删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

播期与密度对鹰嘴豆物质积累运转及产量形成的影响

本站小编 Free考研考试/2022-01-01

郝曦煜,
梁杰,,
肖焕玉,
王英杰,
郭文云,
刘婷婷,
马信飞
吉林省白城市农业科学院 白城 137000
基金项目: 现代农业产业技术体系CARS-08-G4
白城市农业科学院青年发展基金项目Q2018002

详细信息
作者简介:郝曦煜, 主要研究方向为食用豆育种与栽培。E-mail:haoxiyu1990@foxmail.com
通讯作者:梁杰, 主要研究方向为食用豆育种与栽培。E-mail:liangjie9669@163.com
中图分类号:S529

计量

文章访问数:248
HTML全文浏览量:0
PDF下载量:174
被引次数:0
出版历程

收稿日期:2020-02-20
录用日期:2020-06-01
刊出日期:2020-10-01

Effect of sowing date and density on matter accumulation and translocation and on yield of chickpeas

HAO Xiyu,
LIANG Jie,,
XIAO Huanyu,
WANG Yingjie,
GUO Wenyun,
LIU Tingting,
MA Xinfei
Baicheng Academy of Agricultural Sciences, Baicheng 137000, China
Funds: This study was supported by China Agriculture Research SystemCARS-08-G4
The Youth Development Foundation of Baicheng Academy of Agricultural SciencesQ2018002

More Information
Corresponding author:LIANG Jie, E-mail:liangjie9669@163.com


摘要
HTML全文
(6)(5)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探讨播期、密度及其交互作用对鹰嘴豆物质积累转运及产量形成的影响,确定适宜东北地区鹰嘴豆种植的播期和密度,本试验于2018—2019年选用‘白鹰1号’为试验材料,设置4个播期(3月29日、4月7日、4月16日和4月25日)和4个密度(16.7万株·hm-2、11.1万株·hm-2、8.3万株·hm-2和6.7万株·hm-2)处理,通过测定鹰嘴豆干物质含量、叶面积指数、产量性状以及叶绿素、可溶性糖、粗淀粉和全氮含量,对不同播期鹰嘴豆的生育进程、光合特性、群体质量、碳氮转运和产量形成进行分析。结果表明,随着播种期的推迟,鹰嘴豆的出苗期、开花期、成熟期均推迟,生育期缩短,单株荚数先增加后减少。随着生长发育的推进,不同处理的叶绿素含量和叶面积指数先上升后下降。早播的鹰嘴豆营养器官的干物质积累量低于晚播,晚播能够提高花后氮素积累量对籽粒氮素的贡献率;高密度的单株干物质积累量低于低密度,减小密度能促进可溶性糖转运量及其转运率上升,同时提高花后氮素积累量。产量与单株荚数呈正相关。播期(X1)、密度(X2)与产量(Y)的回归方程为Y=-150.288 9+47.169 3X1+464.092 5X2-1.499 9X12-11.376 4X22+1.292 2X1X2。综上所述,中晚播鹰嘴豆的干物质积累量高于中早播。延后播期导致花前可溶性糖积累量和籽粒淀粉含量下降,而茎、叶的花前贮存氮素转运率和转运量则先上升后下降,花后氮素积累量对籽粒氮的贡献率上升。中低密度鹰嘴豆的花前物质积累对产量影响较大,花后氮素积累量较高,而中高密度鹰嘴豆的花后物质积累对产量影响较大。中早播、中密度或中晚播、高密度的鹰嘴豆可以提高花前贮存氮素转运量对籽粒氮的贡献率。在本试验条件下,‘白鹰1号’选择播期4月23日、密度7.64万株·hm-2的栽培方式能够获得较高产量。在生产中,可根据当地地理、气候等环境因素的变化进行调整。
关键词:鹰嘴豆/
播期/
密度/
产量/
物质转运
Abstract:This study explores the effect of sowing date and density on matter accumulation and translocation and the yield formation of chickpeas. Determining the optimum sowing date and density for chickpeas planted in Northeast China will lay a foundation for promoting the cultivation of chickpeas and the development of the chickpea industry. Four sowing dates (March 29th, April 7th, April 16th and April 25th) and four sowing densities (16.7×104 plants·hm-2, 11.1×104 plants·hm-2, 8.3×104 plants·hm-2 and 6.7×104 plants·hm-2) were set during 2018 and 2019. 'Baiying 1' chickpea was as material, and the growth process, photosynthetic characteristics, population quality, carbon and nitrogen translocation, and yield formation of 'Baiying 1' chickpeas during different growth periods were determined through by measuring dry matter content, leaf area index, yield components, and the content of chlorophyll, soluble sugar, starch, and total nitrogen. The date of seedling, flowering, and maturity were delayed as the sowing date was delayed, the growth period was shortened, and pods per plant initially increased, and then decreased. With the growth of chickpeas, the chlorophyll content and leaf area index of different treatments first increased and then decreased. The dry matter accumulation in the vegetative organs of chickpeas planted early was lower than in those planted late. Therefore, later sowing increased the contribution of nitrogen amount accumulated post-anthesis to the grain nitrogen. Further, the dry matter accumulation of chickpeas planted with high density was lower than those planted with low density. Decreased density promoted increased translocation, rate of pre-anthesis assimilation, and nitrogen accumulated post-anthesis. The regression equation of sowing date (X1), density (X2), and yield (Y) was Y=-150.288 9+47.169 3X1+ 464.092 5X2-1.499 9X12-11.376 4X22+ 1.292 2X1X2. In summary, the dry matter accumulation of chickpeas planted with intermediate and late sowing dates was higher than those with intermediate and early sowing dates. With delayed sowing date, the soluble sugar accumulation and starch content in seeds decreased, and the redistribution amount and efficiency of nitrogen accumulated pre-anthesis stored in stems and leaves first increased and then decreased; however, the contribution of nitrogen accumulated post-anthesis to the grain nitrogent of chickpea increased. The effect of translocation on the yield of pre-anthesis of chickpeas planted with medium and low density was large, and the amount of nitrogen accumulated post-anthesis was high. Moreover, the effect of post-anthesis assimilate accumulation of chickpeas planted with medium and high density on yield was significant. The contribution of redistribution of nitrogen accumulated pre-anthesis to grain nitrogen of chickpeas planted with intermediate and early sowing dates with medium density or intermediate and late sowing dates with high density increased. Under the conditions of this experiment, the optimal cultivation of 'Baiying 1' occurred when sown on April 23th, with a density of 7.64×104 plants·hm-2. However, this could vary with differing local geographical, climatic, and other environmental factors.
Key words:Chickpea/
Sowing date/
Density/
Yield/
Matter translocation

