删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中亚棉花生产需水量与虚拟水贸易变化趋势

本站小编 Free考研考试/2022-01-01

辛萍1, 2, 3,,
韩淑敏2,,,
杨永辉2, 3,
周新尧2,
周宏飞4
1.中国科学院大学中丹学院 北京 100049
2.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室 石家庄 050022
3.中国科学院大学 北京 100049
4.中国科学院新疆生态与地理研究所 乌鲁木齐 830011
基金项目: 中国科学院战略性先导科技专项XDA2004030203
国家自然科学基金项目31871518

详细信息
作者简介:辛萍, 主要研究方向为区域耕地-粮食-水资源耦合机制。E-mail: xinping@sjziam.ac.cn
通讯作者:韩淑敏, 主要研究方向为生态水文。E-mail: hansm@sjziam.ac.cn
中图分类号:P343.8

计量

文章访问数:333
HTML全文浏览量:6
PDF下载量:103
被引次数:0
出版历程

收稿日期:2020-06-25
录用日期:2020-09-12
刊出日期:2021-02-01

Changes in water requirements for production and virtual water trade of cotton in Central Asia

XIN Ping1, 2, 3,,
HAN Shumin2,,,
YANG Yonghui2, 3,
ZHOU Xinyao2,
ZHOU Hongfei4
1. Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China
2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Funds: the Strategic Priority Research Program of Chinese Academy of SciencesXDA2004030203
the National Natural Science Foundation of China31871518

More Information
Corresponding author:HAN Shumin, E-mail: hansm@sjziam.ac.cn


摘要
HTML全文
(6)(1)
参考文献(40)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:棉花是中亚重要的出口农产品之一,在水资源日趋严峻形势下,评价棉花生产需水和虚拟水贸易对区域水资源管理具有重要意义。本研究基于中亚175个站点长期气象数据,利用ArcGIS空间插值和作物系数法,结合棉花空间分布情况,首先估算了中亚五国的棉花需水量和单产需水量;基于单产需水量和国际粮农组织(FAO)的棉花产量和贸易数据,分析了1992年以来棉花的生产需水量、虚拟水贸易变化趋势及影响因素;最后评价了虚拟水贸易对中亚水资源的影响。研究结果表明:1)中亚棉花需水量为761.0~1033.9 mm,单产需水量为2834.4~5732.1 m3·t-1,其中产棉大国乌兹别克斯坦为4263.8 m3·t-1。2)1992-2017年,中亚地区棉花收获面积减少和产量偏低,导致总产量下降,生产需水量从初期的不足300亿m3下降到目前的不足200亿m3;棉花消费量增加导致出口量降低,净出口虚拟水量从初期的200亿m3左右下降到目前50亿m3;年均棉花生产需水量、净出口虚拟水量和净出口占生产需水量的比值分别为237.2亿m3、147.4亿m3和62.1%。3)1992-2017年,乌兹别克斯坦和土库曼斯坦通过棉花出口分别输出其可更新水资源总量的18.4%和12.7%,加剧了咸海流域水资源短缺。因此减少农田输水损失,提高棉花水分利用效率,是提升中亚棉花总产、减少棉花生产耗水、提升棉花出口贸易、减少虚拟水外输的有效措施。
关键词:棉花/
需水量/
单产需水量/
虚拟水贸易/
中亚五国
Abstract:Cotton is an important agricultural export item in Central Asia. Given the increasing shortage of water resources, it is necessary to evaluate the water requirements for cotton production and the virtual water trade of cotton for sustainable water resource management. In this study, the water requirements and specific water demands of cotton in the five countries of Central Asia were estimated from the long-term meteorological data from 175 stations using the ArcGIS spatial interpolation and crop coefficient method along with the distribution of cotton cultivation. Parameters for the specific water demands and the production and trade data from the Food and Agriculture Organization (FAO) as well as the amounts, change trends, and water requirements for production and virtual water trade of cotton in 1992-2017 were analyzed. Finally, the impact of virtual water trade on the water resources in Central Asia was evaluated. The results showed that: 1) the cotton water requirement was 761.0-1033.9 mm, the specific water demand was 2834.4-5732.1 m3·t-1, and the value of Uzbekistan cotton was 4263.8 m3·t-1, which was dominant in the calculations of water requirement for cotton production and the amount of exported virtual water of cotton. The parameters for the specific water demand were reliable for the spatial-weighted calculation processes. 2) From 1992 to 2017, the water requirement for cotton production and the net exported virtual water amount of cotton trended downward due to decreases in the total production and export amounts of cotton. The decrease in total cotton production resulted from a decline in harvested area, and low yields in some Central Asian areas directly led to decreased water demand for production (from > 30 billion m3 to > 20 billion m3). An increase in cotton consumption was the main reason for declining virtual water exports in Central Asia; the net exported virtual water volume dropped from 20 billion m3 to 5 billion m3. From 1992 to 2017, the annual water requirement for production, net exported virtual water, and the ratio of net exported amount to production amount of cotton were 23.72 billion m3, 14.74 billion m3, and 62.1%, respectively. At present, approximately one-third of the water requirement for cotton production is exported via virtual water trade despite falling cotton exports. 3) In Central Asia, 6.5% of the renewable water resources (not including water loss in farmlands and conveyance loss in irrigation events) was exported in the form of cotton exports in 1992-2017. In Uzbekistan and Turkmenistan, 18.4% and 12.7% of the renewable water resources were exported, respectively, which negatively impacted the regional water resources and induced water shortages.
Key words:Cotton/
Water requirement/
Specific water demand/
Virtual water trade/
Five countries in Central Asia

