删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

养分专家系统推荐施肥对冬小麦产量、养分转运及肥料利用的影响

本站小编 Free考研考试/2022-01-01

王丹丹,
李岚涛,
韩本高,
张倩,
苗玉红,
王宜伦,
河南农业大学资源与环境学院 郑州 450002
基金项目: 国家“十三五”重点研发计划项目2017YFD0301106

详细信息
作者简介:王丹丹, 从事作物营养与高效施肥技术研究。E-mail:18437958711@163.com
通讯作者:王宜伦, 主要从事作物营养与高效施肥技术研究。E-mail:wangyilunrl@henau.edu.cn
中图分类号:S143;S512

计量

文章访问数:218
HTML全文浏览量:6
PDF下载量:146
被引次数:0
出版历程

收稿日期:2020-03-13
录用日期:2020-07-15
刊出日期:2020-11-01

Effects of Nutrient Expert recommended fertilization on winter wheat yield, nutrient accumulation, transportation, and utilization

WANG Dandan,
LI Lantao,
HAN Bengao,
ZHANG Qian,
MIAO Yuhong,
WANG Yilun,
College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
Funds: the National Key Research and Development Project of China2017YFD0301106

More Information
Corresponding author:WANG Yilun, E-mail:wangyilunrl@henau.edu.cn


摘要
HTML全文
(2)(8)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探究冬小麦科学施肥技术,明确养分专家系统推荐施肥对冬小麦产量、养分积累转运与利用的影响,于2018—2019年分别在河南省鹤壁市和新乡市以冬小麦(鹤壁、新乡试验品种分别为‘郑麦7698’和‘郑麦366’)为试验材料,设置7个处理[农民习惯施肥(FP)、当地推荐施肥(ST)、养分专家系统推荐施肥(NE)、在NE基础上配施缓控释氮肥(RNE)、在NE基础上不施氮肥(NE-N)、在NE基础上不施磷肥(NE-P)、在NE基础上不施钾肥(NE-K)],探究不同施肥处理对冬小麦氮、磷、钾养分转运分配规律和肥料利用效率的影响。结果表明,冬小麦氮、磷、钾施肥量NE较FP处理分别降低16.2%、43.3%、-13.2%(鹤壁)和19.5%、48.0%、-57.9%(新乡);冬小麦产量NE与FP处理无显著性差异,RNE与FP处理存在显著性差异;NE、RNE较FP处理分别增产4.7%~6.6%、5.5%~9.6%(P < 0.05)。进一步研究表明,NE、RNE处理可显著增加地上部植株养分含量和积累量(P < 0.05),其花后干物质积累量较FP处理增加9.2%~14.0%、11.9%~18.6%;花前氮、磷素转运量和钾素转运对籽粒钾素积累贡献率均有提高,基于养分专家系统推荐施肥的氮、磷、钾肥平均利用效率分别为42.1%、19.2%、46.6%,平均农学效率分别为11.5 kg·kg-1、13.2 kg·kg-1、13.3 kg·kg-1。综上可知,小麦养分专家系统指导优化了氮、磷、钾肥的施用量和施用方法,促进了小麦对氮、磷、钾养分的吸收利用,提高了肥料利用率,具有良好的增产效果,可以在河南地区推广应用。
关键词:养分专家系统/
冬小麦/
产量/
养分转运与积累/
肥料利用率
Abstract:The overuse of fertilizer, unreasonable fertilization rates, and low fertilizer use efficiency affect modern agricultural systems, limiting farmers' income and development of sustainable agriculture in Henan Province, China. This study investigated the effect of the Nutrient Expert system on winter wheat yield, nutrient accumulation, transportation, and fertilizer utilization efficiency. Field experiments were conducted during the 2018-2019 growing season in Hebi and Xinxiang, Henan Province, with seven treatments:farmer conventional fertilization (FP), local official recommended fertilization (ST), Nutrient Expert recommended fertilization (NE), Nutrient Expert recommended fertilization with controlled-release N fertilizer (RNE), and the elimination of N, P, or K input in the NE treatment (NE-N, NE-P, and NE-K, respectively). Compared to the FP treatment, N, P, and K fertilizer rates in the NE treatment decreased by 16.2%, 43.3%, and -13.2% in Hebi and 19.5%, 48.0%, -57.9% in Xinxiang, respectively. The yields of the NE and RNE treatments were higher than those of FP by 4.7%-6.6% and 5.5%-9.6%, respectively; NE and FP did not differ significantly on yield, but the RNE yield was significantly higher than that of FP. Compared to the other treatments, NE and RNE also improved plant nutrition concentrations and accumulation during the growing season. The dry matter accumulation after anthesis in NE and RNE was significantly higher than that in FP (by 9.2%-14.0% and 11.9%-18.6%, respectively), and the contribution of N, P, and K remobilization to the grains before anthesis also increased significantly. The average fertilizer use efficiency of N, P, and K was 42.1%, 19.2%, and 46.6%, respectively, and the average agronomic efficiency was 11.5 kg·kg-1, 13.2 kg·kg-1, and 13.3 kg·kg-1, respectively, based on the Nutrient Expert system of winter wheat. In general, the Nutrient Expert recommended fertilization optimized the fertilizer management, promoted the absorption and utilization of N, P, and K, and improved the winter wheat yield and fertilizer utilization efficiency. Therefore, we encourage the use of the Nutrient Expert system for fertilizer management in the winter wheat fields of Henan Province, China.
Key words:Nutrient Expert system/
Winter wheat/
Yield/
Nutrient transfer and accumulation/
Fertilizer utilization rate