HTML全文


图1播期与密度对鹰嘴豆叶绿素含量的影响
D1、D2、D3和D4分别表示播期为3月29日、4月7日、4月16日和4月25日; M1、M2、M3和M4分别表示16.7万株∙hm-2、11.1万株∙hm-2、8.3万株∙hm-2和6.7万株∙hm-2
Figure1.Effect of sowing date and density on chlorophyll content of chickpea
D1, D2, D3 and D4 are sowing dates of Mar. 29, Apr. 7, 16 and 25, respectively. M1, M2, M3 and M4 indicate densities of 16.7×104 plants∙hm-2, 11.1×104 plants∙hm-2, 8.3×104 plants∙hm-2 and 6.7×104 plants∙hm-2, respectively.


下载: 全尺寸图片幻灯片


图2播期与密度对鹰嘴豆叶面积指数的影响
D1、D2、D3和D4分别表示播期为3月29日、4月7日、4月16日和4月25日; M1、M2、M3和M4分别表示16.7万株∙hm-2、11.1万株∙hm-2、8.3万株∙hm-2和6.7万株∙hm-2
Figure2.Effect of sowing date and density on leaf area index of chickpea
D1, D2, D3 and D4 are sowing dates of Mar. 29, Apr. 7, 16 and 25, respectively. M1, M2, M3 and M4 indicate densities of 16.7×104 plants∙hm-2, 11.1×104 plants∙hm-2, 8.3×104 plants∙hm-2 and 6.7×104 plants∙hm-2, respectively.


下载: 全尺寸图片幻灯片


图3播期与密度对鹰嘴豆干物质积累的影响
D1、D2、D3和D4分别表示播期为3月29日、4月7日、4月16日和4月25日; M1、M2、M3和M4分别表示16.7万株∙hm-2、11.1万株∙hm-2、8.3万株∙hm-2和6.7万株∙hm-2
Figure3.Effect of sowing date and density on dry matter accumulation of chickpea
D1, D2, D3 and D4 are sowing dates of Mar. 29, Apr. 7, 16 and 25, respectively. M1, M2, M3 and M4 indicate densities of 16.7×104 plants∙hm-2, 11.1×104 plants∙hm-2, 8.3×104 plants∙hm-2 and 6.7×104 plants∙hm-2, respectively.


