沙之敏1,
顾麦云2,
翁丹龙2,
杜继平3,
曹林奎1,,
1.上海交通大学农业与生物学院 上海 200240
2.上海自在青西农业发展有限公司 上海 201717
3.上海新农科技 股份有限公司 上海 201620
基金项目: 农业农村部环境治理专项13200014
详细信息
作者简介:钟颖, 主要研究方向为农村发展。E-mail: iiirina@sjtu.edu.cn
通讯作者:曹林奎, 主要研究方向为生态农业与面源污染控制。E-mail: clk@sjtu.edu.cn
中图分类号:S-1计量
文章访问数:220
HTML全文浏览量:15
PDF下载量:305
被引次数:0
出版历程
收稿日期:2020-07-05
录用日期:2020-09-27
刊出日期:2021-03-01
Emergy-based benefit analysis of integrated rice-frog farming
ZHONG Ying1,,SHA Zhimin1,
GU Maiyun2,
WENG Danlong2,
DU Jiping3,
CAO Linkui1,,
1. School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
2. Shanghai Zizaiqingxi Agricultural Development Co., Ltd, Shanghai 201717, China
3. Shanghai Xinnong Technology Co., Ltd, Shanghai 201620, China
Funds: the Environmental Control Project of Ministry of Agriculture and Rural Affairs13200014
More Information
Corresponding author:CAO Linkui, E-mail: clk@sjtu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:稻蛙生态种养模式将蛙类引入稻田,提高水稻生产系统的生产效率与可持续发展能力,是我国现代农业发展中重要的生态农业产业之一。为评价稻蛙生态种养模式的经营效益,本研究运用能值分析法,综合分析2015—2019年上海市青浦区稻蛙生态种养模式生产系统的能值投入和能值产出,并选用能值自给率、能值投资率、净能值产出率、环境负载率、可持续发展指数5项指标评价其能值效率。分析结果表明:2015—2019年青浦区稻蛙生态种养模式生产系统中,农田灌溉水、雨水化学能、复合肥、有机肥、基础设施等是主要的能值投入内容;稻谷、秸秆、成蛙以及政策性收入为主要产出能值内容。稻蛙生态种养模式生产系统能值自给率与能值投资率均值分别为0.18和4.86,5年中无明显变化趋势;净能值产出率均值为3.65,呈逐年上升趋势;环境负载率均值为0.46,总体呈下降趋势;可持续发展指数均值为8.52,总体呈上升趋势。由于研究区域与经营模式的差异,与其他系统相比,稻蛙生态种养模式生产系统承受环境压力较小,能值可持续指标表现良好,可持续发展潜力大,是值得拓展推广的绿色生产模式;但系统自我维持力弱,受经济社会影响波动较大,农业生态系统经济发展程度与生产效率仍有提升空间,应充分利用当地资源,适当增加能值投入,开拓多元化产品,提高系统产出率。本研究为稻蛙生态种养模式进一步健康稳定发展和推广提供了参考依据与方法借鉴。
关键词:稻蛙生态种养/
能值/
生产系统/
效益评价/
可持续发展
Abstract:Integrated rice-frog farming (IRFF) is an ecological farming method that can improve production efficiency and promote sustainable development in agriculture. However, few studies have analyzed the benefits of IRFF. This study performed an emergy analysis to evaluate the IRFF system energy input and output in the Qingpu District, Shanghai, China, from 2015 to 2019 and calculated the self-sufficiency, emergy investment ratio, emergy yield ratio, the environmental loading ratio, and the sustainable development index. The results showed that irrigation water, rainfall chemical energy, compound fertilizer, organic fertilizer, and infrastructure were the primary IRFF system energy inputs; rice, straw, frogs, and policy income were the primary energy outputs. The average emergy self-sufficiency and investment ratios from 2015 to 2019 were 0.18 and 4.86, respectively, with no significant changes over the five years. The average emergy yield ratio was 3.65, which generally increased annually. The average environmental loading ratio was 0.46, trending downwards, and the average sustainable development index was 8.52, trending upwards. Compared with similar farming systems, the IRFF system emergy indices performed better because of the differences in study areas and management modes. In the IRFF system, the natural resource input was less, and the purchasing emergy input and output efficiency were higher than in other systems. These results indicated that the IRFF system had a low dependence on natural resources and placed minimal pressure on the environmental system. The IRFF system had great potential for sustainable development and ecological production, but the results showed that the IRFF system was weak in self-sustainment and fluctuated greatly under the influence of economy and society. The energy value investment and net energy value output rates were also low, and the use of resources was insufficient, but there was development potential. Therefore, to further develop the IRFF system in the Qingpu District, more input emergy should be invested, and diversified commodities should be developed to improve the total output efficiency.