HTML全文


图1中亚五国地理位置、地表水分布、高程(左)及气象站、雨养/灌溉棉花分布(右)
Figure1.Geographical position, surface water distributions and elevation (left), and distributions of weather stations, planted cotton including rain-fed and irrigated (right) in Central Asia


下载: 全尺寸图片幻灯片


图21992-2017年中亚棉花产量、贸易量及消费量
Figure2.Production, imports, exports, and consumption of cotton in 1992-2017 in Central Asia


下载: 全尺寸图片幻灯片


图3中亚五国棉花(皮棉)产量、进口量、消费量和出口量(产量+进口量=消费量+出口量)
Figure3.Production, imports, consumption, and exports of cotton in Central Asia (production + imports = consumption + exports)


下载: 全尺寸图片幻灯片


图41992-2017年中亚棉花生产需水量及净出口虚拟水量
Figure4.Water requirement for cotton production and net exported virtual water of cotton in 1992-2017 in Central Asia


下载: 全尺寸图片幻灯片


图51992-2017年中亚五国棉花虚拟水贸易量
Figure5.Imported, exported, and net exported virtual water of cotton in 1992-2017 in the five countries of Central Asia


下载: 全尺寸图片幻灯片


图61992-2018年中亚棉花单产、收获面积及生产需水量
Figure6.Cotton yield, harvested area, and water requirement for production in 1992-2018 in Central Asia


下载: 全尺寸图片幻灯片

表1中亚五国棉花需水量和单产需水量
Table1.Cotton water requirement and specific water demand in Central Asia
指标
Index
哈萨克斯坦
Kazakhstan
吉尔吉斯斯
坦Kyrgyzstan
塔吉克斯坦
Tajikistan
土库曼斯坦
Turkmenistan
乌兹别克斯坦
Uzbekistan
ET0 (mm) 1070.3 919.0 1129.4 1211.9 1340.6
作物系数
Crop coefficient (kc)[23-24]
4月 April 0.35 0.35 0.35 0.35 0.35
5月 May 0.48 0.48 0.48 0.47 0.47
6月 June 1.02 1.02 1.02 0.97 0.96
7月 July 1.26 1.26 1.26 1.20 1.19
8月 August 1.26 1.26 1.26 1.20 1.19
9月 September 1.05 1.05 1.05 1.00 0.99
10月 October 0.73 0.73 0.73 0.74 0.72
需水量 Water requirement (ETC) (mm) 928.1 761.0 906.8 932.6 1033.9
单产 Yield (kg·hm-2) 2157.8 2684.8 1756.5 1627.0 2424.9
单产需水量 Specific water demand (m3·t-1) 4300.9 2834.4 5162.4 5732.1 4263.8