下载: 全尺寸图片幻灯片


图4播期与密度对鹰嘴豆株高、单株荚数、单荚粒数和百粒重的影响
D1、D2、D3和D4分别表示播期为3月29日、4月7日、4月16日和4月25日; M1、M2、M3和M4分别表示密度为16.7万株∙hm-2、11.1万株∙hm-2、8.3万株∙hm-2和6.7万株∙hm-2。不同小写字母表示不同处理在P < 0.05水平差异显著。
Figure4.Effect of sowing date and density on plant height, pods per plant, seeds per pod and 100-seed weight of chickpea
D1, D2, D3 and D4 are sowing dates of Mar. 29, Apr. 7, 16 and 25, respectively. M1, M2, M3 and M4 indicate densities of 16.7×104 plants∙hm-2, 11.1×104 plants∙hm-2, 8.3×104 plants∙hm-2 and 6.7×104 plants∙hm-2, respectively. Different lowercase letters mean significant differences at P < 0.05 level among different treatments.


下载: 全尺寸图片幻灯片


图5播期与密度对鹰嘴豆产量的影响
D1、D2、D3和D4分别表示播期为3月29日、4月7日、4月16日和4月25日; M1、M2、M3和M4分别表示密度为16.7万株∙hm-2、11.1万株∙hm-2、8.3万株∙hm-2和6.7万株∙hm-2。不同小写字母表示不同处理0.05水平差异显著。
Figure5.Effect of sowing date and density on yield of chickpea
D1, D2, D3 and D4 are sowing dates of Mar. 29, Apr. 7, 16 and 25, respectively. M1, M2, M3 and M4 indicate densities of 16.7×104 plants∙hm-2, 11.1×104 plants∙hm-2, 8.3×104 plants∙hm-2 and 6.7×104 plants∙hm-2, respectively. Different lowercase letters mean significant differences at P < 0.05 level among different treatments.


下载: 全尺寸图片幻灯片


图6不同播期与密度对鹰嘴豆产量的互作效应
Figure6.Interactive effect of different sowing date and density on yield of chickpea


下载: 全尺寸图片幻灯片

表1播期与密度对鹰嘴豆生育进程的影响
Table1.Effect of sowing date and density on growing period of chickpea
播期
Sowing date
密度
Density
出苗期(月-日)
Seedling date (month-day)
开花期(月-日)
Flowering date (month-day)
成熟期(月-日)
Maturity date (month-day)
生育期天数
Growth duration (d)
D1 M1 04-30 06-09 07-16 110a
M2 04-29 06-09 07-16 110a
M3 04-30 06-09 07-16 110a
M4 04-30 06-09 07-16 110a
D2 M1 05-02 06-10 07-16 104abc
M2 04-29 06-10 07-18 105ab
M3 04-30 06-10 07-16 104abc
M4 04-30 06-11 07-16 104abc
D3 M1 05-02 06-13 07-24 99bc
M2 05-02 06-13 07-27 101bc
M3 05-02 06-13 07-27 101bc
M4 05-02 06-14 07-27 101bc
D4 M1 05-08 06-20 07-29 97c
M2 05-08 06-20 07-29 97c
M3 05-08 06-22 07-29 97c
M4 05-08 06-24 08-01 100bc
D1、D2、D3和D4分别表示播期为3月29日、4月7日、4月16日和4月25日; M1、M2、M3和M4分别表示密度为16.7万株?hm-2、11.1万株?hm-2、8.3万株?hm-2和6.7万株?hm-2。生育期天数列不同小写字母表示不同处理在P < 0.05水平差异显著。D1, D2, D3 and D4 are sowing dates of Mar. 29, Apr. 7, 16 and 25, respectively. M1, M2, M3 and M4 indicate densities of 16.7×104 plants?hm-2, 11.1×104 plants?hm-2, 8.3×104 plants?hm-2 and 6.7×104 plants?hm-2, respectively. Different lowercase letters in the growth duration column mean significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表2播期与密度对鹰嘴豆干物质转运的影响
Table2.Effect of sowing date and density on dry matter remobilization of chickpea
播期(月-日)
Sowing date (month-day)
密度
Density (×104 plants?hm-2)
TAA (kg?hm-2) TAR (%) CTA (%) PAA (kg?hm-2) CPA (%)
03-29
(D1)
16.7 (M1) 1 391.47de 19.51b 37.47d 2 322.42g 62.53g
11.1(M2) 1 244.02e 11.62de 32.34ef 2 603.20fg 67.66e
8.3 (M3) 1 366.48de 9.52ef 29.88f 3 206.30de 70.12e
6.7 (M4) 1 635.87c 16.38bc 36.02d 2 905.80ef 63.98g
04-07
(D2)
16.7 (M1) 1 018.72f 10.91e 26.65g 2 803.50efg 73.35d
11.1(M2) 1 390.75de 14.64cd 33.07e 2 814.81efg 66.93f
8.3 (M3) 1 712.22c 15.29c 31.77ef 3 676.67cd 68.23ef
6.7 (M4) 1 235.22e 9.25ef 26.33g 3 456.45cd 73.67d
04-16
(D3)
16.7 (M1) 1 270.20b 14.32a 32.97b 2 582.58h 67.03i
11.1(M2) 2 249.48de 30.79b 43.56g 2 914.41bc 56.44d
8.3 (M3) 1 500.98d 11.18e 26.12gh 4 246.24a 73.88cd
6.7 (M4) 1 622.63f 15.77f 30.68i 3 666.26ab 69.32b
04-25
(D4)
16.7 (M1) 1 039.42a 8.99a 27.33a 2 763.36h 72.67j
11.1(M2) 1 860.89b 23.75a 37.40c 3 114.11efg 62.60h
8.3 (M3) 1 748.08e 15.70ef 31.42h 3 815.81ab 68.58c
6.7 (M4) 1 774.58g 19.24g 34.13j 3 425.42a 65.87a
F
F-value
D 22.17** 9.29** 27.65** 14.74** 27.65**
M 108.93** 96.98** 423.43** 100.18** 423.43**
D×M 105.67** 32.32** 155.54** 13.09** 155.54**
TAA:花前同化物转运量; TAR:花前同化物转运率; CTA:花前同化物对籽粒产量的贡献率; PAA:花后同化物积累量; CPA:花后同化物积累量对籽粒产量的贡献率。同列不同小写字母表示不同处理(播期×密度)在P < 0.05水平差异显著, **表示在P < 0.01水平差异显著。TAA: translocation amount of pre-anthesis; TAR: translocation rate of pre-anthesis assimilate; CTA: contribution of pre-anthesis translocated assimilate to grain yield; PAA: post-anthesis assimilate accumulation; CPA: contribution of post-anthesis assimilate to grain yield. Different lowercase letters in the same column mean significant differences among different treatments of sowing date and density at P < 0.05 levels. ** means significant differences at P < 0.01 level.