HTML全文


图1不同施肥处理对鹤壁冬小麦不同时期养分含量的影响
各处理详见表 2。图A-C分别为不同时期冬小麦植株氮磷钾含量, 图D-F分别为冬小麦成熟期籽粒氮磷钾含量。柱形图不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure1.Effects of different fertilization treatments on nutrients contents of winter wheat in Hebi at different growth stages
Description of each treatment is shown in the table 2. Figure A-C show the plant nitrogen, phosphorus and potassium contents of winter wheat at different times. Figure D-F show the grain nitrogen, phosphorus and potassium contents of winter wheat at maturity stage. Different lowercase letters mean significant differences among treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图2不同施肥处理对新乡冬小麦各时期养分含量的影响
各处理详见表 2。图A-C分别为不同时期冬小麦植株氮磷钾含量, 图D-F分别为冬小麦成熟期籽粒氮磷钾含量。柱形图不同小写字母表示不同处理间在P < 0.05水平上差异显著。
Figure2.Effects of different fertilization treatments on nutrients contents of winter wheat in Xinxiang at different growth stages
Description of each treatment is shown in the table 2.Figure A-C show the plant nitrogen, phosphorus and potassium contents of winter wheat at different times. Figure D-F show the grain nitrogen, phosphorus and potassium contents of winter wheat at maturity stage. Different letters mean significant differences among treatments (P < 0.05).


下载: 全尺寸图片幻灯片

表1试验地土壤基本化学性质
Table1.Chemical properties of the tested soils in the experimental sites
地点
Site
pH 有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
碱解氮
Available N (mg·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
鹤壁
Hebi
7.2 24.9 1.6 90.1 18.8 138.2
新乡
Xinxiang
7.6 19.9 1.2 74.8 17.2 85.1


下载: 导出CSV
表2不同施肥处理的冬小麦施肥量
Table2.Fertilizer application rates of different treatments of winter wheat?kg·hm-2
处理
Treatment
鹤壁
Hebi
新乡
Xinxiang
N P2O5 K2O N P2O5 K2O
FP 当地农民习惯施肥 Farmer conventional practice 222 150 53 231 150 38
ST 当地农技部门推荐施肥 Local official recommended fertilization 240 105 90 210 96 60
NE 养分专家系统推荐施肥 Nutrient Expert recommend fertilization 186 85 60 186 78 60
RNE 养分专家系统推荐施肥中氮肥为缓控释肥 Nutrient Expert recommend fertilization with controlled-release N fertilizer 186 85 60 186 78 60
NE-N NE基础上不施氮肥 Nutrient Expert recommend fertilization eliminating N 0 85 60 0 78 60
NE-P NE基础上不施磷肥 Nutrient Expert recommend fertilization eliminating P 186 0 60 186 0 60
NE-K NE基础上不施钾肥 Nutrient Expert recommend fertilization eliminating K 186 85 0 186 78 0


下载: 导出CSV
表3不同施肥处理对冬小麦产量及其构成因子的影响
Table3.Effects of different fertilization treatments on winter wheat yield and its components
地点
Site
处理
Treatment
穗粒数
Grain per spike
千粒重
1000-grain weight (g)
穗数
Spike number (×106·hm-2)
产量
Yield(kg·hm-2)
鹤壁
Hebi
NE-N 33.7±2.1d 45.7±0.7a 7.3±0.6c 8 150.0±477.0e
NE-P 35.7±0.5cd 44.1±1.0b 7.5±0.6bc 8 616.7±189.3d
NE-K 36.3±3.2bcd 44.5±0.9ab 7.7±0.2abc 8 950.0±132.3cd
FP 37.8±2.4abc 44.9±0.9ab 7.9±0.2abc 9 316.7±104.1bc
ST 38.6±0.7abc 44.7±0.8ab 8.1±0.4abc 9 683.3±256.6ab
NE 39.4±0.4ab 44.5±0.3ab 8.2±0.5ab 9 750.0±200.0ab
RNE 40.2±1.0a 44.6±0.9ab 8.3±0.6a 9 833.3±58.0 a
新乡
Xinxiang
NE-N 33.6±1.7c 42.5±1.3a 4.8±0.5c 4 650.0±360.6c
NE-P 34.7±3.7bc 41.4±0.9a 5.5±0.2c 5 166.7±453.7c
NE-K 35.4±3.4bc 41.9±1.3a 6.9±0.4b 6 000.0±132.3b
FP 36.4±0.5bc 40.5±0.7a 7.4±1.0ab 6 283.3±175.6ab
ST 38.2±0.6ab 40.9±2.0a 7.8±0.3a 6 400.0±86.6ab
NE 40.5±0.9a 41.5±0.8a 7.9±0.2a 6 700.0±606.2ab
RNE 42.0±3.1a 40.9±1.3a 8.0±0.2a 6 883.3±539.3a
ANOVA
试验地点
Site (S)
NS *** NS ***
处理
Treatment (T)
*** NS *** ***
S×T NS NS NS NS
??各处理详见表 2。同列数据后不同小写字母表示同一地点不同处理间在P < 0.05水平差异显著; NS:不显著; *、**、***分别表示在P < 0.05、P < 0.01、P < 0.001水平上显著。Description of each treatment is shown in the table 2. Values followed by different letters in the same column are significantly different in the same site (P < 0.05). *, ** and *** represent significant effects at P < 0.05, P < 0.01 and P < 0.001 probability levels, respectively; NS: no significant effect.


