目2019BC001
云南省科技计划重点研发项目2018DG005

详细信息
作者简介:刘嫦娥, 主要从事污染与恢复生态学研究。E-mail: change@ynu.edu.cn
通讯作者:段昌群, 主要从事污染与恢复生态学研究。E-mail: chqduan@ynu.edu.cn
中图分类号:X171.3

计量

文章访问数:248
HTML全文浏览量:15
PDF下载量:355
被引次数:0
出版历程

收稿日期:2020-06-23
录用日期:2020-10-10
刊出日期:2021-03-01

The combined effects of cadmium and acetochlor on an earthworm-soil-maize system

LIU Chang'e1,,
QIN Yuanru1,
MENG Xianghuai1,
DONG Hongjuan2,
WANG Peng1,
YUE Minhui1,
XIAO Yanlan1,
WANG Yuanfeng1,
DUAN Changqun1,,
1. School of Ecology and Environmental Sciences, Yunnan University/Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments/International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming 650091, China
2. Technology Counseling Center, Yunnan University, Kunming 650091, China
Funds: the National Natural Science Foundation of China31660169
the Key Research and Development Projects of Science and Technology of Yunnan Province2019BC001
the Key Research and Development Projects of Science and Technology of Yunnan Province2018DG005

More Information
Corresponding author:DUAN Changqun, Corresponding author, E-mail: chqduan@ynu.edu.cn


摘要
HTML全文
(5)(2)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:重金属与农药复合型污染成为重要的环境问题之一,然而当前关于两者共同作用对蚯蚓-土壤-植物系统的影响研究还很少。为了探讨镉-乙草胺复合污染对蚯蚓-土壤-玉米农田系统的生态毒理效应和生态过程的影响,本研究通过室内模拟试验,从镉-乙草胺复合胁迫下蚯蚓生理响应、土壤理化性质及玉米形态特征等变化,探讨两者复合污染对玉米生长的影响机制。结果表明:1)随着处理时间的延长,镉-乙草胺复合胁迫下蚯蚓体内SOD活性呈先降低再升高的趋势,而MDA含量呈先升高后降低的趋势;复合胁迫处理第2 d和50 d时,20~30 cm土层的蚯蚓数量占所有土层蚯蚓总量百分比比对照分别增加1.34倍和1.14倍,蚯蚓对镉-乙草胺复合污染作出规避效应而向深层土壤迁移。2)镉-乙草胺复合胁迫下土壤有机质和速效磷含量与处理时间、处理方式、污染物无关,随着处理时间的延长,土壤碱解氮含量呈先显著降低后升高的趋势。3)处理第50 d,30 mg·kg-1 镉、200 mg·kg-1 乙草胺及30 mg·kg-1 镉+200 mg·kg-1 乙草胺处理组玉米根数均显著低于对照,抑制率分别为23.21%、42.86%和50.00%,玉米生物量与株高呈相同趋势,即30 mg·kg-1 镉处理> 200 mg·kg-1 乙草胺处理> 30 mg·kg-1 镉+200 mg·kg-1 乙草胺处理。相关分析表明,两种污染物除对蚯蚓 SOD活性产生拮抗效应外,对蚯蚓 MDA、土壤养分与玉米生长指标均不存在交互作用。本研究得出镉-乙草胺复合污染促进蚯蚓向下迁移影响其垂直分布,并且可以通过改变土壤营养元素含量最终抑制玉米的生长。
关键词:镉-乙草胺复合污染/
蚯蚓垂直分布/
玉米生长/
土壤养分
Abstract:Heavy metal and pesticide pollution is a major environmental problem, and the combined effects on earthworm-soil-plant systems have not been thoroughly explored. This study investigated the individual and combined effects of cadmium (Cd) and acetochlor on earthworm physiological responses, soil physical and chemical properties, and maize growth and morphological characteristics. The results showed that superoxide dismutase (SOD) activity in earthworms decreased and then increased, whereas the opposite trend was observed with malondialdehyde (MDA) content. The earthworm distribution across soil layers increased in the compound pollution treatment, and the percentage of earthworms in the total soil layer increased by 1.34 times (on day 2) and 1.14 times (on day 50) compared with that in the control group. The soil organic matter and available phosphorus contents were unaffected by treatment time or contamination method, but alkali-hydrolyzable nitrogen content decreased and then increased with Cd + acetochlor pollution. On day 50, the maize root numbers in all treatment groups were significantly lower than those in the control group; the inhibition rates were 23.21% (30 mg·kg-1 Cd), 42.86% (200 mg·kg-1 acetochlor), and 50.00% (30 mg·kg-1 Cd + 200 mg·kg-1 acetochlor). The maize biomasses and plant heights were largest in the 30 mg·kg-1 Cd group, followed by the 200 mg·kg-1 acetochlor group, and were smallest in the 30 mg·kg-1 Cd + 200 mg·kg-1 acetochlor group. Correlation analysis showed that the interaction between Cd and acetochlor did not affect earthworm MDA content, soil nutrients, or the maize growth index, but antagonistically affected earthworm SOD activity. This study concluded that combined Cd and acetochlor pollution promoted earthworm distribution in the topsoil and inhibited maize growth by altering the soil's physical and chemical properties.
Key words:Compound pollution of Cd and acetochlor/
Vertical distribution of earthworm/
Growth of maize/
Soil nutrients

