删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

设施菜地土壤氮素运移及淋溶损失模拟评价

本站小编 Free考研考试/2022-01-01

雷豪杰1,,
李贵春2,
丁武汉1,
徐驰1,
王洪媛1,
李虎1,,
1.中国农业科学院农业资源与农业区划研究所 北京 100081
2.中国农业科学院农业环境与可持续发展研究所 北京 100081
基金项目: 国家重点研发计划项目2018YFD0800402
国家重点研发计划项目2016YFD0800101
国家自然科学基金项目41671303

详细信息
作者简介:雷豪杰, 主要研究方向为农田生态系统碳氮循环。E-mail: haojielink@126.com
通讯作者:李虎, 主要研究方向为农业资源利用与区划。E-mail: lihu0728@sina.com
中图分类号:S19

计量

文章访问数:321
HTML全文浏览量:11
PDF下载量:422
被引次数:0
出版历程

收稿日期:2020-07-14
录用日期:2020-09-15
刊出日期:2021-01-01

Modeling nitrogen transport and leaching process in a greenhouse vegetable field

LEI Haojie1,,
LI Guichun2,
DING Wuhan1,
XU Chi1,
WANG Hongyuan1,
LI Hu1,,
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Funds: the National Key Research and Development Program2018YFD0800402
the National Key Research and Development Program2016YFD0800101
the National Natural Science Foundation of China41671303

More Information
Corresponding author:LI Hu E-mail:lihu0728@sina.com


摘要
HTML全文
(10)(5)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:设施菜地因大水大肥管理方式导致的氮素淋失已成为当前关注焦点。探寻氮素淋失阻控技术需要首先探明土壤中NO3--N的运移和淋失过程, 找到淋失阻控的关键点, 从而实现蔬菜栽培高产量低环境成本。本研究以京郊设施菜地黄瓜-番茄轮作系统为研究对象, 通过田间试验获取土壤温度、湿度、NO3--N含量等数据, 对反硝化-分解(DNDC)模型进行参数校验, 并以农民常规种植模式为基线情景, 设置改变土壤基础性质、灌溉量、施氮量等不同情景, 运用DNDC模型对设施菜地系统土壤氮素运移及淋溶损失进行定量评价。结果表明:经验证后的DNDC模型能够较好地模拟蔬菜产量、5 cm土壤温度和0~20 cm土壤孔隙含水率变化以及NO3--N的迁移过程, 是模拟和评价氮素运移和损失的有效工具。模拟不同情景表明, 设施菜地0~60 cm土壤NO3--N累积主要受灌溉水量和氮肥施入量的影响, 此外土壤pH和土壤有机碳的变化也是影响NO3--N运移的重要因子。节水节肥是设施菜地氮素淋失减量的最有效方法, 相比常规措施, 同时减少20%灌溉量和20%施氮量可明显降低59.04%的NO3--N淋失量。同时, 在节水节肥的基础上改变灌溉方式并提高20%土壤有机碳含量, 在保证蔬菜产量的前提下, 能够进一步降低69.04%的NO3--N淋失量。可见, DNDC模型为设施菜地NO3--N淋失评价和阻控提供了一个较好的解决方案。在当前重点关注减氮节水等管理措施的同时, 提高土壤本身的质量, 不失为一种更有效的减少设施菜地氮素淋失的途径。
关键词:设施菜地/
氮淋失/
水氮控制/
土壤有机碳/
DNDC模型
Abstract:Nitrogen (N) leaching is caused by the mismanagement of water and fertilizer in greenhouse vegetable fields. Understanding N movement and leaching process is important for achieving high crop yields at low environmental costs. A field experiment was conducted for a greenhouse cucumber–tomato rotation system in the suburbs of Beijing, China. The DeNitrification-DeComposition (DNDC) model was used to quantitatively evaluate the soil N transport and leaching loss in the facility vegetable field after considering factors obtained from field experiments, such as soil temperature, humidity, and nitrate nitrogen (NO3--N) content. Conventional practices were selected as the baseline scenario, and the modeled scenarios, such as changes in soil properties, irrigation, and N application, were set according to the baseline. The results showed that the DNDC model can better simulate the vegetable yield, 5 cm soil temperature, 0–20 cm soil water-filled pore space, and NO3--N migration process, indicating that it is an effective tool for simulating and evaluating N transport and leaching in vegetable field soil. The modeling scenarios showed that the accumulation of NO3--N in the 0–60 cm soil was primarily affected by the irrigation amount and N application; soil pH and organic carbon were also important factors affecting NO3--N migration. Increasing irrigation amount significantly accelerated the downward movement of NO3--N, and increasing N application promoted the accumulation of NO3--N at the surface and a depth of 20 cm. Increasing soil pH lessened NO3--N surface accumulation; and to a certain extent, increasing soil organic carbon delayed the downward movement of NO3--N.Controlling water and fertilizer was the most effective method for mitigating N leaching. Compared with conventional measures, reducing irrigation and N application simultaneously by 20% significantly reduced NO3--N leaching by 59.04%. Changing irrigation method and increasing soil organic carbon content by 20% (to save water and fertilizer) further reduced NO3--N leaching by 69.04%. The DNDC model is a useful method for evaluating and controlling NO3--N leaching in vegetable fields. Changing management practices, such as N and water amounts as the soil quality improves, may be an effective way to reduce N leaching in vegetable fields.
Key words:Facility vegetable field/
Nitrogen leaching/
Water and nitrogen control/
Soil organic carbon/
DNDC model