下载: 导出CSV
表3播期与密度对鹰嘴豆花前营养器官贮存可溶性糖转运的影响
Table3.Effect of sowing date and density on redistribution of pre-anthesis soluble sugar stored in chickpea vegetative organs
播期(月-日) Sowing date (month-day) 密度Density (×104 plants?hm-2) 茎Stem 叶Leaf
SRQ (g?plant-1) SRR (%) PSGS (%) SRQ (g?plant-1) SRR (%) PSGS (%)
03-29
(D1)
16.7 (M1) 1.86ab 91.40b 16.21a 0.11abcd 75.24a 1.92bc
11.1(M2) 1.66abc 93.10a 15.91a 0.11ab 74.98a 3.16ab
8.3 (M3) 2.17a 93.65a 15.78a 0.15a 75.57a 3.26a
6.7 (M4) 1.71abc 94.40a 15.89a 0.11abc 72.42b 2.95abc
04-07
(D2)
16.7 (M1) 0.90cde 93.05a 15.68a 0.06def 74.59a 2.92bc
11.1(M2) 1.43abcde 94.58a 16.22a 0.08bcdef 74.86a 2.72c
8.3 (M3) 1.46abcde 94.19a 15.77a 0.10bcde 75.15a 3.18ab
6.7 (M4) 1.73abc 93.18a 15.84a 0.11ab 75.99a 3.03ab
04-16
(D3)
16.7 (M1) 0.66e 94.29a 15.65a 0.04f 75.32a 2.97abc
11.1(M2) 0.80de 94.93a 15.78a 0.05ef 74.86a 2.96abc
8.3 (M3) 1.66abc 94.38a 16.31a 0.11ab 75.58a 3.23ab
6.7 (M4) 1.54abcd 94.07a 16.11a 0.10bcde 75.22a 3.05abc
04-25
(D4)
16.7 (M1) 0.75de 94.59a 16.06a 0.05f 74.86a 2.90abc
11.1(M2) 0.94cde 94.42a 15.94a 0.06cdef 74.76a 3.03abc
8.3 (M3) 1.09bcde 94.41a 15.83a 0.07bcdef 75.56a 3.22ab
6.7 (M4) 1.58abcd 94.49a 15.97a 0.10abcd 75.28a 3.14ab
F
F-value
D 7.54** 3.98* 0.20 8.69** 3.03* 0.97
M 5.52* 2.50 0.13 9.03** 2.53 6.70**
D×M 1.13 1.84 0.98 1.18 3.66 1.16
SRQ:可溶性糖转运量; SRR:可溶性糖转运率; PSGS:可溶性糖转运量对籽粒淀粉的贡献率。表中同列不同小写字母表示不同处理(播期×密度)在P < 0.05水平差异显著。*和**表示在P < 0.05和P < 0.01水平差异显著。SRQ: soluble sugar redistribution quantity; SRR: soluble sugar redistribution rate; PSGS: contribution of SRQ to grain starch. Different lowercase letters in the same column mean significant differences among different treatments of sowing date and density at P < 0.05 level. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表4播期与密度对鹰嘴豆花前营养器官贮存氮转运的影响
Table4.Effect of sowing date and density on redistribution of pre-anthesis nitrogen stored in chickpea vegetative organs
播期(月-日)
Sowing date (month-day)
密度
Density (×104 plants?hm-2)
茎Stem 叶Leaf
RANP (kg?hm-2) RENP (%) RANP (kg?hm-2) RENP (%)
03-29
(D1)
16.7 (M1) 85.86h 75.07cde 11.13f 70.08cde
11.1(M2) 93.93gh 71.73fg 12.02f 66.07fg
8.3 (M3) 112.60cdef 71.25g 14.38cde 65.50g
6.7 (M4) 107.50ef 73.56defg 13.86de 68.28defg
04-07
(D2)
16.7 (M1) 89.78gh 74.05cdef 11.59f 68.86cdef
11.1(M2) 99.47fg 73.61defg 12.83ef 68.33defg
8.3 (M3) 125.38abc 74.65cde 16.23abc 69.58cde
6.7 (M4) 112.23cdef 72.93efg 14.43cde 67.51efg
04-16
(D3)
16.7 (M1) 91.40gh 73.43defg 11.78f 68.12defg
11.1(M2) 112.13cdef 79.58a 14.77cd 75.50a
8.3 (M3) 133.93a 74.55cde 17.33a 69.46cde
6.7 (M4) 121.48abcd 75.50cd 15.78abc 70.60cd
04-25
(D4)
16.7 (M1) 92.16gh 72.16fg 11.81f 66.59fg
11.1(M2) 110.73def 77.70ab 14.50cde 73.24ab
8.3 (M3) 128.56ab 75.11cde 16.67ab 70.13cde
6.7 (M4) 118.14bcde 76.24bc 15.39bcd 71.49cb
F
F-value
D 10.12** 12.98** 10.37** 13.24**
M 53.49** 5.79** 46.22** 5.83**
D×M 0.65 8.09** 0.81 8.12**
RANP:花前贮存氮转运量; RENP:花前贮存氮转运率。同列不同小写字母表示不同处理(播期×密度)在P < 0.05水平差异显著。*和**表示在P < 0.05和P < 0.01水平差异显著。RANP: redistribution amount of nitrogen accumulated pre-anthesis; RENP: redistribution rate of nitrogen accumulated pre-anthesis. Different lowercase letters in the same column mean significant differences among different treatments of sowing date and density at P < 0.05 level. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表5播期与密度对鹰嘴豆花前贮存氮再转运和花后氮积累的影响