HTML全文


图1镉、乙草胺胁迫下蚯蚓体内SOD活性(A)和MDA含量(B)的变化
CK: 对照(无添加)处理; Cd: 镉30 mg·kg-1处理; Ace: 乙草胺200 mg·kg-1处理; Cd+Ace: 镉30 mg·kg-1+乙草胺200 mg·kg-1处理。不同小写字母表示不同处理时间不同处理间变化显著(P < 0.05)。CK: no addition treatment; Cd: 30 mg·kg-1 Cd treatment; Ace: 200 mg·kg-1 acetochlor treatment; Cd+Ace: 30 mg·kg-1 Cd+200 mg·kg-1 acetochlor treatment. Different lowercase letters indicate significant differences among different treatments in different exposure times (P < 0.05).
Figure1.SOD activities (A) and MDA contents (B) in earthworm under different Cd and acetochlor treatments


下载: 全尺寸图片幻灯片


图2乙草胺、镉胁迫对蚯蚓0~30 cm土层垂直分布的影响
CK: 对照(无添加)处理; Cd: 镉30 mg·kg-1处理; Ace: 乙草胺200 mg·kg-1处理; Cd+Ace: 镉30 mg·kg-1+乙草胺200 mg·kg-1处理。CK: no addition treatment; Cd: 30 mg·kg-1 Cd treatment; Ace: 200 mg·kg-1 acetochlor treatment; Cd+Ace: 30 mg·kg-1 Cd+200 mg·kg-1 acetochlor treatment.
Figure2.Effects of single/compound stresses of Cd and acetochlor on the vertical distribution of earthworm in 0-30 cm soil


下载: 全尺寸图片幻灯片


图3镉、乙草胺处理土壤有机质(A)、碱解氮(B)和速效磷(C)含量的变化
CK: 对照(无添加)处理; Cd: 镉30 mg·kg-1处理; Ace: 乙草胺200 mg·kg-1处理; Cd+Ace: 镉30 mg·kg-1+乙草胺200 mg·kg-1处理。不同小写字母表示不同处理时间不同处理间变化显著(P < 0.05)。CK: no addition treatment; Cd: 30 mg·kg-1 Cd treatment; Ace: 200 mg·kg-1 acetochlor treatment; Cd+Ace: 30 mg·kg-1 Cd+200 mg·kg-1 acetochlor treatment. Different lowercase letters indicate significant differences among different treatments in different exposure times (P < 0.05).
Figure3.Contents of organic matter (A), alkali-hydrolysis nitrogen (B) and available phosphorus (C) of soil under different Cd and acetochlor treatments