下载: 导出CSV

参考文献(40)
[1]HOEKSTRA A Y, HUNG P Q. Virtual Water Trade: A Quantification of Virtual Water Flows Between Nations in Relation to International Crop Trade (Value of Water Research Report Series No. 11)[R]. Netherlands: UNESCO-IHE, 2002
[2]DING Y K, LI Y P, LIU Y R. Spatial-temporal assessment of agricultural virtual water and uncertainty analysis: The case of Kazakhstan (2000-2016)[J]. Science of the Total Environment, 2020, 724: 138155 doi: 10.1016/j.scitotenv.2020.138155
[3]CHAPAGAIN A, HOEKSTRA A. Virtual Water Flows Between Nations in Relation to Rrade in Livestock and Livestock Products[R]. Netherlands: UNESCO-IHE Delft, 2003
[4]HOEKSTRA A Y, HUNG P Q. Globalisation of water resources: International virtual water flows in relation to crop trade[J]. Global Environmental Change, 2005, 15(1): 45-56 doi: 10.1016/j.gloenvcha.2004.06.004
[5]ALLEN R G, PEREIRA L S, RAES D, et al. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration-guidelines for Computing Crop Water Requirements[R]. Roma: FAO, 1998: 65-79
[6]BOURAIMA A K, ZHANG W H, WEI C F. Irrigation water requirements of rice using Cropwat model in Northern Benin[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(2): 58-64 http://www.cabdirect.org/abstracts/20153293216.html
[7]CAVERO J, FARRE I, DEBAEKE P, et al. Simulation of maize yield under water stress with the EPICphase and CROPWAT models[J]. Agronomy Journal, 2000, 92(4): 679-690 doi: 10.2134/agronj2000.924679x
[8]STANCALIE G, MARICA A, TOULIOS L. Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(1/2): 25-30 http://www.sciencedirect.com/science/article/pii/S1474706510000288
[9]MOSEKI O, MURRAY-HUDSON M, KASHE K. Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: Applying the CROPWAT model[J]. Agricultural Water Management, 2019, 225: 105754 doi: 10.1016/j.agwat.2019.105754
[10]SURENDRAN U, SUSHANTH C M, JOSEPH E J, et al. FAO CROPWAT model-based irrigation requirements for coconut to improve crop and water productivity in kerala, India[J]. Sustainability, 2019, 11(18): 5132 doi: 10.3390/su11185132
[11]胡庆芳, 杨大文, 王银堂, 等. Hargreaves公式的全局校正及适用性评价[J]. 水科学进展, 2011, 22(2): 160-167 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201102002.htm
HU Q F, YANG D W, WANG Y T, et al. Global calibration of Hargreaves equation and its applicability in China[J]. Advances in Water Science, 2011, 22(2): 160-167 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201102002.htm
[12]TRAJKOVIC S, GOCIC M, PONGRACZ R, et al. Adjustment of Thornthwaite equation for estimating evapotranspiration in Vojvodina[J]. Theoretical and Applied Climatology, 2019, 138: 1231-1240 doi: 10.1007/s00704-019-02873-1
[13]胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201401001.htm
HU R J, JIANG F Q, WANG Y J, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201401001.htm
[14]刘珂, 姜大膀. 基于两种潜在蒸散发算法的SPEI对中国干湿变化的分析[J]. 大气科学, 2015, 39(1): 23-36 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201501003.htm
LIU K, JIANG D B. Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 23-36 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201501003.htm