Table5.Effect of sowing date and density on redistribution of pre-anthesis stored and post-anthesis accumulated nitrogen in chickpea
播期(月-日)
Sowing date (month-day)
密度
Density (×104 plants?hm-2)
RANP (kg?hm-2) RENP (%) CRNP (%) NAP (kg?hm-2) CNP (%)
03-29
(D1)
16.7 (M1) 96.99h 74.46cde 69.24def 43.09c 30.76cde
11.1(M2) 105.95gh 71.04fg 73.01ab 39.16c 26.99gh
8.3 (M3) 126.98cdef 70.55g 73.62a 45.50c 26.38h
6.7 (M4) 121.36ef 72.92defg 70.84bcde 49.95bc 29.16defg
04-07
(D2)
16.7 (M1) 101.37gh 73.41cdef 70.31cdef 42.80c 29.69cdef
11.1(M2) 112.30fg 72.97defg 70.79bcde 46.33c 29.21defg
8.3 (M3) 141.61abc 74.04cde 69.67def 61.66ab 30.33cde
6.7 (M4) 126.66cdef 72.27efg 71.57abcd 50.31bc 28.43efgh
04-16
(D3)
16.7 (M1) 103.17gh 72.78defg 70.99bcde 42.15c 29.01defg
11.1(M2) 126.90cdef 79.09a 65.15h 67.88a 34.85a
8.3 (M3) 151.26a 73.93cde 69.77def 65.52a 30.23cde
6.7 (M4) 137.26abcd 74.90cd 68.81efg 62.23ab 31.19bcd
04-25
(D4)
16.7 (M1) 103.97gh 71.48fg 72.48abc 39.47c 27.52fgh
11.1(M2) 125.23def 77.16ab 66.73gh 62.42ab 33.27ab
8.3 (M3) 145.23ab 74.50cde 69.20de 64.64a 30.80cd
6.7 (M4) 133.53bcde 75.66bc 68.08fg 62.61ab 31.92bc
F
F-value
D 10.14** 13.23** 15.29** 11.62** 15.29**
M 52.46** 5.85** 5.40** 14.47** 5.40**
D×M 0.66 8.14** 9.42** 2.77* 9.42**
CRNP:花前贮存氮转运量对籽粒氮的贡献率; NAP:花后氮积累量; CNP:花后氮积累量对籽粒氮的贡献率。同列不同小写字母表示不同处理(播期×密度)在P < 0.05水平差异显著。*和**表示在P < 0.05和P < 0.01水平差异显著。CRNP: contribution of redistribution amount of nitrogen accumulated pre-anthesis to grain nitrogen; NAP: nitrogen amount accumulated post-anthesis; CNP: contribution of NAP to grain nitrogen. Different lowercase letters in the same column mean significant differences among different treatments of sowing date and density at P < 0.05 level. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(38)
[1]龙静宜, 林黎奋, 侯修身, 等.食用豆类作物[M].北京:科学出版社, 1989:305
LONG J Y, LIN L F, HOU X S, et al. Edible Bean Crops[M]. Beijing:Science Press, 1989:305
[2]郑卓杰.中国食用豆类学[M].北京:中国农业出版社, 1997:285
ZHENG Z J. Chinese Food Legumes[M]. Beijing:China Agriculture Press, 1997:285
[3]张旭娜, 么杨, 崔波, 等.鹰嘴豆功能活性及应用研究进展[J].食品安全质量检测学报, 2018, 9(9):1983-1988 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201809001
ZHANG X N, YAO Y, CUI B, et al. Research advance on the biological activity and application of chickpea[J]. Journal of Food Safety and Quality, 2018, 9(9):1983-1988 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201809001
[4]陈文晋, 孔庆全, 赵存虎, 等.鹰嘴豆营养功能研究进展[J].北方农业学报, 2019, 47(2):119-123 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnykj201902021
CHEN W J, KONG Q Q, ZHAO C H, et al. Review of progress in chickpea (Cicer arietinum) research[J]. Journal of Northern Agriculture, 2019, 47(2):119-123 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnykj201902021
[5]KNUDSEN J C, OTTE J, OLSEN K, et al. Effect of high hydrostatic pressure on the conformation of β-lactoglobulin A as assessed by proteolytic peptide profiling[J]. International Dairy Journal, 2002, 12(10):791-803 doi: 10.1016/S0958-6946(02)00078-X
[6]张俊杰, 郭晨, 杨旭, 等.鹰嘴豆根瘤菌多样性研究进展[J].轻工学报, 2016, 31(6):1-7 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzqgyxy201606001