下载: 全尺寸图片幻灯片


图4镉、乙草胺处理对玉米根数(A)、株高(B)和生物量(C)的影响
CK: 对照(无添加)处理; Cd: 镉30 mg·kg-1处理; Ace: 乙草胺200 mg·kg-1处理; Cd+Ace: 镉30 mg·kg-1+乙草胺200 mg·kg-1处理。不同小写字母表示不同处理时间不同处理间变化显著(P < 0.05)。CK: no addition treatment; Cd: 30 mg·kg-1 Cd treatment; Ace: 200 mg·kg-1 acetochlor treatment; Cd+Ace: 30 mg·kg-1 Cd+200 mg·kg-1 acetochlor treatment. Different lowercase letters indicate significant differences among different treatments in different exposure times (P < 0.05).
Figure4.Effect of single/compound stresses of Cd and acetochlor on roots number (A), plant height (B) and biomass (C) of maize


下载: 全尺寸图片幻灯片


图5镉、乙草胺复合胁迫对蚯蚓-土壤-玉米生态系统的影响框图
Figure5.Diagram of the effect of cadmium and acetochlor on earthworm-soil-maize system


下载: 全尺寸图片幻灯片

表1蚯蚓-土壤-玉米体系中各指标相关性
Table1.Correlation among various indexes in earthworm-soil-maize system
指标 Index 玉米株高
Plant height of maize
玉米生物量
Biomass of maize
玉米根数量
Root number
of maize
蚯蚓 MDA MDA of
earthworm
蚯蚓 SOD
SOD of earthworm
速效磷
Soil available phosphorus
碱解氮
Soil alkali-hydrolysis nitrogen
有机质
Soil organic matter
玉米株高
Plant height of maize
1.000
玉米生物量
Biomass of maize
0.727** 1.000
玉米根数量
Root number of maize
0.703** 0.746** 1.000
蚯蚓 MDA
MDA of earthworm
0.495** 0.455** 0.623** 1.000
蚯蚓 SOD
SOD of earthworm
-0.584** -0.466** -0.676** -0.757** 1.000
土壤速效磷
Soil available phosphorus
-0.290* -0.396** -0.503** -0.450** 0.467** 1.000
土壤碱解氮
Soil alkali-hydrolysis nitrogen
-0.409** -0.430** -0.559** -0.521** 0.680** 0.330** 1.000
土壤有机质
Soil organic matter
0.108 0.130 0.212 0.326** -0.428** -0.095 -0.284** 1.000
**: P < 0.01水平(双尾)相关性极显著; *: P < 0.05水平(双尾)相关性显著。** and * indicate significant correlation at P < 0.01 (double tails) and P < 0.05 (double tails) levels, respectively.


下载: 导出CSV
表2蚯蚓-土壤-玉米体系指标的时间、污染物及处理方式3因素相关分析
Table2.Correlation analysis of treatment time, pollutants and treatment methods of earthworm-soil-maize system
指标
Index

Cd
乙草胺
Acetochlor
处理时间
Treatment time
镉×乙草胺
Cd×acetochlor
镉×时间
Cd×treatment time
乙草胺×时间
Acetochlor× treatment time
镉×乙草胺×时间
Cd×acetochlor× treatment time
蚯蚓
Earthworm
MDA含量 MDA content 4.095* 1.102ns 52.720*** 0.289ns 0.332ns 1.956ns 1.310ns
SOD活性 SOD activity 0.383ns 0.331ns 116.796*** 7.010* 0.569ns 0.062ns 2.379ns
土壤
Soil
速效磷
Available phosphorus
0.238ns 0.434ns 10.704*** 0.163ns 1.392ns 1.036ns 1.207ns
碱解氮
Alkali-hydrolysis nitrogen
0.573ns 1.231ns 28.642*** 1.576ns 0.904ns 0.103ns 1.448ns
有机质
Organic matter
0.067ns 0.444ns 3.589* 1.611ns 0.654ns 1.518ns 0.241ns
玉米
Maize
株高Plant height 0.114ns 4.623* 28.233*** 0.003ns 1.516ns 1.631ns 0.368ns
生物量 Biomass 4.852* 30.553*** 63.178*** 3.706ns 3.283* 5.454** 1.838ns
根数Root number 5.173* 26.187*** 72.149*** 2.910ns 1.735ns 9.033*** 2.134ns
ns: 相关性不显著; *: 显著相关(P < 0.05); **: 极显著相关(P < 0.01); ***: 极显著相关(P < 0.001). ns: non-significant correlation; *: significant correlation at P < 0.05 level; **: significant correlation at P < 0.01 level; ***: significant correlation at P < 0.001.