下载: 导出CSV
表4不同施肥处理对冬小麦开花前后营养器官干物质转运及籽粒干物质积累的影响
Table4.Effects of different fertilization treatments on dry matter transport of vegetative organs and dry matter accumulation in grains of winter wheat before and after anthesis
地点
Site
处理
Treatment
收获指数
Harvest index
花前
Before anthesis
花后
After anthesis
DMR (kg·hm-2) DMRE (%) DMRCG (%) DMA (kg·hm-2) DMAC (%)
鹤壁
Hebi
NE-N 0.49±0.06a 1 801.2±234.26bc 16.85±1.24ab 18.94±1.45b 5 182.13±611.16c 77.73±4.32b
NE-P 0.49±0.05a 1 227.95±172.82d 14.25±1.39b 14.23±1.73c 7 622.05±372.90ab 85.77±1.73a
NE-K 0.48±0.02a 1 660.85±137.56c 14.83±1.41b 18.56±1.55b 7 255.82±818.30b 81.44±1.55ab
FP 0.49±0.03a 2 080.13±253.84ab 17.80±2.05a 22.31±2.55a 7 236.54±447.53b 77.69±2.55b
ST 0.50±0.04a 2 062.36±128.12ab 18.51±2.34a 21.29±0.98ab 7 620.97±187.22ab 78.71±0.98b
NE 0.50±0.04a 2 165.62±198.92ab 19.13±1.67a 22.23±2.29a 8 251.05±520.38a 77.77±2.29b
RNE 0.49±0.02a 2 202.33±260.61a 17.82±1.12a 22.39±2.61a 8 097.67±195.07a 77.61±2.61b
新乡
Xinxiang
NE-N 0.39±0.02a 600.43±87.13e 8.92±1.23c 14.06±1.25c 4 516.24±433.95c 86.94±2.80a
NE-P 0.38±0.04a 835.07±72.24d 9.04±0.81c 16.24±1.99c 4 531.59±219.45c 83.76±1.99a
NE-K 0.41±0.03a 1 372.12±144.38c 13.95±2.24b 22.86±2.16b 4 794.55±393.22bc 77.14±2.16b
FP 0.40±0.02a 1 697.46±148.72b 15.37±0.38ab 27.07±3.00a 4 885.88±497.94bc 72.93±3.00c
ST 0.40±0.02a 1 902.90±136.71ab 16.04±2.23ab 29.72±1.82a 4 763.76±289.86bc 70.28±1.82c
NE 0.40±0.03a 1 963.02±214.31a 16.61±1.60a 29.39±3.27a 5 336.98±623.67ab 70.61±3.27c
RNE 0.39±0.04a 1 987.76±130.59a 17.57±1.84a 28.90±0.42a 5 795.57±496.68a 71.10±0.42c
ANOVA
试验地点(S) *** ** ** * *** *
处理(T) NS NS NS NS NS NS
S×T *** NS NS NS NS NS
??各处理详见表 2。DMR:干物质转运量; DMRE:干物质转运率; DMRCG:干物质转运对籽粒干物质积累贡献率; DMA:干物质积累量; DMAC:干物质积累对籽粒干物质积累贡献率。同列数据后不同小写字母表示同一地点不同处理间在P < 0.05水平差异显著; NS:不显著; *、**、***分别表示在P < 0.05、P < 0.01和P < 0.001水平显著。Description of each treatment is shown in the table 2>DMR: dry matter remobilization; DMRE: dry matter remobilization rate; DMRCG: contribution of dry matter remobilization to grain; DMA: dry matter accumulation; DMAC: contribution of dry matter accumulation to grain. Values followed by different lowercase letters in the same column are significantly different for the same place (P < 0.05). *, ** and *** represent significant effects at P < 0.05, P < 0dProbability levels, resely; NS: no significant effect.