Key words:Integrated rice-frog farming/
Emergy/
Production systems/
Benefit evaluation/
Sustainable development
HTML全文
图1上海市青浦区稻蛙生态种养模式生产系统能值图
Figure1.Emergy flow of the integrated rice-frog farming system in Qingpu District, Shanghai City
下载: 全尺寸图片幻灯片
图22015—2019年上海市青浦区稻蛙生态种养模式生产系统投入能值情况
Figure2.Emergy inputs of the integrated rice-frog farming system in Qingpu District, Shanghai City from 2015 to 2019
下载: 全尺寸图片幻灯片
图32015—2019年上海市青浦区稻蛙生态种养模式生产系统产出能值情况
Figure3.Emergy outputs of the rice-frog farming system in Qingpu District, Shanghai City from 2015 to 2019
下载: 全尺寸图片幻灯片
表1上海市青浦区稻蛙生态种养模式生产系统能值转换率及来源
Table1.Solar transformities and sources of the integrated rice-frog farming system in Qingpu District, Shanghai City
项目Item | 能量转换系数 Conversion factor | 能值转换率 Transformity | 来源 Source | |
不可更新工业辅助能 Non-renewable industrial auxiliary energy (F) | 基础设施Infrastructure | - | 5.81E+12 sej·$-1 | [17] |
农业机械折旧 Depreciation of agricultural machinery | - | 5.81E+12 sej·$-1 | [17] | |
塑料薄膜Plastic film | - | 4.83E+08 sej·g-1 | [13] | |
柴油Diesel oil | 4.40E+04 J·kg-1 | 8.39E+04 sej·J-1 | [13] | |
电力Electricity | 3.60E+06 J·(kWh)-1 | 2.03E+05 sej·J-1 | [13] | |
农药Pesticide | - | 2.06E+09 sej·g-1 | [13] | |
复合肥(纯氮) Compound fertilizer | - | 5.87E+09 sej·g-1 | [18] | |
可更新生物辅助能 Renewable bioassistive energy (T) | 种子Seeds | 2.60E+04 J·g-1 | 2.54E+05 sej·J-1 | [19] |
养殖品(蛙) Frogs | 1.71E+04 J·g-1 | 2.54E+05 sej·J-1 | [20] | |
农田灌溉水Irrigation water | - | 1.14E+11 sej·t-1 | [13] | |
人力与管理Human | 3.50E+09 J·cap.-1 | 4.83E+05 sej·J-1 | [18] | |
生物农药Biopesticide | - | 2.06E+09 sej·g-1 | [13] | |
有机肥(氮肥) Organic fertilizer | - | 5.87+09 sej·g-1 | [18] | |
饲料Fodder | - | 5.81E+12 sej·$-1 | [17] | |
产出 Outputs (Y) | 稻谷Rice | 1.51E+07 J·kg-1 | 2.43E+05 sej·J-1 | [18] |
秸秆Straw | 1.26E+07 J·kg-1 | 3.43E+04 sej·J-1 | [21] | |
成蛙(用作人工繁育) Frogs (for breeding) | 1.71E+04 J·g-1 | 2.54E+05 sej·J-1 | [20] | |
政策性收入Policy-based income | - | 5.81E+12 sej·$-1 | [17] | |
其中以货币为单位的项目根据参考文献中上海市2003年的生态经济系统能货币比率, 将2015—2019年的当年价换算成可比价后再乘以能货币比率得到各经济量的能值; 政策性收入为经营主体在运作此系统时获得规模化经营补贴、水稻机械化育插秧补贴、秸秆还田补贴、绿色补贴以及其余一般补贴之和。The current prices of related items from 2015 to 2019 is converted into comparable prices after the currency conversion, and then times the monetary rate of the ecological economic system in Shanghai which is based on the reference literature, so as to get the emergy values. The policy-based income is the sum of large-scale operation subsidy, rice mechanical cultivation and transplanting subsidy, straw returning subsidy, green subsidy and other general subsidies for running the system. |
下载: 导出CSV
表22015—2019年上海市青浦区稻蛙生态种养模式生产系统能值投入产出表
