删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

花后阴雨对小麦籽粒淀粉合成和干物质积累的影响

本站小编 Free考研考试/2022-01-01

汪敏,
王邵宇,
吴佳佳,
许开放,
汪涛,
何启方,
邢肖丽,
姚文政,
张文静,
安徽农业大学农学院 合肥 230061
基金项目: 国家重点研发计划项目2018YFD0300902
国家重点研发计划项目2017YFD0300205
国家自然科学基金项目31801285
国家留学基金委项目201808775002
2018年安徽农业大学校级大学生创新创业训练计划项目XJDC2018216

详细信息
作者简介:汪敏, 主要从事农学方面研究。E-mail:2425448927@qq.com
通讯作者:张文静, 主要研究方向为小麦生理生态。E-mail:zhangwenjing79@126.com
中图分类号:S512.1

计量

文章访问数:605
HTML全文浏览量:6
PDF下载量:1135
被引次数:0
出版历程

收稿日期:2019-07-17
录用日期:2019-08-20
刊出日期:2020-01-01

Effects of shading and waterlogging following anthesis on starch synthesis and dry matter accumulation in wheat grain

WANG Min,
WANG Shaoyu,
WU Jiajia,
XU Kaifang,
WANG Tao,
HE Qifang,
XING Xiaoli,
YAO Wenzheng,
ZHANG Wenjing,
College of Agricultural Sciences, Anhui Agricultural University, Hefei 230061, China
Funds: the National Key Research and Development Plan of China2018YFD0300902
the National Key Research and Development Plan of China2017YFD0300205
the National Natural Science Foundation of China31801285
the Project of China Scholarship Council201808775002
the College Students' Innovative Entrepreneurial Training Plan Program of Anhui Agricultural UniversityXJDC2018216

More Information
Corresponding author:ZHANG Wenjing, E-mail:zhangwenjing79@126.com