下载: 导出CSV
表5不同施肥处理对冬小麦氮素积累、转运及对籽粒的贡献率
Table5.N accumulation, transport and contribution rate to grain of winter wheat under different fertilization treatments
地点
Site
处理
Treatment
氮积累
Nitrogen accumulation (kg·hm-2)
花前
Before anthesis
花后
After anthesis
分蘖
Tillering
拔节
Jointing
开花
Anthesis
成熟
Maturity
NR (kg·hm-2) NRE (%) NRCG (%) NA (kg·hm-2) NAC (%)
鹤壁
Hebi
NE-N 18.2±1.1c 101.0±13.3d 123.7±12.8d 177.9±19.8c 93.0±9.3d 75.2±1.5a 63.9±6.2a 49.2±3.3a 36.1±3.8a
NE-P 19.0±2.0bc 125.6±12.9c 151.5±12.9c 199.1±12.4bc 115.6±8.1cd 76.3±1.1a 72.8±12.8a 45.2±5.3ab 27.2±12.8a
NE-K 20.3±2.4bc 140.3±2.7bc 164.1±23.0bc 211.1±8.3ab 124.2±14.1bc 75.3±4.5a 74.5±17.3a 43.3±5.6ab 25.5±17.0a
FP 22.0±2.6bc 157.9±4.8b 178.2±19.1abc 217.9±16.2ab 134.8±20.9bc 75.4±4.1a 78.2±17.5a 39.8±6.0b 21.8±17.5a
ST 23.5±2.3ab 191.0±11.7a 185.8±15.5ab 233.3±25.7a 142.3±12.4ab 76.6±1.0a 75.1±1.7a 47.2±4.4ab 24.9±1.7a
NE 27.7±3.8a 214.1±13.7a 186.8±18.2ab 235.7±6.0a 143.2±13.8ab 76.6±1.3a 74.1±7.8a 50.2±6.1a 25.9±7.8a
RNE 27.2±2.8a 203.1±28.1a 201.3±5.3a 230.0±5.6a 158.0±3.4a 78.5±1.4a 81.9±4.8a 42.1±5.6ab 18.1±4.8a
新乡
Xinxiang
NE-N 23.1±1.8c 63.4±5.4e 87.6±4.1e 101.4±5.1c 61.2±4.4e 69.9±3.2ab 72.0±0.9abc 23.8±2.1c 28.0±0.9bc
NE-P 22.9±1.0c 88.4±2.7d 117.6±4.6d 163.9±11.6b 74.9±3.6e 63.7±1.7c 65.7±3.5bc 39.6±8.2abc 34.4±3.5ab
NE-K 28.2±2.3bc 113.0±15.7c 136.2±6.3c 177.3±19.4b 90.5±5.5d 66.4±2.9bc 62.6±5.6c 54.4±9.7a 37.5±5.6a
FP 30.6±3.30ab 131.6±17.7abc 161.6±6.0b 203.6±13.2a 106.8±4.5c 66.1±2.7bc 74.4±5.1ab 37.0±8.6abc 25.7±5.1cd
ST 34.5±5.07a 151.8±16.1a 186.9±13.1a 210.2±11.8a 135.9±9.1a 72.7±0.8a 80.7±7.1a 33.3±3.6bc 19.3±2.2d
NE 32.4±3.06ab 144.0±5.7ab 179.1±12.6ab 215.4±9.7a 123.2±3.7ab 68.9±2.9ab 74.7±9.4ab 43.0±18.9abc 25.3±3.1cd
RNE 36.0±3.39a 128.4±10.6bc 176.4±14.4ab 210.9±13.4a 121.0±16.4bc 68.4±3.9abc 73.0±7.2abc 44.6±11.0ab 27.0±2.9c
??各处理详见表 2。NR:花前氮素转运量; NRE:花前氮素转运率; NRCG:花前氮素转运对籽粒氮素积累贡献率; NA:花后氮素积累量; NAC:氮素积累对籽粒氮素积累贡献率。同列数据后不同小写字母表示同一地点不同处理间在P < 0.05水平差异显著; NS:不显著; *、**、***分别表示在P < 0.05、P < 0.01、P < 0.001水平上显著。Description of each treatment is shown in the table 2.NR: N remobilization before anthesis; NRE: N remobilization efficiency before anthesis; NRCG: contribution of N remobilization to grain N before anthesis; NA: N accumulation after anthesis; NAC: contribution of N accumulation to grain after anthesis N. Values followed by different lowercase letters in the same column are significantly different for the same site (P < 0.05). *, ** and *** represent significant effects at P < 0.05, P < 0.01 and P < 0.001 probability levels, respectively; NS: no significant effect.