Table2.Emergy inputs and outputs of the integrated rice-frog farming system in Qingpu District, Shanghai City from 2015 to 2019
2015 | 2016 | 2017 | 2018 | 2019 | ||||||||||
能值 Emergy (sej·hm-2) | 占比 Proportion (%) | 能值 Emergy (sej·hm-2) | 占比 Proportion (%) | 能值 Emergy (sej·hm-2) | 占比 Proportion (%) | 能值 Emergy (sej·hm-2) | 占比 Proportion (%) | 能值 Emergy (sej·hm-2) | 占比 Proportion (%) | |||||
投入Inputs | ||||||||||||||
??可更新自然资源(R) Renewable natural resources | ||||||||||||||
????太阳光能Solar energy | 2.65E+13 | 0.36 | 2.65E+13 | 0.36 | 2.65E+13 | 0.38 | 2.65E+13 | 0.36 | 2.65E+13 | 0.35 | ||||
????雨水化学能Rainfall chemical energy | 1.25E+15 | 17.01 | 1.19E+15 | 16.24 | 8.19E+14 | 11.87 | 8.49E+14 | 11.63 | 1.53E+15 | 20.14 | ||||
??不可更新自然资源(N) Nonrenewable natural resources | ||||||||||||||
????表土损失能Energy loss of surface | 1.38E+14 | 1.89 | 1.38E+14 | 1.89 | 1.38E+14 | 2.00 | 1.38E+14 | 1.89 | 1.38E+14 | 1.81 | ||||
??不可更新工业辅助能(F) Industrial auxiliary energy | ||||||||||||||
????基础设施Infrastructure | 7.64E+14 | 10.43 | 6.83E+14 | 9.36 | 6.55E+14 | 9.49 | 6.51E+14 | 8.92 | 6.31E+14 | 8.28 | ||||
????农业机械折旧 Depreciation of agricultural machinery | 1.91E+14 | 2.61 | 1.71E+14 | 2.34 | 1.64E+14 | 2.37 | 1.63E+14 | 2.23 | 1.58E+14 | 2.07 | ||||
????塑料薄膜Plastic film | 7.06E+11 | 0.01 | 7.06E+11 | 0.01 | 7.06E+11 | 0.01 | 7.06E+11 | 0.01 | 7.06E+11 | 0.01 | ||||
????柴油Diesel oil | 3.53E+13 | 0.48 | 3.53E+13 | 0.48 | 3.53E+13 | 0.51 | 3.53E+13 | 0.48 | 3.53E+13 | 0.46 | ||||
????电力Electricity | 4.93E+14 | 6.73 | 4.93E+14 | 6.75 | 4.93E+14 | 7.15 | 4.93E+14 | 6.76 | 4.93E+14 | 6.47 | ||||
????农药Pesticide | 9.89E+12 | 0.13 | 9.27E+12 | 0.13 | 7.42E+12 | 0.11 | 0.00E+00 | 0.00 | 7.73E+12 | 0.10 | ||||
????复合肥Compound fertilizer | 1.06E+15 | 14.42 | 8.81E+14 | 12.06 | 7.92E+14 | 11.49 | 1.76E+14 | 2.41 | 7.92E+14 | 10.40 | ||||
??可更新生物辅助能(T) Renewable bioassistive energy | ||||||||||||||
????种子Seeds | 3.97E+14 | 5.41 | 3.97E+14 | 5.43 | 3.97E+14 | 5.75 | 3.97E+14 | 5.43 | 3.97E+14 | 5.21 | ||||
????养殖苗种Frogs | 2.49E+14 | 3.40 | 2.49E+14 | 3.41 | 2.49E+14 | 3.61 | 2.49E+14 | 3.41 | 2.49E+14 | 3.27 | ||||
????农田灌溉水Irrigation water | 1.37E+15 | 18.71 | 1.39E+15 | 19.01 | 1.41E+15 | 20.38 | 1.44E+15 | 19.73 | 1.46E+15 | 19.12 | ||||
????人力与管理Human | 3.38E+14 | 4.61 | 5.07E+14 | 6.95 | 5.07E+14 | 7.35 | 8.45E+14 | 11.58 | 5.07E+14 | 6.66 | ||||
????生物农药Biopesticide | 6.18E+12 | 0.08 | 6.18E+12 | 0.08 | 6.18E+12 | 0.09 | 1.85E+13 | 0.25 | 6.18E+12 | 0.08 | ||||
????有机肥Organic fertilizer | 5.28E+14 | 7.21 | 7.04E+14 | 9.65 | 7.92E+14 | 11.49 | 1.41E+15 | 19.31 | 7.92E+14 | 10.40 | ||||
????饲料Fodder | 4.78E+14 | 6.52 | 4.27E+14 | 5.85 | 4.09E+14 | 5.93 | 4.07E+14 | 5.58 | 3.94E+14 | 5.17 | ||||