HTML全文


图1设施菜地系统5 cm土壤温度和0~20 cm土壤孔隙含水率变化模拟结果
“Model”为DNDC的模拟值, “FP (Field)”为漫灌施肥处理的观测值, “FPD (Field)”为滴灌施肥处理的观测值。
Figure1.Simulation results of 5 cm soil temperature and 0-20 cm soil water-filled pore space changes in facility vegetable system
"Model" is the simulated value of DNDC, "FP (Field)" is the observation value of flood irrigation and fertilization treatment, and "FPD (Field)" is the observation value of drip fertigation treatment.


下载: 全尺寸图片幻灯片


图2DNDC模型对设施菜地系统作物产量的模拟结果
FP为漫灌施肥处理, FPD为滴灌施肥处理。Field表示观测值, Model表示模拟值。
Figure2.Simulation result of crops yields of facility vegetable system by DNDC model
"FP" means flood irrigation and fertilization treatment, "FPD" means drip fertigation treatment. "Field" represents the observed value, and "Model" represents the simulated value.


下载: 全尺寸图片幻灯片


图3DNDC模型对设施菜地系统0~60 cm土层土壤NO3--N累积量的模拟(虚线表示y=x线, 实线表示趋势线)
Figure3.Simulation of NO3--N accumulation in 0-60 cm soil layer of facility vegetable system by DNDC model (dashed line is the y=x line, solid line is the trend line)


下载: 全尺寸图片幻灯片


图4不同土壤质地类型下设施菜地系统0~50 cm土壤中NO3--N的累积和运移过程(a:壤沙土; b:粉壤土; c:沙黏壤土)
虚竖线代表每个作物轮作周期内灌溉施肥事件, 实竖线代表每季作物拉秧事件。横坐标天表示每个轮作周期内自然日。
Figure4.Accumulation and migration process of NO3--N in 0-50 cm soil of facility vegetable system under different soil texture types (a: loamy sand; b: silt loam; c: sand clay loam)
The dashed vertical line represents the irrigation and fertilization event, and the solid vertical lines represent the crop plants uprooting events. The abscissa (Day) represents the natural day of the rotation cycle.


下载: 全尺寸图片幻灯片


图5不同土壤pH对设施菜地系统0~50 cm土壤中NO3--N累积和运移的影响(a: pH×0.8; b: pH基线; c: pH×1.2)
虚竖线代表每个作物轮作周期内灌溉施肥事件, 实竖线代表每季作物拉秧事件。横坐标天表示每个轮作周期内自然日。
Figure5.Effects of different soil pH on NO3--N accumulation and transport in 0-50 cm soil of facility vegetable system (a: pH×0.8; b: pH baseline; c: pH×1.2)
The dashed vertical lines represent the irrigation and fertilization events, and the solid vertical lines represent the crop plants uprooting events. The abscissa (Day) represents the natural day of the rotation cycle.


下载: 全尺寸图片幻灯片


图6不同土壤有机碳含量(SOC)下设施菜地系统0~50 cm土壤中NO3--N的累积和运移(a: SOC×0.8; b: SOC基线; c: SOC×1.2)
虚竖线代表每个作物轮作周期内灌溉施肥事件, 实竖线代表每季作物拉秧事件。横坐标天表示每个轮作周期内自然日。
Figure6.Effects of soil organic carbon content (SOC) on NO3--N accumulation and transport in 0-50 cm soil of facility vegetable system (a: SOC×0.8; b: SOC baseline; c: SOC×1.2)
The dashed vertical line>s represent the irrigation and fertilization events, and the solid vertical lines represent the crop plants uprooting events. The abscissa (Day) represents the natural day of the rotation cycle.