下载: 导出CSV
表6不同施肥处理对冬小麦磷素积累、转运及对籽粒的贡献率
Table6.P accumulation, transport and contribution rate to grain of winter wheat under different fertilization treatments
地点
Site
处理
Treatment
磷积累
Phosphorus accumulation (kg·hm-2)
花前
Before anthesis
花后
After anthesis
分蘖
Tillers
拔节
Jointing
开花
Anthesis
成熟
Maturity
PR (kg·hm-2) PRE (%) PRCG (%) PA (kg·hm-2) PAC (%)
鹤壁
Hebi
NE-N 1.4±0.2d 8.8±1.1c 16.4±1.95d 28.1±0.96d 14.1±2.2d 85.5±3.6ab 54.6±3.9b 11.6±1.4bc 45.1±10.0b
NE-P 1.2±0.1e 9.3±1.1c 11.4±0.96e 28.8±0.47d 9.1±0.8e 79.5±1.9c 34.3±4.1c 17.4±1.7a 65.7±4.1a
NE-K 1.6±0.1cd 11.7±0.7bc 17.9±1.24cd 31.4±0.58c 15.0±1.2cd 83.4±0.9b 52.8±5.6b 13.5±1.9b 47.3±5.6b
FP 1.8±0.1bc 14.1±1.3b 20.9±0.55c 33.7±0.43b 17.5±0.2c 83.7±1.1b 57.6±1.0b 12.8±0.4bc 42.4±1.0b
ST 1.9±0.1b 17.5±1.2a 24.8±1.89b 35.9±0.51a 21.3±1.7b 85.8±0.3ab 65.9±6.5ab 11.1±1.3c 34.1±6.5bc
NE 2.2±0.2a 19.1±2.4a 29.5±1.20a 36.5±0.74a 25.8±1.0a 87.5±1.0a 78.6±4.6a 7.0±0.7d 21.4±4.6c
RNE 2.4±0.2a 20.1±2.8a 30.0±4.23a 37.2±1.71a 26.3±3.5a 87.5±2.9a 78.4±15.3a 7.4±1.1d 21.6±15.3c
新乡
Xinxiang
NE-N 1.8±0.2d 7.1±0.9e 15.7±2.03d 17.1±1.31e 13.1±1.9d 83.1±1.5a 87.9±7.0ab 2.1±0.2b 12.1±7.0ab
NE-P 1.6±0.2d 8.3±1.1e 15.1±2.09d 17.4±1.10e 12.2±1.2d 80.5±2.5ab 81.0±10.8b 2.8±0.4a 19.0±10.8a
NE-K 1.9±0.3cd 10.3±1.0d 21.2±1.28c 21.5±0.72d 17.8±1.4c 83.8±1.9a 87.8±3.8ab 1.9±0.3bc 12.1±1.3ab
FP 2.3±0.2c 13.2±0.8c 23.5±1.47bc 24.1±0.63c 18.7±1.6bc 79.3±2.1b 93.0±6.1a 1.7±0.3bc 7.0±0.9b
ST 2.8±0.4b 15.0±1.19bc 25.6±1.72ab 25.2±1.07bc 20.3±1.5abc 79.3±2.3b 94.0±1.9a 1.3±0.5c 6.0±1.9b
NE 3.0±0.3b 16.6±0.93b 27.0±1.02a 27.4±1.88ab 21.4±1.3a 79.1±2.1b 91.5±6.8ab 1.4±0.2c 8.5±0.9b
RNE 3.5±0.2a 19.3±1.33a 27.4±1.21a 28.8±1.31a 21.1±1.0ab 77.2±1.3b 92.5±1.7a 1.7±0.5bc 7.5±1.0b
??各处理详见表 2。PR:花前磷素转运量; PRE:花前磷素转运率; PRCG:花前磷素转运对籽粒磷素积累贡献率; PA:花后磷素积累量; PAC:磷素积累对籽粒磷素积累贡献率。同列数据后不同小写字母表示同一地点不同处理间在0.05水平上差异显著; NS:不显著; *、**、***分别表示在0.05、0.01和0.001水平上显著。Description of each treatment is shown in the table 2. PR: P remobilization before anthesis; PRE: P remobilization efficiency before anthesis; PRCG: contribution of P remobilization before anthesis to grain P; PA: P accumulation after anthesis; PAC: contribution of P accumulation after anthesis to grain P. Values followed by different lowercase letters in the same column are significantly different for the same site (P < 0.05).*, ** and *** represent significant effects at P < 0.05, P < 0.01 and P < 0.001 probability levels, respectively; NS: no significant effect.