ZHANG J J, GUO C, YANG X, et al. Research progress of the chickpea rhizoibal diversity[J]. Journal of Light Industry, 2016, 31(6):1-7 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzqgyxy201606001
[7]VARSHNEY R K, THUDI M, NAYAK S N, et al. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)[J]. Theoretical and Applied Genetics, 2014, 127(2):445-462 doi: 10.1007/s00122-013-2230-6
[8]BHATTARAI T, FETTIG S. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea[J]. Physiologia Plantarum, 2005, 123(4):452-458 doi: 10.1111/j.1399-3054.2005.00478.x
[9]SHUKLA R K, RAHA S, TRIPATHI V, et al. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco[J]. Plant Physiology, 2006, 142(1):113-123 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557594/
[10]聂石辉, 彭琳, 王仙, 等.鹰嘴豆种质资源农艺性状遗传多样性分析[J].植物遗传资源学报, 2015, 16(1):64-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyczyxb201501010
NIE S H, PENG L, WANG X, et al. Genetic diversity of agronomic traits in chickpea (Cicer arietinum L.) germplasm resources[J]. Journal of Plant Genetic Resources, 2015, 16(1):64-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyczyxb201501010
[11]郝曦煜, 梁杰, 郭文云, 等.白城市特色食用豆产业发展优势分析[J].东北农业科学, 2019, 44(1):87-90 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlnykx201901018
HAO X Y, LIANG J, GUO W Y, et al. Analysis of advantages of development of characteristic food legumes industry in Baicheng[J]. Journal of Northeast Agricultural Sciences, 2019, 44(1):87-90 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlnykx201901018
[12]陈文晋, 孔庆全, 赵存虎, 等.鹰嘴豆种质资源主要农艺性状遗传多样性分析[J].北方农业学报, 2018, 46(5):9-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnykj201805002
CHEN W J, KONG Q Q, ZHAO C H, et al. Analysis of genetic diversity of the main agronomic traits of chickpea germplasm resources[J]. Journal of Northern Agriculture, 2018, 46(5):9-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnykj201805002
[13]胡焕焕.播种期和密度对冬小麦群体质量和产量的调控效应[D].保定: 河北农业大学, 2008
HU H H. Effect of planting date and planting density on the population quality and grain yield of winter wheat[D]. Baoding: Hebei Agricultural University, 2008
[14]雷锦雯.不同播种方式与播量对冬小麦群体质量与产量构成的调控效应[D].郑州: 河南农业大学, 2017
LEI J W. Effects of different sowing methods and planting densities on group quality and yield components of winter wheat[D]. Zhengzhou: Henan Agricultural University, 2017
[15]李龙.不同播期及氮肥基追比对大豆产量品质及氮代谢的影响[D].南京: 南京农业大学, 2016
LI L. Effects on soybean yield and quality and nitrogen metabolism under different sowing and ratio of nitrogen basal and topdressing[D]. Nanjing: Nanjing Agricultural University, 2016
[16]孙学磊.播期和密度对小麦产量形成和品质的影响[D].杨凌: 西北农林科技大学, 2017
SUN X L. Effects of sowing date and density on yield formulation and quality of wheat[D]. Yangling: Northwest A & F University, 2017
[17]刘少坤.播期和密度对登海618高产机理影响的研究[D].泰安: 山东农业大学, 2017
LIU S K. The study on the effect of sowing date and density on the high yield mechanism of Denghai 618[D]. Tai'an: Shandong Agricultural University, 2017
[18]郝曦煜, 杨涛, 梁杰, 等. 160份外引鹰嘴豆种质主要农艺性状的遗传多样性分析[J].植物遗传资源学报, 2020, 21(4):875-883 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyczyxb202004011
HAO X Y, YANG T, LIANG J, et al. Genetic diversity analysis of major agronomic traits in 160 introduced chickpea (Cicer arietinum L.) germplasm resources[J]. Journal of Plant Genetic Resources, 2020, 21(4):875-883 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyczyxb202004011