摘要
HTML全文
(5)(3)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:针对长江中下游小麦开花期常遇连阴雨导致减产的现象,研究阴雨寡照对小麦籽粒淀粉合成和干物质积累的影响,旨在为该地区小麦抗逆稳产栽培提供理论依据。选用长江中下游小麦主栽品种‘扬麦18’(受渍迟钝型)和‘皖麦52’(受渍敏感型)为试验材料,在小麦开花后设置7 d、11 d和15 d的渍水遮阴处理,研究渍水遮阴对小麦籽粒发育过程中淀粉合成相关酶活性及淀粉、干物质积累的影响。结果表明,渍水遮阴处理后,小麦籽粒中腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、可溶性淀粉合成酶(SSS)和结合态淀粉合成酶(GBSS)活性在灌浆前期(花后10~15 d)与对照差异不显著,随着灌浆进程的推进,渍水遮阴处理与对照之间差异增大。灌浆中期(花后20 d)小麦籽粒中AGPase和SSS活性达到峰值时,渍水遮阴处理11 d、15 d的‘扬麦18’和‘皖麦52’籽粒中AGPase活性分别较对照下降1%、10%和11%、24%,SSS活性则下降5%、11%和9%、32%,且渍水遮阴处理11 d和15 d的小麦籽粒中SSS和GBSS活性在灌浆后期显著低于对照。用Logistic方程分别拟合籽粒淀粉和干物质的积累,花后渍水遮阴处理缩短了籽粒灌浆缓增期,降低了小麦籽粒灌浆的平均速率、淀粉积累的最大速率及平均速率,减少了籽粒淀粉和干物质的积累量。同时,渍水遮阴处理降低了小麦穗粒数和千粒重,使产量显著下降。随着渍水遮阴处理时间的延长,小麦籽粒中淀粉合成相关酶活性、干物质积累量及产量的下降幅度越大。迟钝型品种‘扬麦18’各指标的下降幅度均小于敏感型品种‘皖麦52’。小麦开花后渍水遮阴处理降低了籽粒中AGPase、SSS和GBSS活性,不利于籽粒淀粉合成及干物质的积累,导致产量下降显著。
关键词:小麦/
渍水/
遮阴/
淀粉合成酶活性/
灌浆特征/
淀粉积累特性/
干物质积累/
产量
Abstract:Focusing on the reduced wheat yield caused by continuous rain following anthesis in the middle and lower reaches of the Yangtze River, a pot experiment was designed to investigate the effects of shading and waterlogging on starch synthesis and dry matter accumulation in wheat grains, to provide information regarding adverse resistance cultivation and stable yield of wheat in the area. Two wheat varieties - 'Yangmai 18' (waterlogging-insensitive type) and 'Wanmai 52' (waterlogging-sensitive type) - that are domain varieties in the Yangtze River Basin of China were selected to investigate the effects of 7-, 11-, and 15-day shading and waterlogging treatments following anthesis on starch synthesis and dry matter accumulation in wheat grains. The results indicated that there were no significant differences between the control and shading and waterlogging treatments in terms of the activities of adenosine diphosphate-glucose pyrophosphate (AGPase), soluble starch synthase (SSS), and bound starch synthase (GBSS) in wheat grains during the earlier grain-filling stage (10-15 days after anthesis). However, with the development of the grain-filling process, the difference between the control and shading and waterlogging treatments increased. In the mid-grain-filling stage (20 days after anthesis), when the activities of the three key enzymes were highest. The 11-and 15-day shading and waterlogging treatments decreased the activity of AGPase in wheat grain by 1% and 10% for 'Yangmai 18', and by 11% and 24% for 'Wanmai 52', respectively. Further, the activity of SSS was decreased by 5% and 11% for 'Yangmai 18', and 9%, 32% for 'Wanmai 52', respectively, compared with the control. In addition, the activities of SSS and GBSS under 11-and 15-day shading and waterlogging treatments were significantly lower than those in the control during the late grain-filling stage. Simulating the process of starch accumulation and grain filling with a Logistic equation showed that compared with the control, the shading and waterlogging treatments shortened the duration of the slow increasing stage and decreased the average grain-filling rate, average and peak starch accumulation rates, and cumulative wheat starch and dry matter amounts. Simultaneously, the shading and waterlogging treatments decreased the grain number and 1000-kernel weight of wheat, thereby lowering the yield. The extented shading and waterlogging treatments duration induced a decline in the activities of SSS and GBSS as well as the starch and dry matter accumulation amount in wheat grains and yield. The waterlogging-insensitive variety 'Yangmai 18' showed slight decreases compared with the waterlogging-sensitive variety 'Wanmai 52' in each index. Shading and waterlogging stresses following anthesis of wheat decreased the activities of AGPase, SSS, and GBSS and affected the starch and dry matter accumulation in wheat grains, thereby leading to yield loss.
Key words:Wheat/
Waterlogging/
Shading/
Starch synthase activity/
Grain-filling characteristic/
Starch accumulation characteristic/
Dry matter accumulation/
Grain yield

HTML全文


图1试验期间试验区的降雨量、日照时数和平均温度
Figure1.Average daily temperature, rainfall and sunshine hours in the study area during the experiment


下载: 全尺寸图片幻灯片


图2花后渍水遮阴对不同小麦品种籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性的影响
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 不同小写字母表示处理间差异显著(P < 0.05)。
Figure2.Effects of shading and waterlogging treatments after anthesis on adp-glucose pyrophosphorylase (AGPase) activities in grains of different wheat varieties
WS7, WS11 and WS15 represent treatments of shading and waterlogging after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图3花后渍水遮阴对不同小麦品种籽粒可溶性淀粉合成酶(SSS)活性的影响
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 不同小写字母表示处理间差异显著(P < 0.05)。
Figure3.Effects of shading and waterlogging treatments after anthesis on soluble starch synthase (SSS) activities in grains of different wheat varieties
WS7, WS11 and WS15 represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among different treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图4花后渍水遮阴对不同小麦品种籽粒结合态淀粉合成酶(GBSS)活性的影响
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 不同小写字母表示处理间差异显著(P < 0.05)。
Figure4.Effects of shading and waterlogging treatments after anthesis on granule-bound starch synthase (GBSS) activities in grains of different wheat varieties
WS7, WS11, and WS15 represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图5花后渍水遮阴对不同小麦品种籽粒淀粉含量的影响
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 不同小写字母表示处理间差异显著(P < 0.05)。
Figure5.Effects of shading and waterlogging treatments after anthesis on the starch accumulation in grains of different wheat varieties
WS7, WS11, and WS15 represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片