下载: 导出CSV
表7不同施肥处理对冬小麦钾素积累、转运及对籽粒的贡献率
Table7.K accumulation, transport and contribution rate to grain of winter wheat under different fertilizer treatments
地点
Site
处理
Treatment
钾积累
Potassium accumulation (kg·hm-2)
花前
Before anthesis
花后
After anthesis
分蘖
Tillers
拔节
Jointing
开花
Anthesis
成熟
Maturity
KR (kg·hm-2) KRE (%) KRCG (%) KA (kg·hm-2) KAC (%)
鹤壁
Hebi
NE-N 13.2±0.9e 67.2±7.3c 197.0±23.2c 221.2±21.4b 11.3±1.5b 5.7±0.5a 39.2±1.8bc 17.5±4.6bcd 60.8±3.6bc
NE-P 14.5±0.1de 78.5±5.9c 219.3±23.4bc 242.7±30.2ab 13.3±1.5b 6.0±0.2a 44.2±3.4b 16.7±2.0cd 55.9±4.0c
NE-K 13.0±0.3e 76.8±2.6c 223.0±12.2abc 261.0±18.4ab 12.8±1.3b 4.1±0.1a 29.8±3.4d 21.3±2.5abc 70.1±5.8a
FP 16.7±0.7cd 102.0±6.4b 239.6±25.2ab 272.4±22.9a 11.1±1.0b 4.7±0.6a 32.6±4.2cd 22.7±1.7a 67.2±6.8ab
ST 18.1±2.7bc 127.6±10.6a 245.8±14.1ab 270.5±23.8ab 13.7±1.3b 5.6±0.4a 39.0±2.3bc 21.4±1.5abc 62.0±4.7abc
NE 20.5±1.3ab 139.5±16.6a 250.5±21.5ab 272.4±41.6a 13.3±2.1b 5.3±0.7a 37.0±4.0c 21.9±2.6ab 63.0±4.6abc
RNE 21.9±1.8a 146.0±21.6a 258.4±10.2a 272.7±22.6a 18.8±1.9a 8.0±6.4a 58.9±5.3a 14.3±1.8d 41.0±4.3d
新乡
Xinxiang
NE-N 20.6±0.6d 52.7±3.4e 149.0±5.2c 165.2±19.8c 6.8±0.8cd 4.6±0.5ab 41.5±3.3c 9.5±1.3b 58.6±2.9b
NE-P 22.4±1.6cd 72.3±5.8d 188.5±16.2b 206.3±3.8b 6.3±0.8cd 3.3±0.3bc 35.8±1.5cd 11.1±1.2b 64.1±3.9b
NE-K 21.4±2.1d 78.3±5.4cd 186.2±12.0b 215.0±18.1b 5.2±0.6d 2.8±0.8c 25.3±3.5e 15.4±2.2a 74.6±5.1a
FP 25.2±2.8bc 93.0±10.3bc 235.1±7.0a 250.5±20.4a 7.8±0.9c 2.7±0.2c 29.4±1.5de 15.5±2.7a 70.7±3.9a
ST 26.7±1.9ab 99.7±9.2ab 242.7±17.19a 247.5±16.0a 11.1±1.1b 4.7±0.8ab 49.0±4.2b 11.4±2.5b 50.7±50.2c
NE 27.5±2.5ab 108.1±5.0ab 258.3±14.99a 269.1±8.8a 13.8±1.1a 5.4±1.7a 55.9±5.3a 10.9±1.4b 44.2±6.2d
RNE 29.7±0.5a 115.6±13.98a 258.6±26.29a 267.0±13.4a 12.7±1.2ab 4.9±0.4a 52.1±4.1ab 11.7±1.1b 47.8±4.8cd
??各处理详见表 2。KR:花前钾素转运量; KRE:花前钾素转运率; KRCG:花前钾素转运对籽粒钾素积累贡献率; KA:花后钾素积累量; KAC:钾素积累对籽粒钾素积累贡献率。同列不同小写字母表示同一地点不同处理间在0.05水平上差异显著; NS:不显著; *、**、***分别表示在0.05、0.01和0.001水平上显著。Description of each treatment is shown in the table 2. KR: K remobilization before anthesis; KRE: K remobilization efficiency before anthesis; KRCG: contribution of K remobilization before anthesis to grain K; KA: K accumulation after anthesis; KAC: contribution of K accumulation after anthesis to grain K. Values followed by different lowercase letters in the same column are significantly different for the same site (P < 0.05).*, ** and *** represent significant effects at P < 0.05, P < 0.01 and P < 0.001 probability levels, respectively; NS: no significant effect.


下载: 导出CSV
表8不同施肥处理对冬小麦肥料效率指标的影响
Table8.Effects of different fertilization treatments on the fertilizer efficiency of winter wheat
地点
Site
处理
Treatment
肥料利用率
Fertilizer utilization efficiency (%)
农学效率
Agronomic efficiency (kg·kg-1)
N P2O5 K2O N P2O5 K2O
鹤壁
Hebi
NE 36.8 18.8 45.4 10.6 11.3 12.0
RNE 34.7 18.6 43.6 10.4 14.3 14.1
新乡
Xinxiang
NE 48.0 19.3 49.1 12.0 13.0 12.8
RNE 48.9 20.0 48.1 13.0 14.0 14.1
??各处理详见表 2。Description of each treatment is shown in the table 2.