下载: 全尺寸图片幻灯片


图7漫灌和滴灌下设施菜地系统0~50 cm土壤中NO3--N的累积和运移过程(a:漫灌; b:滴灌)
虚竖线代表每个作物轮作周期内灌溉施肥事件, 实竖线代表每季作物拉秧事件。横坐标天表示每个轮作周期内自然日。
Figure7.Accumulation and migration of NO3--N in 0-50 cm soil of facility vegetable system under flood irrigation and drip irrigation conditions (a: flood irrigation; b: drip irrigation)
The dashed vertical lines represent the irrigation and fertilization events, and the solid vertical lines represent the crop plants uprooting events. The abscissa (Day) represents the natural day of the rotation cycle.


下载: 全尺寸图片幻灯片


图8不同施氮量对设施菜地系统0~50 cm土壤中NO3--N累积和运移的影响(a:施氮量×0.8; b:施氮量基线; c:施氮量×1.2)
虚竖线代表每个作物轮作周期内灌溉施肥事件, 实竖线代表每季作物拉秧事件。横坐标天表示每个轮作周期内自然日。
Figure8.Effect of different nitrogen application amounts on NO3--N accumulation and migration in 0-50 cm soil of facility vegetable system (a: nitrogen application amount×0.8; b: nitrogen application baseline; c: nitrogen application amount×1.2)
The dashed vertical lines represent the irrigation and fertilization events, and the solid vertical lines represent the crop plants uprooting events. The abscissa (Day) represents the natural day of the rotation cycle.


下载: 全尺寸图片幻灯片


图9不同灌溉量对设施菜地系统0~50 cm土壤中NO3--N累积和运移的影响(a:灌溉量×0.8; b:灌溉量基线; c:灌溉量×1.2)
虚竖线代表每个作物轮作周期内灌溉施肥事件, 实竖线代表每季作物拉秧事件。横坐标天表示每个轮作周期内自然日。
Figure9.Effects of different irrigation volumes on NO3--N accumulation and migration in 0-50 cm soil of facility vegetable system (a: irrigation water volume×0.8; b: irrigation water volume baseline; c: irrigation water volume×1.2)
The dashed vertical lines represent the irrigation and fertilization events, and the solid vertical lines represent the crop plants uprooting events. The abscissa (Day) represents the natural day of the rotation cycle.


下载: 全尺寸图片幻灯片


图10不同情景设置下设施菜地系统两季土壤NO3--N淋失总量
SOC:土壤有机碳含量。
Figure10.Total leaching loss of NO3--N from soil in two seasons of facility vegetable system under different scenarios
SOC: soil organic carbon content.


下载: 全尺寸图片幻灯片

表1模型输入的黄瓜-番茄轮作不同处理的施肥和灌溉管理数据
Table1.Input data of model of fertilization and irrigation management for different treatments of facility cucumber-tomato rotation
处理Treatment 施肥量Fertilization rate (kg·hm-2) 灌溉水量Irrigation amount (mm) 灌溉次数及日期(月/日) Irrigation frequency and date (month/day)
有机肥Organic fertilizer N P2O5 K2O
漫灌施肥Flood irrigation and fertilization (FP) 1300 1450 320 500 772 黄瓜季Cucumber season: 5;9/13,10/12,11/1,11/20,12/4
滴灌施肥Drip fertigation (FPD) 1300 1450 320 500 555 番茄季Tomato season: 5;3/16,4/15,5/12,5/27,6/12


下载: 导出CSV
表2用来模拟蔬菜生长的生理学参数及DNDC输入参数(测量值和模型默认值)
Table2.Parameters used for simulating vegetable growth and general description of DNDC input data (measured on site and default)
参数Parameter 黄瓜Cucumber 番茄Tomato
目标产量Max. biomass production [kg(C)·hm-2] 560 1660.68
成熟时生物量分配比例Biomass fraction at harvest (%) 果Grain 0.65 0.36a
叶Leaf 0.15 0.22a
茎Stem 0.15 0.22a
根Root 0.05 0.2a
成熟时C/N比值C/N ratio at harvest 果Grain 12 26a
叶Leaf 11.97 26a
茎Stem 11.33 26a
根Root 25 45a
生长积温Thermal degree days for maturity (℃) 1000 1400
需水量Water demand [g(water)·g-1(DM)] 500 300
土壤表层有机碳Surface soil organic carbon content [kg(C)·kg-1] 0.0143
田间持水量Field capacity (soil water-filled pore space, WFPS) 0.67
土壤质地Soil texture 粉壤土Silt loam
黏粒含量Clay fraction 0.20
容重Soil bulk density (g·cm-3) 1.29
萎蔫点Soil WFPS at wilting point 0.16
孔隙度Porosity 0.65
上标a表示DNDC模型默认值。Superscript “a” indicates the default value of DNDC model.