下载: 导出CSV

参考文献(39)
[1]NAVARRO S, VELA N, NAVARRO G. Review. An overview on the environmental behaviour of pesticide residues in soils[J]. Spanish Journal of Agricultural Research, 2007, 5(3): 357-375 doi: 10.5424/sjar/2007053-5344
[2]JIANG R, WANG M E, CHEN W P, et al. Ecological risk evaluation of combined pollution of herbicide siduron and heavy metals in soils[J]. Science of the Total Environment, 2018, 626: 1047-1056 doi: 10.1016/j.scitotenv.2018.01.135
[3]MORENO J L, HERNáNDEZ T, GARCIA C. Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil[J]. Biology and Fertility of Soils, 1999, 28(3): 230-237 doi: 10.1007/s003740050487
[4]黎勇, 钟格梅, 黄江平, 等. 2011—2013年广西农田土壤镉含量调查[J]. 环境卫生学杂志, 2014, 4(6): 544-547 https://www.cnki.com.cn/Article/CJFDTOTAL-GWYX201406011.htm
LI Y, ZHONG G M, HUANG J P, et al. Survey on soil cadmium content in Guangxi in 2011—2013[J]. Journal of Environmental Hygiene, 2014, 4(6): 544-547 https://www.cnki.com.cn/Article/CJFDTOTAL-GWYX201406011.htm
[5]王姗姗, 王颜红, 王万红, 等. 阿特拉津和乙草胺在玉米和土壤中残留动态研究[J]. 土壤通报, 2011, 42(5): 1231-1235 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201105038.htm
WANG S S, WANG Y H, WANG W H, et al. Study on the residue dynamics of atrazine and acetochlor in maize and soil[J]. Chinese Journal of Soil Science, 2011, 42(5): 1231-1235 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201105038.htm
[6]OLIVEIRA J R R S, KOSKINEN W C, GRAFF C D, et al. Acetochlor persistence in surface and subsurface soil samples[J]. Water, Air, & Soil Pollution, 2013, 224(10): 1747 doi: 10.1007/s11270-013-1747-2
[7]ASHBY J, KIER L, WILSON A G, et al. Evaluation of the potential carcinogenicity and genetic toxicity to humans of the herbicide acetochlor[J]. Human & Experimental Toxicology, 1996, 15(9): 702-735 http://europepmc.org/abstract/MED/8880207
[8]SANCHEZ-HERNANDEZ J C, DEL PINO J N, CAPOWIEZ Y, et al. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms[J]. Science of the Total Environment, 2018, 612: 1407-1416 doi: 10.1016/j.scitotenv.2017.09.043
[9]HAO Y Q, ZHAO L X, SUN Y, et al. Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms[J]. Environmental Pollution, 2018, 242: 728-737 doi: 10.1016/j.envpol.2018.07.029
[10]UWIZEYIMANA H, WANG M E, CHEN W P, et al. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil[J]. Environmental Toxicology and Pharmacology, 2017, 55: 20-29 doi: 10.1016/j.etap.2017.08.001
[11]LIU C E, DUAN C Q, MENG X H, et al. Cadmium pollution alters earthworm activity and thus leaf-litter decomposition and soil properties[J]. Environmental Pollution, 2020, 267: 115410 doi: 10.1016/j.envpol.2020.115410
[12]WANG H T, DING J, CHI Q Q, et al. The effect of biochar on soil-plant-earthworm-bacteria system in metal (loid) contaminated soil[J]. Environmental Pollution, 2020, 263: 114610 doi: 10.1016/j.envpol.2020.114610
[13]苗明升, 孙倩, 魏述勇. 镉与乙草胺复合作用对玉米生物学性状的影响[J]. 山东师范大学学报: 自然科学版, 2010, 25(2): 116-118
MIAO M S, SUN Q, WEI S Y. Influence of cadmium and acetochlor combined action on biological characteristics of corn[J]. Journal of Shandong Normal University: Natural Science, 2010, 25(2): 116-118