[19]邵千顺, 关耀兵, 程炳文, 等.鹰嘴豆种质资源多样性评价[J].西北农业学报, 2017, 26(12):1803-1812 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnyxb201712010
SHAO Q S, GUAN Y B, CHENG B W, et al. Diversity evaluation of germplasm resources of chickpea[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(12):1803-1812 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnyxb201712010
[20]邵千顺, 杨琳.鹰嘴豆种质资源筛选及多样性分析[J].安徽农业科学, 2017, 45(34):16-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnykx201734006
SHAO Q S, YANG L. Screening of Cicer arietinum germplasm resources and their diversity analysis[J]. Journal of Anhui Agricultural Sciences, 2017, 45(34):16-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnykx201734006
[21]张金波, 李利民, 苗昊翠, 等.鹰嘴豆种质资源主要农艺性状遗传多样性研究[J].新疆农业科学, 2014, 51(1):110-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykx201401016
ZHANG J B, LI L M, MIAO H C, et al. Genetic diversity analysis of the chickpea germplasm resources based on agronomic traits[J]. Xinjiang Agricultural Sciences, 2014, 51(1):110-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykx201401016
[22]吾尔古丽·艾麦提.新疆鹰嘴豆产量和品质关键栽培技术调控研究[D].杨凌: 西北农林科技大学, 2008
WUERGULI. Regulation studies on key cultivation technique for yield and quality of chickpea in Xinjiang[D]. Yangling: Northwest A & F University, 2008
[23]关耀兵, 牛永岐, 周丽蕾, 等.密度对鹰嘴豆主要性状及种子产量的影响[J].种子, 2018, 37(1):130-132 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhongz201801035
GUAN Y B, NIU Y Q, ZHOU L L, et al. The influence of density on the main characters and seed yield of chickpeas[J]. Seed, 2018, 37(1):130-132 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhongz201801035
[24]买合木提·艾尼.不同种植密度对鹰嘴豆产量的影响[J].新疆农业科技, 2014, (1):45-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykj201401031
MAIHEMUTI. Effect of different planting density on yield of chickpea[J]. Xinjiang Agricultural Science and Technology, 2014, (1):45-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykj201401031
[25]SHIFERAW M, TAMADO T, ASNAKE F. Effect of plant density on yield components and yield of Kabuli chickpea (Cicer arietinum L.) varieties at Debre Zeit, central Ethiopia[J]. International Journal of Plant & Soil Science, 2018, 21(6):1-6 http://www.researchgate.net/publication/323661318_Effect_of_Plant_Density_on_Yield_Components_and_Yield_of_Kabuli_Chickpea_Cicer_arietinum_L_Varieties_at_Debre_Zeit_Central_Ethiopia
[26]MACHADO S, HUMPHREYS C, TUCK B, et al. Seeding date, plant density, and cultivar effects on chickpea yield and seed size in eastern Oregon[J]. Crop Management, 2006, 5(1):1-7 doi: 10.1094/CM-2006-0227-01-RV
[27]RUBIALES D, ALCá NTARA C, Pé REZ-DE-LUQUE A, et al. Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions[J]. Agronomie, 2003, 23(4):359-362 doi: 10.1051/agro:2003016
[28]BEECH D F, LEACH G J. Effect of plant density and row spacing on the yield of chickpea (cv. Tyson) grown on the Darling Downs, south-eastern Queensland[J]. Australian Journal of Experimental Agriculture, 1989, 29(2):241-246 http://europepmc.org/abstract/AGR/IND93052096
[29]宗绪晓, 关建平, 李玲, 等.鹰嘴豆种质资源描述规范和数据标准[M].北京:中国农业科学技术出版社, 2012
ZONG X X, GUAN J P, LI L, et al. Descriptors and Data Standard for Chickpea (Cicer spp.)[M]. Beijing:China Agriculture Science and Technology Press, 2012