下载: 导出CSV
表3不同土壤基础性质和管理措施下的情景设置
Table3.Scenario setting of different soil basic properties and management practices
项目Item 情景名称Scenario name 描述Description 单位Unit 值Value
土壤基础性质Basic soil properties 壤沙土, 粉壤土, 沙黏壤土Loamy sand, silt loam, sand clay loam 土壤质地为壤沙土, 粉壤土, 沙黏壤土The soil texture is loamy sand, silt loam, and sandy clay loam
pH×0.8, pH基线, pH×1.2 pH×0.8, pH baseline, pH×1.2 降低/提高20%的土壤pH基线Decrease or increase the soil pH baseline by 20% 5.75, 7.19, 8.63
土壤有机碳含量(SOC)×0.8, SOC, SOC×1.2 Soil organic carbon content (SOC) ×0.8, SOC baseline, SOC×1.2 降低/提高20%的土壤SOC基线Decrease or increase the soil SOC baseline by 20% kg(C)·kg-1 0.0114, 0.0143, 0.0172
管理措施Management measures 施氮量×0.8, 施肥量基线, 施氮量×1.2 Nitrogen application rate × 0.8, nitrogen application rate baseline, nitrogen application rate × 1.2 降低/提高20%的施氮量基线Decrease or increase the nitrogen application rate baseline by 20% kg(N)·hm-2 1160, 1450, 1740
灌溉量×0.8, 灌溉量基线, 灌溉量×1.2 Irrigation water volume × 0.8, irrigation water volume baseline, irrigation water volume × 1.2 降低/提高20%的灌溉量基线Reduce or increase the irrigation baseline by 20% mm 617.8, 772.3, 926.8
漫灌, 滴灌Flood irrigation, drip irrigation 灌溉方式分别为漫灌和滴灌Irrigation methods are flood irrigation and drip irrigation


下载: 导出CSV
表4基于DNDC模型的设施菜地系统土壤NO3--N累积敏感性指数
Table4.Sensitive indexes of NO3--N accumulation in soil of facility vegetable system based on DNDC model
输入参数Parameter 变化范围Range 敏感性指数Sensitive index
土壤质地Soil texture 壤沙土—粉壤土—沙黏壤土Loamy sandy soil - silt loam - sandy clay loam 9.05
pH pH×0.8—pH×1.2 17.97
土壤有机碳Soil organic carbon (SOC) SOC×0.8-SOC×1.2 18.14
灌溉方式Irrigation method 漫灌—滴灌Flood irrigation - drip irrigation
灌溉量Irrigation volume 灌溉量×0.8—灌溉量×1.2 Irrigation volume×0.8 - irrigation volume×1.2 21.06
施氮量Nitrogen application amount 施氮量×0.8—施氮量×1.2 Nitrogen application rate×0.8 - nitrogen application rate×1.2 20.85


下载: 导出CSV
表5DNDC模型对不同组合情景的设施菜地系统作物产量和NO3--N淋失量的模拟结果
Table5.Simulation results of DNDC model on crop yield and NO3--N leaching in different combinations of facility vegetable system
情景Scenario 描述Description 产量Biomass NO3--N淋失量NO3--Nleaching
模拟值Simulated value [kg(C)·hm-2] 变化率Change rate (%) 模拟值Simulated value [kg(N)·hm-2·a-1] 变化率Change rate (%)
基线情景Baseline scenario 农民常规处理Farmer’s practice 2814.47 1088.60
组合1 Combination scenario 1 80%施氮量+80%灌溉量Nitrogen application rate×0.8+irrigation volume×0.8 2855.20 +1.45 445.94 -59.04
组合2 Combination scenario 2 80%施氮量+80%灌溉量+1.2倍土壤有机碳含量Nitrogen application rate×0.8+irrigation volume×0.8+soil organic carbon content×1.2 2854.94 +1.44 427.32 -60.75
组合3 Combination scenario 3 滴灌+80%施氮量+80%灌溉量+1.2倍土壤有机碳含量Drip irrigation+nitrogen application rate×0.8+irrigation volume×0.8+soil organic carbon content×1.2 2910.53 +3.41 337.08 -69.04