[15]PRAMUDYA Y, ONISHI T, SENGE M, et al. Evaluation of recent drought conditions by standardized precipitation index and potential evapotranspiration over Indonesia[J]. Paddy and Water Environment, 2019, 17(3): 331-338 doi: 10.1007/s10333-019-00728-z
[16]崔小年. 全球棉花供需格局调整与提升中国棉花产业竞争力研究[J]. 区域经济评论, 2018, (4): 114-120 https://www.cnki.com.cn/Article/CJFDTOTAL-QYHL201804020.htm
CUI X N. Study on the adjustment of global cotton supply and demand pattern and the competitiveness of China's cotton industry[J]. Regional Economic Review, 2018, (4): 114-120 https://www.cnki.com.cn/Article/CJFDTOTAL-QYHL201804020.htm
[17]FRENKEN K. Irrigation in Central Asia in Figures-AQUASTAT Servey-2012[R]. Rome: FAO, 2013: 1-21
[18]田长彦. 白金之国——乌兹别克斯坦的棉花[J]. 世界农业, 1998, 4: 22-23 https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY804.007.htm
TIAN C Y. Cotton from Uzbekistan, the country of platinum[J]. World Agriculture, 1998, 4: 22-23 https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY804.007.htm
[19]白永秀, 王颂吉. 丝绸之路经济带: 中国走向世界的战略走廊[J]. 西北大学学报: 哲学社会科学版, 2014, 44(4): 32-38 doi: 10.3969/j.issn.1000-2731.2014.04.006
BAI Y X, WANG S J. Silk-road Economic Belt: The strategic corridor of China going globa[J]. Journal of Northwest University: Philosophy and Social Sciences Edition, 2014, 44(4): 32-38 doi: 10.3969/j.issn.1000-2731.2014.04.006
[20]田立文, 赵德提·阿不都哈德尔, 崔建平, 等. 乌兹别克斯坦与中国新疆两棉区的气候分析[J]. 棉花科学, 2014, 36(3): 3-11 doi: 10.3969/j.issn.2095-3143.2014.03.001
TIAN L W, ZHAO DETI·ABDULKHADR, CUI J P, et al. Climatic analysis of cotton region of Uzbekistan and Xinjiang[J]. Cotton Sciences, 2014, 36(3): 3-11 doi: 10.3969/j.issn.2095-3143.2014.03.001
[21]QADIR M, NOBLE A D, QURESHI A S, et al. Salt-induced land and water degradation in the Aral Sea basin: A challenge to sustainable agriculture in Central Asia[J]. Natural Resources Forum, 2009, 33(2): 134-149 doi: 10.1111/j.1477-8947.2009.01217.x
[22]PORTMANN F T, SIEBERT S, D?LL P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling[J]. Global Biogeochemical Cycles, 2010, 24(1): GB1011 http://www.cabdirect.org/abstracts/20103142739.html
[23]ALLEN R G, PEREIRA L S, RAES D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements: FAO Irrigation and Drainage Paper 56[M]. Roma: FAO, 1998
[24]PEREIRA L S, PAREDES P, CHOLPANKULOV E D, et al. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia[J]. Agricultural Water Management, 2009, 96(5): 723-735 doi: 10.1016/j.agwat.2008.10.013
[25]CONRAD C, RAHMANN M, MACHWITZ M, et al. Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan[J]. Global and Planetary Change, 2013, 110: 88-98 doi: 10.1016/j.gloplacha.2013.08.002
[26]THEVS N, OVEZMURADOV K, ZANJANI L V, et al. Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap Province, Turkmenistan[J]. Environmental Earth Sciences, 2014, 73(2): 731-741 doi: 10.1007/s12665-014-3084-1
[27]中亚科技服务中心. 乌兹别克斯坦是中亚最大棉花生产国, 年产80万吨, 排世界第五[EB/OL]. [2020-02-15]. http://www.zykjfwz.com/index.php?m=content&c=index&a=show&catid=866&id=2494