表1花后渍水遮阴处理下不同小麦品种籽粒淀粉积累曲线拟合和特征参数
Table1.Simulation equations of starch accumulation and characteristic parameters of grains of different wheat varieties under shading and waterlogging treatments
品种
Variety
处理
Treatment
模拟方程
Simulative equation
决定系数(r2)
Decision coefficient
Tmax
(d)
D
(d)
Rmax
(μg·g-1·d-1)
Rmean
(μg·g-1·d-1)
扬麦18
Yangmai 18
CK W=848.31/(1+eln88.74-0.26t) 0.989* 17.41 25.93 54.65 32.71
WS7 W=769.17/(1+eln77.24-0.23t) 0.983* 18.71 28.17 44.67 27.31
WS11 W=705.93/(1+eln88.73-0.24t) 0.980* 18.69 27.86 42.34 25.34
WS15 W=643.83/(1+eln86.21-0.24t) 0.975* 18.44 27.53 38.90 23.39
皖麦52
Wanmai 52
CK W=844.64/(1+eln111.2-0.27t) 0.989* 17.22 25.26 57.75 33.44
WS7 W=744.17/(1+eln61.02-0.23t) 0.992** 18.15 27.86 42.12 26.71
WS11 W=690.49/(1+eln57.43-0.22t) 0.987* 18.55 28.62 37.69 24.13
WS15 W=613.02/(1+eln64.18-0.23t) 0.983* 18.15 27.73 35.14 22.10
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 字母WtTmaxDRmaxRmean分别代表淀粉积累量、花后天数、籽粒淀粉达最大积累速率的时间、淀粉积累活跃生长期、淀粉积累最大速率和平均速率。WS7, WS11, and WS15 represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively; W, t, Tmax, D, Rmax, Rmean represent starch accumulation, days after anthesis, time to maximum starch accumulation rate, starch actively-increasing accumulation duration, maximum starch accumulation rate, mean starch accumulation rate, respectively.


下载: 导出CSV
表2花后渍水遮阴处理下不同小麦品种籽粒灌浆曲线拟合和灌浆参数
Table2.Simulation equations of grain filling process and grain filling characteristic parameters of grains of different wheat varieties under shading and waterlogging treatments
品种
Variety
处理
Treatment
模拟方程
Simulative equation
决定系数(r2)
Decision coefficient
千粒重
1000-kernel weight (g)
T1 T2 T3 T
(d)
Vt
(g·d-1)
扬麦18
Yangmai18
CK y=51.31/(1+eln22.52-0.21t) 0.997** 50.45a 8.56 12.54 15.61 36.71 1.39
WS7 y=46.06/(1+eln35.26-0.24t) 0.999** 45.75ab 9.35 10.97 13.66 33.99 1.35
WS11 y=40.94/(1+eln63.17-0.27t) 0.998** 40.64bc 10.47 9.75 12.14 32.37 1.26
WS15 y=39.13/(1+eln46.18-0.22t) 0.991** 38.53c 11.43 11.97 14.90 38.31 1.02
皖麦52
Wanmai52
CK y=49.2/(1+eln31.14-0.23t) 0.998** 48.07a 9.22 11.45 14.25 34.93 1.41
WS7 y=42.99/(1+eln50.16-0.25t) 0.997** 42.65b 10.39 10.53 13.11 34.04 1.26
WS11 y=41.62/(1+eln85.88-0.27t) 0.995** 40.62b 11.61 9.75 12.14 33.51 1.24
WS15 y=31.06/(1+eln43.58-0.24t) 0.991** 30.02c 10.24 10.97 13.65 34.87 0.89
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 不同小写字母表示处理间差异显著(P < 0.05)。字母ytTT1T2T3Vt分别代表千粒重、花后天数和籽粒灌浆的持续天数、渐增期、快增期、缓增期、平均灌浆速率。WS7, WS11 and WS15 represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among water control treatments at 0.05 level. y, t, T, T1, T2, T3, Vt represent 1000-kernel weight, days after anthesis, period of grain filling; duration of gradual rapid, rapid and slow increasing stages; and the mean filling rate, respectively.