下载: 导出CSV

参考文献(47)
[1]YU H Y, LI T X, ZHANG X Z. Nutrient budget and soil nutrient status in greenhouse system[J]. Agricultural Sciences in China, 2010, 9(6): 871-879 doi: 10.1016/S1671-2927(09)60166-8
[2]丁武汉, 雷豪杰, 徐驰, 等.我国设施菜地表观氮平衡分析及其空间分布特征[J].农业资源与环境学报, 2020, 37(3): 353-360 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ202003009.htm
DING W H, LEI H J, XU C, et al. Characteristics and spatial distribution of apparent nitrogen balance in the greenhouse vegetable cropping system in China[J]. Journal of Agricultural Resources and Environment, 2020, 37(3): 353-360 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ202003009.htm
[3]李晓欣, 马洪斌, 胡春胜, 等.华北山前平原农田土壤硝态氮淋失与调控研究[J].中国生态农业学报, 2011, 19(5): 1109-1114 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105022.htm
LI X X, MA H B, HU C S, et al. Soil nitrate leaching and control methods in the piedmont of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1109-1114 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105022.htm
[4]HUANG T, JU X T, YANG H. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management[J]. Scientific Reports, 2017, 7: 42247 doi: 10.1038/srep42247
[5]GUO Y J, LI B W, DI H J, et al. Effects of dicyandiamide (DCD) on nitrate leaching, gaseous emissions of ammonia and nitrous oxide in a greenhouse vegetable production system in northern China[J]. Soil Science and Plant Nutrition, 2012, 58(5): 647-658 doi: 10.1080/00380768.2012.726921
[6]谭德水, 江丽华, 谭淑樱, 等.基于减少土壤硝态氮淋失的作物搭配种植模式研究进展[J].中国生态农业学报, 2014, 22(2): 136-142 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201402002.htm
TAN D S, JIANG L H, TAN S Y, et al. Research progress on collocation planting of crops for decreasing the loss of soil nitrate nitrogen through leaching[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 136-142 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201402002.htm
[7]范庆锋, 张玉龙, 张玉玲, 等.不同灌溉方式下设施土壤硝态氮的积累特征及其环境影响[J].农业环境科学学报, 2017, 36(11): 2281-2286 doi: 10.11654/jaes.2017-0717
FAN Q F, ZHANG Y L, ZHANG Y L, et al. Soil nitrate accumulation and its environmental effects under various irrigation modes in protected field[J]. Journal of Agro-Environment Science, 2017, 36(11): 2281-2286 doi: 10.11654/jaes.2017-0717
[8]滕艳敏, 韩卉, 郝梓依, 等.不同蔬菜种植模式对土壤淋溶水总氮、总磷和COD的影响[J].中国生态农业学报, 2017, 25(5): 759-768 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201705014.htm
TENG Y M, HAN H, HAO Z Y, et al. Effect of vegetable cropping system on total nitrogen, phosphorus and COD in farmland leachate[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 759-768 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201705014.htm
[9]MCLAY C D A, DRAGTEN R, SPARLING G, et al. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches[J]. Environmental Pollution, 2001, 115(2): 191-204 doi: 10.1016/S0269-7491(01)00111-7
[10]巨晓棠, 张福锁.中国北方土壤硝态氮的累积及其对环境的影响[J].生态环境, 2003, 12(1): 24-28 doi: 10.3969/j.issn.1674-5906.2003.01.007
JU X T, ZHANG F S. Nitrate accumulation and its implication to environment in North China[J]. Ecology and Environment, 2003, 12(1): 24-28 doi: 10.3969/j.issn.1674-5906.2003.01.007
[11]刘宏斌, 李志宏, 张云贵, 等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报, 2006, 43(3): 405-413 doi: 10.3321/j.issn:0564-3929.2006.03.008
LIU H B, LI Z H, ZHANG Y G, et al. Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing plain[J]. Acta Pedologica Sinica, 2006, 43(3): 405-413 doi: 10.3321/j.issn:0564-3929.2006.03.008
[12]SUN Y, HU K L, FAN Z B, et al. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate_N model[J]. Agricultural Water Management, 2013, 128: 72-84 doi: 10.1016/j.agwat.2013.06.016
[13]秦雪超, 潘君廷, 郭树芳, 等.化肥减量替代对华北平原小麦-玉米轮作产量及氮流失影响[J/OL].农业环境科学学报.[2020-07-30].https://baijiahao.baidu.com/s?id=16735893 71151280711 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202007016.htm
