删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同施氮量下干旱胁迫对棉花生长及种内关系的影响

本站小编 Free考研考试/2022-01-01

解婷婷1,,
单立山1,,,
苏培玺2
1.甘肃农业大学林学院 兰州 730070
2.中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室 兰州 730000
基金项目: 国家自然科学基金项目31960245
甘肃农业大学公招博士科研启动基金GAU-KYQD-2018-07
甘肃农业大学学科建设基金项目GAU-XKJS-2018-108
甘肃农业大学学科建设基金项目GAU-XKJS-2018-104

详细信息
作者简介:解婷婷, 主要从事干旱区植物生理生态学方面的研究。E-mail:xieting1026@126.com
通讯作者:单立山, 主要从事荒漠植物生态学方面的研究。E-mail:shanls@gsau.edu.cn
中图分类号:S181

计量

文章访问数:723
HTML全文浏览量:3
PDF下载量:695
被引次数:0
出版历程

收稿日期:2019-11-08
录用日期:2020-02-10
刊出日期:2020-05-01

Effects of drought stress on cotton growth and intraspecific relationship under different nitrogen application rates

XIE Tingting1,,
SHAN Lishan1,,,
SU Peixi2
1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
2. Northwest Ecological and Environmental Resources Institute, Chinese Academy of Sciences/Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Lanzhou 730000, China
Funds: the National Natural Science Foundation of China31960245
the Scientific Research Start-up Funds for Openly-Recruited Doctors of Gansu Agricultural UniversityGAU-KYQD-2018-07
the Special Funds for Discipline Construction of Gansu Agricultural UniversityGAU-XKJS-2018-108
the Special Funds for Discipline Construction of Gansu Agricultural UniversityGAU-XKJS-2018-104

More Information
Corresponding author:SHAN Lishan, E-mail:shanls@gsau.edu.cn


摘要
HTML全文
(3)(2)
参考文献(31)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:土壤水分和氮肥是影响荒漠绿洲区作物生长和种内关系的主要因素。为明确不同施氮量下干旱胁迫对棉花产量以及种内关系的影响,本研究以集群栽培(1穴3株)下棉花为研究对象,设置3种施氮量[300 kg(N)·hm-2、225 kg(N)·hm-2、150 kg(N)·hm-2]和3种水分处理(正常水分、中度干旱胁迫、重度干旱胁迫),测定了不同处理下棉花的生长指标和棉花产量,分析了不同处理下棉花种内关系的变化。结果表明:1)同一施肥条件下,2016年和2017年棉花株高在重度干旱胁迫下显著降低,而茎粗随干旱胁迫加剧显著降低,但叶面积随干旱胁迫加剧却有所增加,且在中度干旱胁迫下的叶面积最大。2)同一施肥条件下,与正常水分相比,中度和重度干旱胁迫下棉花的茎秆生物量均显著下降;叶片生物量和籽棉产量在中度干旱胁迫下最高,在重度干旱胁迫下却降低。3)在当地施氮量300 kg·hm-2下,随着干旱胁迫的加剧,相对邻体效应(relative neighbor effect,RNE)数值从正值变为负值;在氮肥减少处理(225 kg·hm-2)下,随着干旱胁迫的加剧,RNE数值先升高后降低,而在施氮量为150 kg·hm-2处理下,RNE数值随着干旱的加剧逐渐降低,且均为负值。总之,在当地施氮量和中度干旱胁迫下棉花能够获得较高的籽棉产量,且在此处理下棉花的种内关系为助长关系;其他处理均降低了棉花的产量,并使得棉花的种内关系转变为竞争关系。
关键词:棉花/
施氮量/
干旱胁迫/
生物产量/
种内关系
Abstract:Soil, water, and nitrogen fertilizer are the main factors which affect crop growth and intraspecific relationships in the desert oasis region, but little is known about the effects of drought stress on interspecific or intraspecific relationships under different nitrogen application rates. This study aimed to investigate the response of yield to drought stress under different nitrogen application rates and analyze changes in the intraspecific relationship of cotton under different treatments. A field experiment was conducted in Gansu Province of China, the growth parameters and yield of cotton were measured, and the changes in intraspecific relationships were analyzed under three nitrogen applications (300 kg·hm-2, 225 kg·hm-2 and 150 kg·hm-2) and water treatments (normal water, moderate drought stress, and serious drought stress). The results showed that:1) under the same nitrogen application rate, the plant height of cotton significantly decreased under serious drought stress in 2016 and 2017, and the stem diameter significantly reduced as the drought stress intensified, but the leaf area increased slightly with increasing drought stress and was highest in moderate drought stress conditions. 2) The stem biomass significantly decreased in conjunction with decreased water conditions under the same nitrogen application rate, and the leaf biomass and seed cotton yield were highest under moderate drought stress, and decreased under serious drought stress. 3) Under the local nitrogen application rate of 300 kg·hm-2, the relative neighbor effect (RNE) changed from positive to negative with increasing drought stress. The RNE first increased and then decreased with increasing drought stress under the 225 kg·hm-2 treatment, and the RNE significantly reduced with increasing drought condition and the values were all negative in the 150 kg·hm-2 treatment. In summary, the combination of local nitrogen application rate of 300 kg·hm-2 and moderate drought stress resulted in high cotton yield, and intraspecific facilitation. The cotton yield decreased under the other treatments and the interactions all demonstrated intraspecific competition.
Key words:Cotton/
Nitrogen application rate/
Drought stress/
Biomass yield/
Intraspecific relationship