下载: 导出CSV
表3花后渍水遮阴对不同小麦品种产量构成的影响
Table3.Effects of shading and waterlogging treatments after anthesis on yield and yield components of different wheat varieties
品种
Variety
处理
Treatment
单株穗数
Spikes per plant
穗粒数
Kernels per ear
千粒重
1000-kernel weight (g)
单株产量
Yield per plant (g)
扬麦18
Yangmai18
CK 3.33±0.33a 54.33±1.20a 50.45±1.41a 8.22±0.32a
WS7 2.67±0.33a 53.33±0.88ab 45.75±2.38ab 6.39±0.59b
WS11 2.67±0.33a 50.67±0.88b 40.64±0.74bc 6.33±0.43b
WS15 2.33±0.33a 45.33±0.67c 38.53±1.39c 4.31±0.33c
皖麦52
Wanmai52
CK 2.67±0.33a 53.33±0.88a 48.07±0.72a 7.64±0.13a
WS7 2.67±0.33a 52.33±1.76a 42.65±1.46ab 6.73±0.14b
WS11 2.67±0.33a 49.67±0.67a 40.62±1.31bc 5.34±0.19c
WS15 2.33±0.33a 40.67±1.20b 30.02±1.11c 3.11±0.09d
WS7、WS11和WS15分别表示花后渍水遮阴处理7 d、11 d和15 d; 不同小写字母表示处理间差异显著(P < 0.05)。WS7, WS11, and WS15 represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 导出CSV