QIN X C, PAN J T, GUO S F, et al. Effects of chemical fertilizer reduction combined with biogas fertilizer on crop yield of wheat-maize rotation and soil nitrogen loss in North China Plain[J/OL]. Journal of Agro-Environment Science.[2020- 07-30]. https://baijiahao.baidu.com/s?id=1673589371151280711 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202007016.htm
[14]刘乐, 费良军, 曾健, 等.容重对土壤水氮垂直运移特性的影响[J].排灌机械工程学报, 2020, 38(2): 200-205 https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202002017.htm
LIU L, FEI L J, ZENG J, et al. Effects of soil bulk density on vertical migration of soil water and nitrogen[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(2): 200-205 https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202002017.htm
[15]黄吴进, 邓利梅, 夏建国, 等.温室滴灌施肥条件下土壤硝态氮的运移及分布特征[J].灌溉排水学报, 2017, 36(12): 42-48 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201712008.htm
HUANG W J, DENG L M, XIA J G, et al. Transport and distribution characteristics of soil nitrate nitrogen under drip fertigation in greenhouse[J]. Journal of Irrigation and Drainage, 2017, 36(12): 42-48 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201712008.htm
[16]闫鹏, 武雪萍, 华珞, 等.不同水氮用量对日光温室黄瓜季硝态氮淋失的影响[J].植物营养与肥料学报, 2012, 18(3): 645-653 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201203016.htm
YAN P, WU X P, HUA L, et al. Effects of different water and nitrogen amounts on nitrate leaching in sunlight greenhouse during cucumber growing season[J]. Journal of Plant Nutrition and Fertilizer, 2012, 18(3): 645-653 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201203016.htm
[17]栗岩峰, 李久生, 李蓓.滴灌系统运行方式和施肥频率对番茄根区土壤氮素动态的影响[J].水利学报, 2007, 38(7): 857-865 doi: 10.3321/j.issn:0559-9350.2007.07.015
LI Y F, LI J S, LI B. Nitrogen dynamics in soil as affected by fertigation strategies and frequencies for drip irrigated tomato[J]. Journal of Hydraulic Engineering, 2007, 38(7): 857-865 doi: 10.3321/j.issn:0559-9350.2007.07.015
[18]王大鹏, 郑亮, 吴小平, 等.旱地土壤硝态氮的产生、淋洗迁移及调控措施[J].中国生态农业学报, 2017, 25(12): 1731-1741
WANG D P, ZHENG L, WU X P, et al. Review of soil nitrate formation, leaching transport and their control measures in upland farming systems[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1731-1741
[19]张学科, 白俊英, 严海霞.灌水量与施氮量对不同类型土壤中硝酸盐运移的影响[J].节水灌溉, 2020, (2): 83-87 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU202002017.htm
ZHANG X K, BAI J Y, YAN H X. Effects of irrigation and nitrogen application on nitrate transport in different soils[J]. Water Saving Irrigation, 2020, (2): 83-87 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU202002017.htm
[20]李长生.生物地球化学的概念与方法——DNDC模型的发展[J].第四纪研究, 2001, 21(2): 89-99 doi: 10.3321/j.issn:1001-7410.2001.02.001
LI C S. Biogeochemical concepts and methodologies: Development of the DNDC model[J]. Quaternary Sciences, 2001, 21(2): 89-99 doi: 10.3321/j.issn:1001-7410.2001.02.001
[21]李长生.陆地生态系统的模型模拟[J].复杂系统与复杂性科学, 2004, 1(1): 49-57 doi: 10.3969/j.issn.1672-3813.2004.01.009
LI C S. Modeling terrestrial ecosystems[J]. Complex Systems and Complexity Science, 2004, 1(1): 49-57 doi: 10.3969/j.issn.1672-3813.2004.01.009
[22]谢海宽, 江雨倩, 李虎, 等. DNDC模型在中国的改进及其应用进展[J].应用生态学报, 2017, 28(8): 2760-2770 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201708041.htm
XIE H K, JIANG Y Q, LI H, et al. Modification and application of the DNDC model in China[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2760-2770 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201708041.htm
[23]BROWN L, SYED B, JARVIS S C, et al. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture[J]. Atmospheric Environment, 2002, 36(6): 917-928 doi: 10.1016/S1352-2310(01)00512-X
[24]GILHESPY S L, ANTHONY S, CARDENAS L, et al. First 20 years of DNDC (DeNitrification DeComposition): Model evolution[J]. Ecological Modelling, 2014, 292: 51-62 doi: 10.1016/j.ecolmodel.2014.09.004