总投入(E) Total input | 7.33E+15 | 7.30E+15 | 6.90E+15 | 7.30E+15 | 7.62E+15 | |||||||||
产出Outputs | ||||||||||||||
????稻谷Rice | 9.00E+15 | 43.90 | 9.36E+15 | 45.99 | 9.84E+15 | 46.92 | 1.02E+16 | 42.04 | 1.08E+16 | 46.17 | ||||
????秸秆Straw | 1.94E+15 | 9.45 | 2.02E+15 | 9.90 | 2.12E+15 | 10.10 | 2.20E+15 | 8.49 | 2.33E+15 | 9.94 | ||||
????成蛙(用作人工繁育) Frogs (for breeding) | 1.25E+13 | 0.06 | 1.25E+13 | 0.06 | 1.56E+13 | 0.07 | 1.87E+13 | 0.08 | 1.87E+13 | 0.08 | ||||
????政策性收入Policy-based income | 9.55E+15 | 46.59 | 8.97E+15 | 44.04 | 9.00E+15 | 42.90 | 1.19E+16 | 48.83 | 1.03E+16 | 43.81 | ||||
总产出(Y) Yield | 2.05E+16 | 2.04E+16 | 2.10E+16 | 2.43E+16 | 2.34E+16 |
下载: 导出CSV
表32015—2019年上海市青浦区稻蛙生态种养模式生产系统能值指标分析表
Table3.Emergy indices of the rice-frog farming system in Qingpu District, Shanghai City from 2015 to 2019
指标Index | 2015 | 2016 | 2017 | 2018 | 2019 |
能值自给率 Emergy self-sufficiency ratio | 0.19 | 0.18 | 0.14 | 0.14 | 0.22 |
能值投资率 Emergy investment ratio | 4.19 | 4.41 | 6.01 | 6.20 | 3.48 |
净能值产出率 Emergy yield ratio | 3.47 | 3.42 | 3.55 | 3.86 | 3.95 |
环境负载率 Environmental load ratio | 0.58 | 0.49 | 0.50 | 0.29 | 0.42 |
能值可持续指数 Sustainable development index | 5.98 | 6.94 | 7.16 | 13.15 | 9.40 |
下载: 导出CSV
参考文献
[1] | 李文华, 成升魁, 梅旭荣, 等. 中国农业资源与环境可持续发展战略研究[J]. 中国工程科学, 2016, 18(1): 56-64 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201601010.htm LI W H, CHENG S K, MEI X R, et al. Study on strategies for the sustainable development of China's agricultural resources and environment[J]. Engineering Sciences, 2016, 18(1): 56-64 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201601010.htm |
[2] | 怀燕, 王岳钧. 浙江省稻田综合种养的实践与探讨[J]. 浙江农业科学, 2018, 59(9): 1663-1665 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201809048.htm HUAI Y, WANG Y J. Practice and discussion of rice-based coculture system in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(9): 1663-1665 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201809048.htm |
[3] | 陆宏芳, 沈善瑞, 陈洁, 等. 生态经济系统的一种整合评价方法: 能值理论与分析方法[J]. 生态环境, 2005, 14(1): 121-126 doi: 10.3969/j.issn.1674-5906.2005.01.026 LU H F, SHEN S R, CHEN J, et al. A synthesis evaluation method of economical-ecosystem: Emergy theory and analysis method[J]. Ecology and Environmental Sciences, 2005, 14(1): 121-126 doi: 10.3969/j.issn.1674-5906.2005.01.026 |
[4] | 冯海怡, 陈晓炜, 谭康铭, 等. 基于能值分析的华南双季稻种植模式可持续性评价[J]. 广东农业科学, 2019, 46(6): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201906002.htm FENG H Y, CHEN X W, TAN K M, et al. Emergy-based sustainability analysis of double-cropping rice farming system in South China[J]. Guangdong Agricultural Sciences, 2019, 46(6): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201906002.htm |