HTML全文


图1不同施氮量处理干旱胁迫对集群栽培(1穴3株)棉花的株高、叶面积和茎粗的影响
F1、F2、F3分别指施氮量300 kg(N)·hm-2(当地平均施氮量)、225 kg(N)·hm-2和150 kg(N)·hm-2; W1、W2、W3分别指正常水分、中度干旱胁迫和重度干旱胁迫。不同小写字母表示同一施氮量下不同水分处理间差异在P < 0.05水平显著。
Figure1.Plant height, leaf area and stem diameter of cluster-cultivated cotton (3 plants in 1 hole) under different water and nitrogen treatments
F1, F2 and F3 represent the nitrogen application rates of 300 kg·hm-2 (local average rate), 225 kg·hm-2, 150 kg·hm-2; W1, W2 and W3 represent the normal water, moderate drought stress and serious drought stress. Different lowercases indicate significant differences among different water treatments under the same nitrogen level at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2水分和施氮处理下集群栽培(1穴3株)棉花茎秆和叶片生物量及籽棉产量
F1、F2、F3分别指施氮量300 kg(N)·hm-2(当地平均施氮量)、225 kg(N)·hm-2和150 kg(N)·hm-2; W1、W2、W3分别指正常水分、中度干旱胁迫和重度干旱胁迫。不同小写字母表示同一施氮量下不同水分处理间差异在P < 0.05水平上显著。
Figure2.Stem, leaf biomass and seed cotton yield of cluster-cultivated cotton (3 plants in 1 hole) under different water and nitrogen treatments
F1, F2 and F3 represent the nitrogen application rates of 300 kg·hm-2 (local average rate), 225 kg·hm-2 and 150 kg·hm-2; W1, W2 and W3 represent the normal water, moderate drought stress and serious drought stress. Different lowercases indicate significant differences among different water treatments under the same nitrogen level at P < 0.05 level.


下载: 全尺寸图片幻灯片


图3不同施氮量下干旱胁迫对集群栽培(1穴3株)棉花相对邻体效应的影响
F1、F2、F3分别指施氮量300 kg(N)·hm-2(当地平均施氮量)、225 kg(N)·hm-2和150 kg(N)·hm-2; W1、W2、W3分别指正常水分、中度干旱胁迫和重度干旱胁迫。
Figure3.Effect of water stress on relative neighbor effect of cluster-cultivated cotton (3 plants in 1 hole) under different nitrogen treatments
F1, F2 and F3 represent the nitrogen application rates of 300 kg·hm-2 (local average rate), 225 kg·hm-2 and 150 kg·hm-2; W1, W2 and W3 represent the normal water, moderate drought stress and serious drought stress.


下载: 全尺寸图片幻灯片

表1水分、施氮和年份对集群栽培(1穴3株)棉花生长指标的影响显著性分析
Table1.Results of 3-way ANOVA of the effects of water condition, nitrogen application rate and time on growth of cluster-cultivated cotton (3 plants in 1 hole)
处理?Treatment df 株高?Plant height 叶面积?Leaf area 茎粗?Stem diameter
FF value PP value FF value PP value FF value PP value
水分?Water (W) 2 49.555 < 0.000 1 160.762 < 0.000 1 159.793 < 0.000 1
施氮?Nitrogen application (N) 2 213.788 < 0.000 1 199.839 < 0.000 1 624.959 < 0.000 1
年份?Year (Y) 1 16.124 < 0.000 1 1.958 0.170 7.747 < 0.010
水分×施氮?W × N 4 0.471 0.757 5.555 < 0.010 7.836 < 0.000 1
水分×年份?W × Y 2 0.314 0.733 0.664 0.521 0.005 0.995
施氮×年份?N × Y 2 0.095 0.910 0.452 0.640 0.074 0.929
水分×施氮×年份?W × N × Y 4 0.150 0.962 0.334 0.853 0.108 0.979