[14]ZHAO C, GRIFFIN J N, WU X W, et al. Predatory beetles facilitate plant growth by driving earthworms to lower soil layers[J]. Journal of Animal Ecology, 2013, 82(4): 749-758 doi: 10.1111/1365-2656.12058
[15]YANG G L, CHEN C, YU Y J, et al. Combined effects of four pesticides and heavy metal chromium (Ⅵ) on the earthworm using avoidance behavior as an endpoint[J]. Ecotoxicology and Environmental Safety, 2018, 157: 191-200 doi: 10.1016/j.ecoenv.2018.03.067
[16]NUUTINEN V, HAGNER M, JALLI H, et al. Glyphosate spraying and earthworm Lumbricus terrestris L. activity: Evaluating short-term impact in a glasshouse experiment simulating cereal post-harvest[J]. European Journal of Soil Biology, 2020, 96: 103148 doi: 10.1016/j.ejsobi.2019.103148
[17]WANG X, ZHU X P, PENG Q, et al. Multi-level ecotoxicological effects of imidacloprid on earthworm (Eisenia fetida)[J]. Chemosphere, 2019, 219: 923-932 doi: 10.1016/j.chemosphere.2018.12.001
[18]DITTBRENNER N, MOSER I, TRIEBSKORN R, et al. Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques[J]. Chemosphere, 2011, 84(10): 1349-1355 doi: 10.1016/j.chemosphere.2011.05.011
[19]TANG H, YAN Q R, WANG X H, et al. Earthworm (Eisenia fetida) behavioral and respiration responses to sublethal mercury concentrations in an artificial soil substrate[J]. Applied Soil Ecology, 2016, 104: 48-53 doi: 10.1016/j.apsoil.2015.12.008
[20]DATTA S, SINGH J, SINGH S, et al. Earthworms, pesticides and sustainable agriculture: A review[J]. Environmental Science and Pollution Research, 2016, 23(9): 8227-8243 doi: 10.1007/s11356-016-6375-0
[21]VELKI M, WELTMEYER A, SEILER T B, et al. Acute toxicities and effects on multixenobiotic resistance activity of eight pesticides to the earthworm Eisenia andrei[J]. Environmental Science and Pollution Research, 2019, 26(5): 4821-4832 doi: 10.1007/s11356-018-3959-x
[22]YU Y J, LI X F, YANG G L, et al. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida)[J]. Chemosphere, 2019, 227: 489-495 doi: 10.1016/j.chemosphere.2019.04.064
[23]BOUGHATTAS I, HATTAB S, MKHININI M, et al. Dynamic of organic matter and available nutrients in heavy metal contaminated soil under the effect of eisenia Andrei earthworms[J]. International Journal of Environmental Sciences & Natural Resources, 2019, 22(1): 13-20 http://www.researchgate.net/publication/339953260_Dynamic_of_Organic_Matter_and_Available_Nutrients_in_Heavy_Metal_Contaminated_Soil_Under_the_Effect_of_Eisenia_Andrei_Earthworms
[24]PAZ-FERREIRO J, FU S L, MéNDEZ A, et al. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities[J]. Journal of Soils and Sediments, 2014, 14(3): 483-494 doi: 10.1007/s11368-013-0806-z
[25]杨惠思, 赵科理, 叶正钱, 等. 山核桃品质对产地土壤养分的空间响应[J]. 植物营养与肥料学报, 2019, 25(10): 1752-1762 doi: 10.11674/zwyf.18404
YANG H S, ZHAO K L, YE Z Q, et al. Spatial response of Carya cathayensis quality to soil nutrients[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1752-1762 doi: 10.11674/zwyf.18404
[26]KUCHARSKI J, BA?MAGA M, WYSZKOWSKA J. Effect of soil contamination with herbicides on the nitrification process[J]. Land Degradation & Development, 2009, 12(3): 195-203
[27]FONTE S J, SIX J. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system[J]. Ecological Applications, 2010, 20(4): 1061-1073 doi: 10.1890/09-0795.1