参考文献(41)
[1]蔡剑, 姜东.气候变化对中国冬小麦生产的影响[J].农业环境科学学报, 2011, 30(9): 1726-1733 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201109006
CAI J, JIANG D. The effect of climate change on winter wheat production in China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1726-1733 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201109006
[2]姜东, 陶勤南, 张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响[J].应用生态学报, 2002, 13(11): 1519-1521 doi: 10.3321/j.issn:1001-9332.2002.11.039
JIANG D, TAO Q N, ZHANG G P. Effect of waterlogging on senescence of flag leaf and root of wheat Yangmai 5[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1519-1521 doi: 10.3321/j.issn:1001-9332.2002.11.039
[3]DE SAN CELEDONIO R P, ABELEDO L G, MIRALLES D J. Identifying the critical period for waterlogging on yield and its components in wheat and barley[J]. Plant and Soil, 2014, 378(1/2): 265-277 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccc4c20eb432276828363752b77e03e6
[4]石春林, 金之庆.基于WCSODS的小麦渍害模型及其在灾害预警上的应用[J].应用气象学报, 2003, 14(4): 462-468 doi: 10.3969/j.issn.1001-7313.2003.04.010
SHI C L, JIN Z Q. A WCSODS-based model for simulating wet damage for winter wheat in the middle and lower reaches of the Yangtse River[J]. Journal of Applied Meteorological Science, 2003, 14(4): 462-468 doi: 10.3969/j.issn.1001-7313.2003.04.010
[5]李永庚, 于振文, 姜东, 等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报, 2001, 27(5): 658-664 doi: 10.3321/j.issn:0496-3490.2001.05.017
LI Y G, YU Z W, JIANG D, et al. Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat[J]. Acta Agronomica Sinica, 2001, 27(5): 658-664 doi: 10.3321/j.issn:0496-3490.2001.05.017
[6]邓梅, 张雄, 钟小娟, 等.不同生态环境对四川小麦品种(系)籽粒淀粉含量及理化特性的影响[J].麦类作物学报, 2019, 39(1): 64-72 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201901010
DENG M, ZHANG X, ZHONG X J, et al. Effect of different ecological environments on content and physicochemical properties of starch in wheat varieties (lines) in Sichuan Province[J]. Journal of Triticeae Crops, 2019, 39(1): 64-72 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201901010
[7]RAHMAN S, REGINA A, LI Z Y, et al. Comparison of starch branching enzyme genes reveals evolutionary relationships among isoform. Characterization of a gene for starch-branching enzyme Ⅱa from the wheat D genome donor Aegilops tauschii[J]. Plant Physiology, 2001, 125(3): 1314-1324 doi: 10.1104/pp.125.3.1314
[8]谭彩霞, 封超年, 郭文善, 等.不同小麦品种籽粒淀粉合成酶基因的表达及其与淀粉积累的关系[J].麦类作物学报, 2011, 31(6): 1063-1070 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201106014
TAN C X, FENG C N, GUO W S, et al. Difference in expression of starch synthase gene and starch synthesis in the grains of different wheat cultivars[J]. Journal of Triticeae Crops, 2011, 31(6): 1063-1070 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201106014
[9]KEELING P L, BANISADR R, BARONE L, et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain[J]. Functional Plant Biology, 1994, 21(6): 807 doi: 10.1071/PP9940807
[10]杨毅, 李昱, 康建宏, 等.花后高温胁迫对春小麦籽粒淀粉合成的影响[J].麦类作物学报, 2015, 35(11): 1535-1541 doi: 10.7606/j.issn.1009-1041.2015.11.11
YANG Y, LI Y, KANG J H, et al. Effect of heat stress after anthesis on starch synthesis in spring wheat[J]. Journal of Triticeae Crops, 2015, 35(11): 1535-1541 doi: 10.7606/j.issn.1009-1041.2015.11.11
[11]JENNER C F. Starch synthesis in the kernel of wheat under high temperature conditions[J]. Functional Plant Biology, 1994, 21(6): 791 doi: 10.1071/PP9940791
[12]王月福, 马东辉, 赵长星, 等.施氮量和花后土壤含水量对强筋小麦籽粒淀粉合成及品质的影响[J].西北植物学报, 2008, 28(9): 1803-1810 doi: 10.3321/j.issn:1000-4025.2008.09.015
WANG Y F, MA D H, ZHAO C X, et al. Effects of nitrogen fertilizer rate and post-anthesis soil moisture content on starch synthesis and quality of grains in strong gluten wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(9): 1803-1810 doi: 10.3321/j.issn:1000-4025.2008.09.015
[13]AHMADI A, BAKERDA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J]. Plant Growth Regulation, 2001, 35(1): 81-91 doi: 10.1023/A:1013827600528
[14]DAI Z, YIN Y, WANG Z. Activities of key enzymes involved in starch synthesis in grains of wheat under different irrigation patterns[J]. The Journal of Agricultural Science, 2009, 147(4): 437-444 doi: 10.1017/S0021859609008612