[5] | 罗旭辉, 卢新坤, 刘岑薇, 等. 基于能值分析的蜜柚园生草模式生态经济效益评价[J]. 中国生态农业学报(中英文), 2019, 27(12): 1916-1924 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1213&flag=1 LUO X H, LU X K, LIU C W, et al. Evaluation of ecological and economic benefits of pomelo orchards with different grass growing systems based on emergy analysis[J]. Chinese Journal of Eco-Agriculture, 2019, 27(12): 1916-1924 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1213&flag=1 |
[6] | 孙路. 临潼区两种循环农业生产模式能流、能值及经济效益分析[D]. 杨凌: 西北农林科技大学, 2015 SUN L. The energy, emergy and economic benefit analysis of two circular ago-ecosystem modes in Lintong District[D]. Yangling: Northwest Agriculture & Forestry University, 2015 |
[7] | 邓锦山, 向晓宇, 丁鹏凯, 等. 基于能值分析的绵阳市城市生态经济系统健康评价[J]. 湖北农业科学, 2020, 59(3): 158-164 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY202003036.htm DENG J S, XIANG X Y, DING P K, et al. Health evaluation of urban ecological economic system in Mianyang City based on emergy analysis[J]. Hubei Agricultural Sciences, 2020, 59(3): 158-164 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY202003036.htm |
[8] | 席运官, 钦佩. 稻鸭共作有机农业模式的能值评估[J]. 应用生态学报, 2006, 17(2): 237-242 doi: 10.3321/j.issn:1001-9332.2006.02.015 XI Y G, QIN P. Emergy value evaluation on rice-duck organic farming mode[J]. Chinese Journal of Applied Ecology, 2006, 17(2): 237-242 doi: 10.3321/j.issn:1001-9332.2006.02.015 |
[9] | 杨海龙, 吕耀, 闵庆文, 等. 稻鱼共生系统与水稻单作系统的能值对比——以贵州省从江县小黄村为例[J]. 资源科学, 2009, 31(1): 48-55 doi: 10.3321/j.issn:1007-7588.2009.01.006 YANG H L, LYU Y, MIN Q W, et al. Energy comparison of rice-fish agriculture and rice monocropping: A case study of Xiaohuang Village, Congjiang County, Guizhou Province[J]. Resources Science, 2009, 31(1): 48-55 doi: 10.3321/j.issn:1007-7588.2009.01.006 |
[10] | 戴秋怡. 上海青浦现代农业园区发展研究[D]. 上海: 上海交通大学, 2011 DAI Q Y. The development planning of Qingpu Urban Agriculture Zone[D]. Shanghai: Shanghai Jiaotong University, 2011 |
[11] | 上海青浦统计局. 2019年上海市青浦区国民经济和社会发展统计公报[EB/OL]. (2020-04-01)[2020-07-01]. https://www.shqp.gov.cn/stat/tjzltjgb/20200401/650732.html Qingpu District Bureau of Statistics. Statistical Bulletin of National Economic and Social Development of Qingpu District in 2019[EB/OL] [R]. (2020-04-01)[2020-07-01]. https://www.shqp.gov.cn/stat/tjzltjgb/20200401/650732.html |
[12] | ODUM H T. Environmental Accounting: Emergy and Environmental Decision Making[M]. New York: Wiley, 1996 |
[13] | 蓝盛芳, 钦佩, 陆宏芳. 生态经济系统能值分析[M]. 北京: 化学工业出版社, 2002: 3-5 LAN S F, QIN P, LU H F. Emergy Analysis on Ecological-Economic Systems[M]. Beijing: Chemical Industry Press, 2002: 3-5 |