下载: 导出CSV

参考文献(33)
[1]卢峰.农业供给侧结构改革下河南小麦产能问题研究[J].现代面粉工业, 2019, 33(2):14-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdmfgy201902004
LU F. Research of Henan wheat production capacity under the reform of agricultural supply side structure[J]. Modern Flour Milling Industry, 2019, 33(2):14-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdmfgy201902004
[2]刘倩倩, 陈欢, 张存岭, 等.新型专用肥对冬小麦产量、氮素吸收与利用的影响[J].麦类作物学报, 2019, 39(10):1186-1194 http://www.cqvip.com/main/zcps.aspx?c=1&id=7100257176
LIU Q Q, CHEN H, ZHANG C L, et al. Effects of new and specific fertilizers on yield, nitrogen uptake and utilization of winter wheat[J]. Journal of Triticeae Crops, 2019, 39(10):1186-1194 http://www.cqvip.com/main/zcps.aspx?c=1&id=7100257176
[3]朱兆良, 金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报, 2013, 19(2):259-273 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201302001
ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2):259-273 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201302001
[4]张福锁, 崔振岭, 王激清, 等.中国土壤和植物养分管理现状与改进策略[J].植物学通报, 2007, 24(6):687-694 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxtb200706001
ZHANG F S, CUI Z L, WANG J Q, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 24(6):687-694 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxtb200706001
[5]王宜伦, 白由路, 王磊, 等.基于养分专家系统的小麦-玉米推荐施肥效应研究[J].中国农业科学, 2015, 48(22):4483-4492 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201522009
WANG Y L, BAI Y L, WANG L, et al. Effects of recommended fertilization based on nutrient expert in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2015, 48(22):4483-4492 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201522009
[6]贾良良, 杨军芳, 孙彦铭, 等.小麦养分专家系统推荐施肥对河北省冬小麦产量、养分效率和环境效应的影响[J].中国土壤与肥料, 2017, (5):51-55 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201705009
JIA L L, YANG J F, SUN Y M, et al. Effects of nutrient expert recommendation fertilization on winter wheat yield, nutrient utilization efficiency and environmental in Hebei Province[J]. Soil and Fertilizer Sciences in China, 2017, (5):51-55 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201705009
[7]何萍, 徐新朋, 仇少君, 等.我国北方玉米施肥产量效应和经济效益分析[J].植物营养与肥料学报, 2014, 20(6):1387-1394 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201406010
HE P, XU X P, QIU S J, et al. Yield response and economic analysis of fertilizer application in maize grown in North China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6):1387-1394 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201406010
[8]刘东海, 陈云峰, 李双来, 等.养分专家系统推荐施肥对湖北中稻产量和养分利用率的影响[J].中国土壤与肥料, 2019, (4):84-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201904012
LIU D H, CHEN Y F, LI S L, et al. Effects of nutrient expert recommendation fertilization on middle rice yield and nutrient utilization in Hubei Province[J]. Soil and Fertilizer Sciences in China, 2019, (4):84-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201904012
[9]张月萌, 司焕森, 薛澄, 等.不同施肥水平对山药生长发育的影响及基于产量反应的养分用量推荐[J].中国土壤与肥料, 2018, (6):126-135 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201806019
ZHANG Y M, SI H S, XUE C, et al. Effects of different fertilization levels on growth characteristics of yam and nutrient recommendation based on yield response[J]. Soil and Fertilizer Sciences in China, 2018, (6):126-135 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201806019
[10]梁俊梅, 张君, 安昊, 等.养分专家系统推荐施肥对马铃薯产量及肥料利用率的影响[J].作物杂志, 2019, (4):133-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201904020
LIANG J M, ZHANG J, AN H, et al. Effects of recommended fertilization by management nutrition expert system on potato yield and fertilizer use efficiency[J]. Crops, 2019, (4):133-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201904020
[11]马征, 崔荣宗, 贾德, 等.氮磷钾平衡施用对大葱产量、养分吸收及利用的影响[J].中国土壤与肥料, 2019, (3):109-114 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201903016
MA Z, CUI R Z, JIA D, et al. Effects of N, P and K balanced fertilization on welsh onion yield, nutrient uptake and utilization[J]. Soil and Fertilizer Sciences in China, 2019, (3):109-114 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201903016
[12]REDDY U V B, REDDY G P, REDDY M S, et al. Potassium uptake at different growth stages in relation to yield of maize as influenced by various nitrogen and phosphorus levels during Kharif season[J]. International Journal of Chemical Studies, 2019, 7(2):75-81 https://www.researchgate.net/publication/319493333_Impact_of_phosphorus_and_potassium_levels_on_yield_and_yield_components_of_maize
[13]ROBERTS T L. Improving nutrient use efficiency[J]. Turkish Journal of Agriculture and Forestry, 2008, 32(3):177-182 http://www.ncbi.nlm.nih.gov/pubmed/18340443
[14]魏建林, 谭德水, 郑福丽, 等.养分专家系统推荐施肥对小麦玉米产量、效益及养分平衡的影响[J].山东农业科学, 2018, 50(2):87-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shandnykx201802017
WEI J L, TAN D S, ZHENG F L, et al. Effects of nutrient expert recommended fertilization on yield, profit and nutrient balance of maize and wheat[J]. Shandong Agricultural Sciences, 2018, 50(2):87-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shandnykx201802017
[15]PAMPOLINO M F, WITT C, PASUQUIN J M, et al. Development approach and evaluation of the nutrient expert software for nutrient management in cereal crops[J]. Computers and Electronics in Agriculture, 2012, 88:103-110 doi: 10.1016/j.compag.2012.07.007