[15]SAIRAM R K, KUMUTHA D, EZHILMATHI K, et al. Physiology and biochemistry of waterlogging tolerance in plants[J]. Biologia Plantarum, 2008, 52(3): 401-412 doi: 10.1007/s10535-008-0084-6
[16]丁锦峰, 苏盛楠, 梁鹏, 等.拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响[J].麦类作物学报, 2017, 37(11): 1473-1479 doi: 10.7606/j.issn.1009-1041.2017.11.10
DING J F, SU S N, LIANG P, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473-1479 doi: 10.7606/j.issn.1009-1041.2017.11.10
[17]蔡永萍.植物生理学[M].第2版.北京:中国农业大学出版社, 2016
CAI Y P. Plant Physiology[M]. Second edition. Beijing: China Agricultural University Press, 2016
[18]张元帅, 冯伟, 张海艳, 等.遮阴和施氮对冬小麦旗叶光合特性及产量的影响[J].中国生态农业学报, 2016, 24(9): 1177-1184 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201609007
ZHANG Y S, FENG W, ZHANG H Y, et al. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1177-1184 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201609007
[19]牟会荣, 姜东, 戴廷波, 等.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学, 2008, 41(2): 599-606 doi: 10.3864/j.issn.0578-1752.2008.02.040
MU H R, JIANG D, DAI T B, et al. Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves[J]. Scientia Agricultura Sinica, 2008, 41(2): 599-606 doi: 10.3864/j.issn.0578-1752.2008.02.040
[20]郭翠花, 高志强, 苗果园.花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响[J].作物学报, 2010, 36(4): 673-679 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201004017
GUO C H, GAO Z Q, MIAO G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat[J]. Acta Agronomica Sinica, 2010, 36(4): 673-679 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201004017
[21]战吉宬, 黄卫东, 王利军.植物弱光逆境生理研究综述[J].植物学通报, 2003, 20(1): 43-50 doi: 10.3969/j.issn.1674-3466.2003.01.005
ZHAN J H, HUANG W D, WANG L J. Research of weak light stress physiology in plants[J]. Chinese Bulletin of Botany, 2003, 20(1): 43-50 doi: 10.3969/j.issn.1674-3466.2003.01.005
[22]陆昱, 丁宇辉, 蔡沈林, 等.太阳辐射减弱对冬小麦生长发育及产量的影响[J].安徽农业科学, 2018, 46(4): 143-145 doi: 10.3969/j.issn.0517-6611.2018.04.044
LU Y, DING Y H, CAI S L, et al. Effect of weaker solar radiation on the growth and yield of winter wheat[J]. Journal of Anhui Agricultural Sciences, 2018, 46(4): 143-145 doi: 10.3969/j.issn.0517-6611.2018.04.044
[23]闫素辉.小麦胚乳淀粉合成、粒度分布特征及对花后高温的响应[D].泰安: 山东农业大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10434-2009234714.htm
YAN S H. Starch synthesis and granule size distribution of developing wheat endosperm in response to postanthesis high temperature[D]. Tai'an: Shandong Agricultural University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10434-2009234714.htm
[24]程方民, 蒋德安, 吴平, 等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J].作物学报, 2001, 27(2): 201-206 doi: 10.3321/j.issn:0496-3490.2001.02.011
CHENG F M, JIANG D A, WU P, et al. The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it[J]. Acta Agronomica Sinica, 2001, 27(2): 201-206 doi: 10.3321/j.issn:0496-3490.2001.02.011
[25]NAKAMURA Y, YUKI K, PARK S, et al. Carbohydrate metabolism in the developing endosperm of rice grains[J]. Plant and Cell Physiology, 1989, 30(6): 833-839 doi: 10.1093/oxfordjournals.pcp.a077813
[26]高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006
GAO J F. Plant Physiology[M]. Beijing: Higher Education Press, 2006
[27]沈学善, 朱云集, 郭天财, 等.施硫对'豫麦50'籽粒灌浆特性及产量的影响[J].西北植物学报, 2007, 27(6): 1265-1269 doi: 10.3321/j.issn:1000-4025.2007.06.032
SHEN X S, ZHU Y J, GUO T C, et al. Effects of sulphur application on characteristics of grain filling and grain yield of winter wheat cuitivar 'Yumai 50'[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(6): 1265-1269 doi: 10.3321/j.issn:1000-4025.2007.06.032
[28]武文明, 陈洪俭, 李金才, 等.氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响[J].作物学报, 2012, 38(6): 1088-1096 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201206018
WU W M, CHEN H J, LI J C, et al. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage[J]. Acta Agronomica Sinica, 2012, 38(6): 1088-1096 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201206018