[28]孙倩, 魏述勇, 曾阳, 等. 镉和乙草胺复合污染对玉米生理特性的影响[J]. 环境科学与技术, 2012, 35(2): 39-42 doi: 10.3969/j.issn.1003-6504.2012.02.008
SUN Q, WEI S Y, ZENG Y, et al. Influence of combined pollution of cadmium and acetochlor on physiological characteristics of maize seedlings[J]. Environmental Science & Technology, 2012, 35(2): 39-42 doi: 10.3969/j.issn.1003-6504.2012.02.008
[29]KRANTEV A, YORDANOVA R, JANDA T, et al. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants[J]. Journal of Plant Physiology, 2008, 165(9): 920-931 doi: 10.1016/j.jplph.2006.11.014
[30]陈良华, 赖娟, 胡相伟, 等. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201704010.htm
CHEN L H, LAI J, HU X W, et al. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution[J]. Chinese Journal of Plant Ecology, 2017, 41(4): 480-488 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201704010.htm
[31]SHAH K, KUMAR R G, VERMA S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science, 2001, 161(6): 1135-1144 doi: 10.1016/S0168-9452(01)00517-9
[32]曲丹阳, 张立国, 顾万荣, 等. 壳聚糖对镉胁迫下玉米幼苗根系生长及叶片光合的影响[J]. 生态学杂志, 2017, 36(5): 1300-1309 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201705017.htm
QU D Y, ZHANG L G, GU W R, et al. Effects of chitosan on root growth and leaf photosynthesis of maize seedlings under cadmium stress[J]. Chinese Journal of Ecology, 2017, 36(5): 1300-1309 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201705017.htm
[33]武叶叶, 何红波, 冯慧敏, 等. 农田黑土中不同浓度乙草胺对玉米苗期生长的影响[J]. 土壤通报, 2008, 39(4): 953-956 doi: 10.3321/j.issn:0564-3945.2008.04.058
WU Y Y, HE H B, FENG H M, et al. Effect of different concentration of acetochlor on the maize seedling growth in the agricultural mollisol[J]. Chinese Journal of Soil Science, 2008, 39(4): 953-956 doi: 10.3321/j.issn:0564-3945.2008.04.058
[34]唐星林, 金洪平, 周晨, 等. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响[J]. 中南林业科技大学学报, 2019, 39(9): 102-108 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201909018.htm
TANG X L, JIN H P, ZHOU C, et al. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum[J]. Journal of Central South University of Forestry & Technology, 2019, 39(9): 102-108 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201909018.htm
[35]SAGARDOY R, VáZQUEZ S, FLOREZ-SARASA I D, et al. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc[J]. New Phytologist, 2010, 187(1): 145-158 doi: 10.1111/j.1469-8137.2010.03241.x
[36]CAPOWIEZ Y, CADOUX S, BOUCHANT P, et al. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration[J]. Soil and Tillage Research, 2009, 105(2): 209-216 doi: 10.1016/j.still.2009.09.002
[37]LI D, HOCKADAY W C, MASIELLO C A, et al. Earthworm avoidance of biochar can be mitigated by wetting[J]. Soil Biology and Biochemistry, 2011, 43(8): 1732-1737 doi: 10.1016/j.soilbio.2011.04.019
[38]CAPOWIEZ Y, BéRARD A. Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria[J]. Ecotoxicology and Environmental Safety, 2006, 64(2): 198-206 doi: 10.1016/j.ecoenv.2005.02.013
[39]LIU T, WANG X G, XU J L, et al. Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida)[J]. Chemosphere, 2017, 176: 156-164 doi: 10.1016/j.chemosphere.2017.02.113

相关话题/土壤 污染 生态 图片 指标