[30]孙中伟.不同播种方式下播期与播量对小麦籽粒产量和品质形成的影响[D].南京: 南京农业大学, 2011: 15-82
SUN Z W. Effects of different sowing dates and sowing quantities on yield, quality formation of wheat in different planting ways[D]. Nanjing: Nanjing Agricultural University, 2011: 15-82
[31]周琴, 姜东, 戴廷波, 等.不同基因型小麦籽粒蛋白质和淀粉积累与碳氮转运的关系[J].南京农业大学学报, 2002, (3):1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njnydxxb200203001
ZHOU Q, JIANG D, DAI T B, et al. Grain protein and starch accumulation and its relationship to remobilization of carbon and nitrogen in different wheat genotypes[J]. Journal of Nanjing Agricultural University, 2002, (3):1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njnydxxb200203001
[32]库尔班·尼扎米丁.鹰嘴豆在旱作条件下不同播种期对产量影响的研究[J].新疆农业科学, 2008, 45(1):175-179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykx200801037
KUERBAN N. Study on the effect of different souring seasons on yield of Cicer arietinum under non-irrigation condition in the North Xinjiang[J]. Xinjiang Agricultural Sciences, 2008, 45(1):175-179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnykx200801037
[33]曹宏鑫, 刘世军, 张立民, 等.小麦群体叶面积的动态模型[J].沈阳农业大学学报, 2000, 31(3):246-248 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb200003004
CAO H X, LIU S J, ZHANG L M, et al. Modeling for canopy leaf area for wheat[J]. Journal of Shenyang Agricultural University, 2000, 31(3):246-248 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb200003004
[34]杨文平.行距和密度对冬小麦冠层结构、微环境及碳氮代谢的影响[D].郑州: 河南农业大学, 2008
YANG W P. Effects of row spacing and planting density on canopy structure, microclimate and carbon-nitrogen metabolism of winter wheat (Triticum aestivum L.)[D]. Zhengzhou: Henan Agricultural University, 2008
[35]王文静, 高松洁, 梁月丽, 等.不同穗型小麦品种灌浆期碳氮代谢特点及其与源库的关系[J].华北农学报, 2003, 18(2):29-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb200302008
WANG W J, GAO S J, LIANG Y L, et al. Study on C-N metabolic characteristics and source-sink relationship during grain filling stage in two winter wheat cultivars with different spike type[J]. Acta Agriculturae Boreali-Sinica, 2003, 18(2):29-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb200302008
[36]冯伟, 罗毅, 郭天财, 等.灌水对不同穗型小麦碳氮代谢及籽粒灌浆的影响[J].麦类作物学报, 2008, 28(6):1036-1041 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb200806022
FENG W, LUO Y, GUO T C, et al. Effect of irrigation on carbon and nitrogen metabolism and grain filling in winter wheat with different spike-types[J]. Journal of Triticeae Crops, 2008, 28(6):1036-1041 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb200806022
[37]朱新开, 严六零, 郭文善, 等.淮北稻茬超高产小麦碳氮代谢特征研究[J].麦类作物学报, 2002, 22(1):51-55 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb200201012
ZHU X K, YAN L L, GUO W S, et al. Carbon-nitrogen characteristics of super-high yielding wheat after rice in Huaibei Region[J]. Journal of Triticeae Crops, 2002, 22(1):51-55 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb200201012
[38]KOBRAEE S, SHAMSI K, RASEKHI B, et al. Investigation of correlation analysis and relationships between grain yield and other quantitative traits in chickpea (Cicer arietinum L.)[J]. African Journal of Biotechnology, 2010, 9(16):2342-2348 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001298522

相关话题/物质 资源 遗传 图片 生育