[29]曹颖妮, 胡卫国, 王根平, 等.糯性和非糯性小麦灌浆期胚乳直/支链淀粉积累及其相关酶活性研究[J].西北植物学报, 2010, 30(10): 1995-2001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb201010011
CAO Y N, HU W G, WANG G P, et al. Dynamic changes of starch accumulation and enzymes relating to starch biosynthesis of kernel during grain filling in waxy and non-waxy winter wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(10): 1995-2001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb201010011
[30]AHMADI A, BAKER D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J]. Plant Growth Regulation, 2001, 35(1): 81-91 doi: 10.1023/A:1013827600528
[31]依兵.高粱籽粒淀粉积累与合成相关酶活性研究[D].沈阳: 沈阳农业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10157-1014295069.htm
YI B. Starch accumulation and enzymes activities for starch synthesis in sorghum grains[D]. Shenyang: Shenyang Agricultural University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10157-1014295069.htm
[32]李亚婷, 康建宏, 吴宏亮, 等.花后水分胁迫对春小麦淀粉形成及相关酶活性的影响[J].草业科学, 2016, 33(5): 917-925 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201605013
LI Y T, KANG J H, WU H L, et al. Effects of water stress after anthesis on starch formation and the activity of associated enzyme in spring wheat[J]. Pratacultural Science, 2016, 33(5): 917-925 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201605013
[33]胡阳阳, 卢红芳, 刘卫星, 等.灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J].作物学报, 2018, 44(4): 591-600 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201804013
HU Y Y, LU H F, LIU W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44(4): 591-600 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201804013
[34]李文阳, 尹燕枰, 闫素辉, 等.小麦花后弱光对籽粒淀粉积累和相关酶活性的影响[J].作物学报, 2008, 34(4): 632-640 doi: 10.3321/j.issn:0496-3490.2008.04.015
LI W Y, YIN Y P, YAN S H, et al. Effect of shading after anthesis on starch accumulation and activities of the related enzymes in wheat grain[J]. Acta Agronomica Sinica, 2008, 34(4): 632-640 doi: 10.3321/j.issn:0496-3490.2008.04.015
[35]EARLY E B, MCILRATH W O, SEIF R D, et al. Effects of shade applied at different stages of plant development on corn (Zea mays L.) production[J]. Crop Science, 1967, 7(2): 151 doi: 10.2135/cropsci1967.0011183X000700020018x
[36]范雪梅, 戴廷波, 姜东, 等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报, 2004, 18(6): 63-67 doi: 10.3321/j.issn:1009-2242.2004.06.015
FAN X M, DAI T B, JIANG D, et al. Effects of nitrogen rates on carbon and nitrogen assimilate translocation in wheat grown under drought and waterlogging from anthesis to maturity[J]. Journal of Soil Water Conservation, 2004, 18(6): 63-67 doi: 10.3321/j.issn:1009-2242.2004.06.015
[37]ZHAO H, DAI T B, JING Q, et al. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars[J]. Plant Growth Regulation, 2007, 51(2): 149-158 doi: 10.1007/s10725-006-9157-8
[38]贺明荣, 王振林, 高淑萍.不同小麦品种千粒重对灌浆期弱光的适应性分析[J].作物学报, 2001, 27(5): 640-644 doi: 10.3321/j.issn:0496-3490.2001.05.014
HE M R, WANG Z L, GAO S P. Analysis on adaptability of wheat cultivars to low light intensity during grain filling[J]. Acta Agronomic Sinica, 2001, 27(5): 640-644 doi: 10.3321/j.issn:0496-3490.2001.05.014
[39]刘杨, 石春林, 宣守丽, 等.不同生育期渍水寡照对小麦产量构成的影响[J].江苏农业科学, 2016, 44(10): 124-127 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201610030
LIU Y, SHI C L, XUAN S L, et al. Effects of waterlogging and shading on different growth stages on yield components of wheat[J]. Jiangsu Agricultural Science, 2016, 44(10): 124-127 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201610030
[40]LI H W, CAI J, LIU F L, et al. Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress[J]. Functional Plant Biology, 2012, 39(1): 71-81 doi: 10.1071/FP11165
[41]王亚凯, 董宝娣, 乔匀周, 等.开花灌浆期小麦叶片奢侈蒸腾发生的土壤水分阈值试验研究[J].中国生态农业学报(中英文), 2019, 27(7): 1024-1032 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2019-0705&journal_id=zgstny
WANG Y K, DONG B D, QIAO Y Z, et al. Experimental study on soil water threshold of luxury transpiration in winter wheat leaves during flowering and filling stage[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1024-1032 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2019-0705&journal_id=zgstny

相关话题/作物 物质 植物 图片 渍水