Central Aisa Technology Service Center. Uzbekistan is Central Asia's largest cotton producer, with an annual output of 800, 000 t, the world's fifth largest[EB/OL].[2020-02-15]. http://www.zykjfwz.com/index.php?m=content&c=index&a=show&catid=866&id=2494
[28]THEODORIDIS A, HASANOV S, ABRUEV A. Efficiency and productivity change analysis of cotton production in Uzbekistan[J]. Outlook on Agriculture, 2014, 43(4): 259-263 doi: 10.5367/oa.2014.0186
[29]RUDENKO I, BEKCHANOV M, DJANIBEKOV U, et al. The added value of a water footprint approach: Micro- and macroeconomic analysis of cotton production, processing and export in water bound Uzbekistan[J]. Global and Planetary Change, 2013, 110: 143-151 doi: 10.1016/j.gloplacha.2013.09.007
[30]BAEA J W, DALL'ERBA S. Crop production, export of virtual water and water-saving strategies in Arizona[J]. Ecological Economics, 2018, 146: 148-156 doi: 10.1016/j.ecolecon.2017.10.018
[31]IBRAGIMOV N, EVETT S R, ESANBEKOV Y, et al. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation[J]. Agricultural Water Management, 2007, 90(1/2): 112-120 http://www.sciencedirect.com/science/article/pii/S0378377407000467
[32]HORST M G, SHAMUTALOV S S, GONCALVES J M, et al. Assessing impacts of surge-flow irrigation on water saving and productivity of cotton[J]. Agricultural Water Management, 2007, 87(2): 115-127 doi: 10.1016/j.agwat.2006.06.014
[33]BEZBORODOV G A, SHADMANOV D K, MIRHASHIMOV R T, et al. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J]. Agriculture, Ecosystems & Environment, 2010, 138(1/2): 95-102 http://www.sciencedirect.com/science/article/pii/S0167880910001131
[34]FORKUTSA I, SOMMER R, SHIROKOVA Y I, et al. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: Ⅱ. Soil salinity dynamics[J]. Irrigation Science, 2009, 27(4): 319-330 doi: 10.1007/s00271-009-0149-0
[35]QURESHI A S, ESHMURATOV D, BEZBORODOV G. Determining optimal groundwater table depth for maximizing cotton production in the Sardarya Province of Uzbekistan[J]. Irrigation and Drainage, 2011, 60(2): 241-252 doi: 10.1002/ird.568
[36]UNGER-SHAYESTEH K, VOROGUSHYN S, MERZ B, et al. Introduction to "Water in Central Asia—Perspectives under global change"[J]. Global and Planetary Change, 2013, 110: 1-3 doi: 10.1016/j.gloplacha.2013.09.016
[37]ZHANG J Y, CHEN Y N, LI Z. Assessment of efficiency and potentiality of agricultural resources in Central Asia[J]. Journal of Geographical Sciences, 2018, 28(9): 1329-1340 doi: 10.1007/s11442-018-1528-3
[38]ZHAO X, LIU J G, LIU Q Y, et al. Physical and virtual water transfers for regional water stress alleviation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1031-1035 doi: 10.1073/pnas.1404130112
[39]KARTHE D, CHALOV S, BORCHARDT D. Water resources and their management in Central Asia in the early twenty first century: Status, challenges and future prospects[J]. Environmental Earth Sciences, 2015, 73(2): 487-499 doi: 10.1007/s12665-014-3789-1
[40]FAO. AQUASTAT Main Database—Food and Agriculture Organization of the United Nations (FAO)[R]. Roma: FAO, 2018

相关话题/棉花 生产 贸易 图片 中国科学院