[14] | 郭文啸, 赵琦, 朱元宏, 等. 蛙稻生态种养模式对土壤微生物特性的影响[J]. 江苏农业科学, 2018, 46(5): 57-60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201805015.htm GUO W X, ZHAO Q, ZHU Y H, et al. Effect of frog and rice ecological farming model on soil microbial characteristics[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 57-60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201805015.htm |
[15] | 刘新茂, 蓝盛芳, 陈飞鹏. 广东省种植业系统能值分析[J]. 华南农业大学学报, 1999, 20(4): 111-115 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB199904023.htm LIU X M, LAN S F, CHEN F P. Emergy analysis for planting system of Guangdong Province[J]. Journal of South China Agricultural University, 1999, 20(4): 111-115 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB199904023.htm |
[16] | 王小龙, 刘星星, 隋鹏, 等. 能值方法在农业系统应用中的常见问题及其纠正思路探讨[J]. 中国生态农业学报(中英文), 2020, 28(4): 503-512 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0404&flag=1 WANG X L, LIU X X, SUI P, et al. Current problems and proposed solutions of emergy evaluation in agricultural systems[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 503-512 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0404&flag=1 |
[17] | 隋春花, 蓝盛芳. 广州与上海城市生态系统能值的分析比较[J]. 城市环境与城市生态, 2006, 19(4): 1-3 SUI C H, LAN S F. Emergy analysis of Guangzhou and Shanghai urban ecosystem[J]. Urban Environment & Urban Ecology, 2006, 19(4): 1-3 |
[18] | 黄黄, 时宇, 冉珊珊, 等. 基于能值理论的农田-畜禽生产系统可持续动态[J]. 自然资源学报, 2020, 35(4): 869-883 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202004010.htm HUANG H, SHI Y, RAN S S, et al. Dynamic research on sustainable development of farmland-livestock production system based on emergy theory[J]. Journal of Natural Resources, 2020, 35(4): 869-883 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202004010.htm |
[19] | JIANG M M, CHEN B, ZHOU J B, et al. Emergy account for biomass resource exploitation by agriculture in China[J]. Energy Policy, 2007, 35(9): 4704-4719 doi: 10.1016/j.enpol.2007.03.014 |
[20] | 白传波. 蔬菜-林蛙-蝇蛆三位一体循环农业生产模式能值评估[D]. 长春: 吉林农业大学, 2016 BAI C B. The emergy analysis of vegetable, wood frog and fly maggot three-in-one production pattern[D]. Changchun: Jilin Agricultural University, 2016 |
[21] | 易婷. 湖南水稻生态系统的能值分析[D]. 长沙: 湖南农业大学, 2016 YI T. Emergy analysis for rice ecosystem in Hunan[D]. Changsha: Hunan Agricultural University, 2016 |
[22] | 陆宏芳, 蓝盛芳, 李雷, 等. 评价系统可持续发展能力的能值指标[J]. 中国环境科学, 2002, 22(4): 380-384 doi: 10.3321/j.issn:1000-6923.2002.04.022 LU H F, LAN S F, LI L, et al. Studies on emergy indices for evaluating system sustainable development property[J]. China Environmental Science, 2002, 22(4): 380-384 doi: 10.3321/j.issn:1000-6923.2002.04.022 |
[23] | 张永杰. 基于能值分析的定西市农田生态系统可持续发展评价[D]. 兰州: 甘肃农业大学, 2016 ZHANG Y J. Evaluation of sustainable development of Dingxi farmland ecosystem based on emergy analysis[D]. Lanzhou: Gansu Agricultural University, 2016 |