[25]朱波, 周明华, 况福虹, 等.紫色土坡耕地氮素淋失通量的实测与模拟[J].中国生态农业学报, 2013, 21(1): 102-109 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201301017.htm
ZHU B, ZHOU M H, KUANG F H, et al. Measurement and simulation of nitrogen leaching loss in hillslope cropland of purple soil[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 102-109 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201301017.htm
[26]LI H, WANG L G, QIU J J, et al. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China[J]. Geoderma, 2014, 223-225: 108-118 doi: 10.1016/j.geoderma.2014.01.002
[27]LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity[J]. Journal of Geophysical Research, 1992, 97(D9): 9759-9776 doi: 10.1029/92JD00509
[28]LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications[J]. Journal of Geophysical Research, 1992, 97(D9): 9777-9783 doi: 10.1029/92JD00510
[29]LI C S, FROLKING S, HARRISS R. Modeling carbon biogeochemistry in agricultural soils[J]. Global Biogeochemical Cycles, 1994, 8(3): 237-254 doi: 10.1029/94GB00767
[30]LI C S, FARAHBAKHSHAZAD N, JAYNES D B, et al. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa[J]. Ecological Modelling, 2006, 196(1/2): 116-130 http://www.sciencedirect.com/science/article/pii/S0304380006000664
[31]刘宁, 韩娟, 刘璐璐, 等.应用DNDC模型模拟沟垄集雨种植对陕西省玉米产量的影响[J].西北农业学报, 2016, 25(5): 691-701 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201605009.htm
LIU N, HAN J, LIU L L, et al. Effects of simulation of rainfall harvesting with ridge and furrow system on maize yield in Shaanxi Province by use of DNDC model[J]. Acta Agriculturae Boreali-occidentalis Sinic, 2016, 25(5): 691-701 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201605009.htm
[32]任小龙, 贾志宽, 陈小莉, 等.模拟降雨量下沟垄微型集雨种植玉米的水温效应[J].中国农业科学, 2008, 41(1): 70-77 doi: 10.3864/j.issn.0578-1752.2008.01.009
REN X L, JIA Z K, CHEN X L, et al. Effect of corn (Zea mays L.) water and temperature of ridge and furrow planting of rainfall harvesting under simulated rainfall conditions[J]. Scientia Agricultura Sinica, 2008, 41(1): 70-77 doi: 10.3864/j.issn.0578-1752.2008.01.009
[33]张钊, 辛晓平.生物地球化学模型DNDC的研究进展与碳动态模拟应用[J].草地学报, 2017, 25(3): 445-452 https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201703001.htm
ZHANG Z, XIN X P. Research progress of biogeochemistry model DNDC in carbon dynamic modeling[J]. Acta Agrestia Sinica, 2017, 25(3): 445-452 https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201703001.htm
[34]UZOMA K C, SMITH W, GRANT B, et al. Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model[J]. Agriculture, Ecosystems & Environment, 2015, 206: 71-83 http://www.sciencedirect.com/science/article/pii/s0167880915000985
[35]张婧.设施蔬菜地土壤N2O排放与硝态氮淋溶的模拟研究[D].北京: 中国农业科学院, 2019: 44-45
ZHANG J. Modeling nitrous oxide emissions and nitrate leaching from greenhouse vegetable system by using a biogeochemical model[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019: 44-45
[36]韩宁, 陈维梁, 高扬, 等.基于SWAT与DNDC模型对比研究亚热带流域氮淋溶与输出过程[J].环境科学, 2017, 38(6): 2317-2325 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201706018.htm
HAN N, CHEN W L, GAO Y, et al. Comparative study of SWAT and DNDC applied to N leach and export from subtropical watershed[J]. Environmental Science, 2017, 38(6): 2317-2325 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201706018.htm
[37]李虎, 王立刚, 邱建军. DNDC模型在农田氮素渗漏淋失估算中的应用[J].应用生态学报, 2009, 20(7): 1591-1596 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200907011.htm
LI H, WANG L G, QIU J J. Application of DNDC model in estimating cropland nitrate leaching[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1591-1596 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200907011.htm
[38]王辉, 王全九, 邵明安.降水条件下黄土坡地氮素淋溶特征的研究[J].水土保持学报, 2005, 19(5): 61-64 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200505014.htm