[16]XU X P, XIE J G, HOU Y P, et al. Estimating nutrient uptake requirements for rice in China[J]. Field Crops Research, 2015, 180:37-45 doi: 10.1016/j.fcr.2015.05.008
[17]徐新朋, 魏丹, 李玉影, 等.基于产量反应和农学效率的推荐施肥方法在东北春玉米上应用的可行性研究[J].植物营养与肥料学报, 2016, 22(6):1458-1467 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201606003
XU X P, WEI D, LI Y Y, et al. Availability of fertilizer recommendation for spring maize based on yield response and agronomic efficiency in Northeast China[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6):1458-1467 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201606003
[18]XU X P, HE P, PAMPOLINO M F, et al. Narrowing yield gaps and increasing nutrient use efficiencies using the nutrient expert system for maize in northeast China[J]. Field Crops Research, 2016, 194:75-82 doi: 10.1016/j.fcr.2016.05.005
[19]CHUAN L M, HE P, JIN J Y, et al. Estimating nutrient uptake requirements for wheat in China[J]. Field Crops Research, 2013, 146:96-104. doi: 10.1016/j.fcr.2013.02.015
[20]ZHANG J J, DING W C, HE P, et al. Establishment and validation of nutrient expert system for radish fertilization management in China[J]. Agronomy Journal, 2019, 111(5):2435-2444 doi: 10.2134/agronj2019.01.0005
[21]ZHANG J J, HE P, XU X P, et al. Nutrient expert improves nitrogen efficiency and environmental benefits for winter wheat in China[J]. Agronomy Journal, 2018, 110(2):696-706 doi: 10.2134/agronj2017.05.0291
[22]ZHANG J J, HE P, XU X P, et al. Nutrient Expert improves nitrogen efficiency and environmental benefits for summer maize in China[J]. Agronomy Journal, 2017, 109(3):1082-1090 doi: 10.2134/agronj2016.08.0477
[23]吕鹏, 张吉旺, 刘伟, 等.施氮量对超高产夏玉米产量及氮素吸收利用的影响[J].植物营养与肥料学报, 2011, 17(4):852-860 http://www.cqvip.com/QK/90181X/20112/36735458.html
LYU P, ZHANG J W, LIU W, et al. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4):852-860 http://www.cqvip.com/QK/90181X/20112/36735458.html
[24]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社, 2000:30-33
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing:China Agricultural Publishing House, 2000:30-33
[25]隋鹏祥, 有德宝, 安俊朋, 等.秸秆还田方式与施氮量对春玉米产量及干物质和氮素积累、转运的影响[J].植物营养与肥料学报, 2018, 24(2):316-324 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201802004
SUI P X, YOU D B, AN J P, et al. Effects of straw management and nitrogen application on spring maize yield, dry matter and nitrogen accumulation and transfer[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2):316-324 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201802004
[26]宋蝶, 陈新兵, 董洋阳, 等.养分专家系统推荐施肥对苏北地区水稻产量和肥料利用率的影响[J].中国生态农业学报(中英文), 2020, 28(1):68-75 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0108&flag=1
SONG D, CHEN X B, DONG Y Y, et al. Effect of nutrient expert recommendation fertilization on rice yield and fertilizer use in northern Jiangsu Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1):68-75 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0108&flag=1
[27]宋亚栋.不同缓控释肥对小麦产量品质与养分利用效率的影响[D].南京: 南京农业大学, 2017
SONG Y D. Effects of different slow and controlled release fertilizers on yield, quality and nutrient use efficiency of wheat[D]. Nanjing: Nanjing Agricultural University, 2017
[28]李岚涛, 任丽, 尹焕丽, 等.施氮模式对玉-麦周年轮作系统产量和氮吸收利用的影响[J].中国生态农业学报(中英文), 2019, 27(11):1682-1694 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1108&flag=1
LI L T, REN L, YIN H L, et al. Effects of nitrogen application methodologies on yield and nitrogen use efficiencies in a summer maize (Zea mays)-winter wheat (Triticum aestivum) rotation system[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11):1682-1694 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1108&flag=1
[29]王新民, 侯彦林, 介晓磊, 等.冬小麦施用控释氮肥增产效应研究初报[J].中国生态农业学报, 2014, 12(2):98-101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004230&flag=1
WANG X M, HOU Y L, JIE X L, et al. Effect of applying controlled release nitrogen fertilizer on yield enhancement of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2014, 12(2):98-101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004230&flag=1
[30]YANG X L, LU Y L, TONG Y A, et al. A 5-year lysimeter monitoring of nitrate leaching from wheat-maize rotation system:Comparison between optimum N fertilization and conventional farmer N fertilization[J]. Agriculture, Ecosystems & Environment, 2015, 199:34-42 http://smartsearch.nstl.gov.cn/paper_detail.html?id=205f95397869bf657cd82d406e93a94d
[31]闫湘, 金继运, 何萍, 等.提高肥料利用率技术研究进展[J].中国农业科学, 2008, 41(2):450-459 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200802019
YAN X, JIN J Y, HE P, et al. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2):450-459 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200802019
[32]张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):915-924 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb200805018
ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb200805018
[33]柴婕.水稻氮、磷、钾肥料效应年间变异分析[D].杭州: 浙江大学, 2012: 14-15
CHAI J. The annual variation of the responses of rice to applications of nitrogen, phosphorus and potassium fertilizers in paddy field[D]. Hangzhou: Zhejiang University, 2012: 14-15

相关话题/推荐 物质 营养 土壤 基础