WANG H, WANG Q J, SHAO M A. Characteristics of nitrogen leaching from sloping land on loess plateau under rainfall conditions[J]. Journal of Soil and Water Conservation, 2005, 19(5): 61-64 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200505014.htm
[39]胡映泉. 3种不同试剂处理对木槿种子发芽的影响[J].天津农业科学, 2013, 19(8): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-TJNY201308028.htm
HU Y Q. Analysis of three different treatments on the germination of H. syriacus Linn seeds[J]. Tianjin Agricultural Sciences, 2013, 19(8): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-TJNY201308028.htm
[40]廖上强, 陈延华, 李艳梅, 等.减量灌溉条件下缓释肥料对番茄产量、品质及硝态氮淋溶的影响[J].中国土壤与肥料, 2015, (6): 70-75 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201506014.htm
LIAO S Q, CHEN Y H, LI Y M, et al. Effect of slow release fertilizer on yield and quality of tomato and NO3--N leaching under reduction irrigation condition[J]. Soil and Fertilizer Sciences in China, 2015, (6): 70-75 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201506014.htm
[41]赵峥, 吴淑杭, 周德平, 等.基于DNDC模型的稻田氮素流失及其影响因素研究[J].农业环境科学学报, 2016, 35(12): 2405-2412 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201612021.htm
ZHAO Z, WU S H, ZHOU D P, et al. Modeling N loss from paddy fields and sensitivity analysis with DNDC Model[J]. Journal of Agro-Environment Science, 2016, 35(12): 2405-2412 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201612021.htm
[42]张玉铭, 张佳宝, 胡春胜, 等.水肥耦合对华北高产农区小麦-玉米产量和土壤硝态氮淋失风险的影响[J].中国生态农业学报, 2011, 19(3): 532-539 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201103012.htm
ZHANG Y M, ZHANG J B, HU C S, et al. Effect of fertilization and irrigation on wheat-maize yield and soil nitrate nitrogen leaching in high agricultural yield region in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 532-539 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201103012.htm
[43]张春霞, 文宏达, 刘宏斌, 等.优化施肥对大棚番茄氮素利用和氮素淋溶的影响[J].植物营养与肥料学报, 2013, 19(5): 1139-1145 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201305014.htm
ZHANG C X, WEN H D, LIU H B, et al. Effect of optimum fertilization on nitrogen use efficiency and nitrate leaching in the greenhouses[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1139-1145 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201305014.htm
[44]孙媛.不同水肥管理下华北菜地氮素损失及水氮利用效率定量评价[D].北京: 中国农业大学, 2013
SUN Y. Quantitative evaluation of nitrogen loss and water and nitrogen use efficiency in North China vegetable fields under different water and fertilizer management[D]. Beijing: China Agricultural University, 2013
[45]舒晓晓, 门杰, 马阳, 等.减氮配施有机物质对土壤氮素淋失的调控作用[J].水土保持学报, 2019, 33(1): 186-191 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201901030.htm
SHU X X, MEN J, MA Y, et al. Regulation of reduced nitrogen and organic matter application on nitrogen leaching[J]. Journal of Soil and Water Conservation, 2019, 33(1): 186-191 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201901030.htm
[46]孙泽东, 马兴华.滴灌施肥对作物生长及土壤氮素特征影响的研究进展[J].中国农业科技导报, 2016, 18(5): 164-170 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201605022.htm
SUN Z D, MA X H. Research progress on effects of drip fertilization on plant growth and soil nitrogen characteristics[J]. Journal of Agricultural Science and Technology, 2016, 18(5): 164-170 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201605022.htm
[47]殷冠羿, 胡克林, 李品芳, 等.不同水肥管理对京郊设施菜地氮素损失及氮素利用效率的影响[J].农业环境科学学报, 2013, 32(12): 2403-2412 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201312014.htm
YIN G Y, HU K L, LI P F, et al. Nitrogen loss and use efficiency in greenhouse vegetable soil under different water and fertilizer managements[J]. Journal of Agro-Environment Science, 2013, 32(12): 2403-2412 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201312014.htm

相关话题/土壤 系统 作物 农业 图片