下载: 导出CSV
表2水分、施氮和年份对集群栽培(1穴3株)棉花生物量的影响
Table2.Effects of different water and fertilizer treatments on growth of cluster-cultivated cotton (3 plants in 1 hole)
处理?Treatment df 茎秆生物量?Stem biomass 叶片生物量?Leaf biomass 籽棉产量?Seed cotton yield
FF value PP value FF value PP value FF value PP value
水分?Water (W) 2 371.916 < 0.000 1 32.886 < 0.000 1 357.081 < 0.000 1
施氮?Nitrogen application (N) 2 805.253 < 0.000 1 43.050 < 0.000 1 380.966 < 0.000 1
年份?Year (Y) 1 349.246 < 0.000 1 5.139 < 0.050 461.932 < 0.000 1
水分×施氮?W × N 4 8.882 < 0.000 1 2.496 0.060 12.260 < 0.000 1
水分×年份?W × Y 2 3.659 < 0.050 0.217 0.806 2.824 0.073
施氮×年份?N × Y 2 5.281 < 0.050 0.580 0.565 1.158 0.325
水分×施氮×年份?W × N × Y 4 5.686 < 0.010 0.062 0.993 1.829 0.145


下载: 导出CSV

参考文献(31)
[1]YU F H, LI P X, LI S L, et al. Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction[J]. Basic and Applied Ecology, 2010, 11(8):743-751 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220530141/
[2]LI P X, KRüSI B O, LI S L, et al. Facilitation associated with three contrasting shrub species in heavily grazed pastures on the eastern Tibetan Plateau[J]. Community Ecology, 2011, 12(1):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54a9b6a780bc185af4d518ed4dcfff55
[3]LI P X, KRüSI B O, LI S L, et al. Can Potentilla fruticosa Linn. shrubs facilitate the herb layer of heavily grazed pasture on the eastern Tibetan Plateau?[J]. Polish Journal of Ecology, 2011, 59(1):129-140 http://www.researchgate.net/publication/285525332_Can_potentilla_fruticosa_linn_shrubs_facilitate_the_herb_layer_of_heavily_grazed_pasture_on_the_Eastern_Tibetan_Plateau
[4]CRAIN C M. Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context[J]. Journal of Ecology, 2008, 96(1):166-173 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2745.2007.01314.x
[5]CALLAWAY R M, BROOKER R W, CHOLER P, et al. Positive interactions among alpine plants increase with stress[J]. Nature, 2002, 417(6891):844-848 doi: 10.1038-nature00812/
[6]MAESTRE F T, CORTINA J. Do positive interactions increase with abiotic stress? A test from a semi-arid steppe[J]. Proceedings of the Royal Society B:Biological Sciences, 2004, 271(Suppl 5):S331-S333 doi: 10.1111-j.1365-2230.2009.03566.x/
[7]MAESTRE F T, VALLADARES F, REYNOLDS J F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments[J]. Journal of Ecology, 2005, 93(4):748-757
[8]CHENG D L, WANG G X, CHEN B M, et al. Positive interactions:Crucial organizers in a plant community[J]. Journal of Integrative Plant Biology, 2006, 48(2):128-136 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zwxb200602002
[9]卜祥祺, 刘琳, 穆亚楠, 等.水位波动对南美蟛蜞菊和蟛蜞菊种内及种间关系的影响[J].应用生态学报, 2017, 28(3):797-804 http://d.old.wanfangdata.com.cn/Periodical/yystxb201703010
BU X Q, LIU L, MU Y N, et al. Effects of water level fluctuation on the inter-and intra-specific relationships between Wedelia trilobata and W. chinensis[J]. Chinese Journal of Applied Ecology, 2017, 28(3):797-804 http://d.old.wanfangdata.com.cn/Periodical/yystxb201703010
[10]于国磊.水淹对克隆植物空心莲子草种内关系的影响[J].植物生态学报, 2011, 35(9):973-980 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201109009
YU G L. Effects of waterlogging on intraspecific interactions of the clonal herb Alternanthera philoxeroides[J]. Chinese Journal of Plant Ecology, 2011, 35(9):973-980 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201109009
[11]KANKANAMGE C E, KODITHUWAKKU H. Effect of interspecific competition on the growth and nutrient uptake of three macrophytes in nutrient-rich water[J]. Aquatic Ecology, 2017, 51(4):625-634 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e9e0aea5680a7054d3b191f9137b75c
[12]穆亚楠, 安树青, 智颖飙, 等.水位对大米草和藨草种内种间关系的影响[J].生态学杂志, 2018, 37(4):1010-1017 http://d.old.wanfangdata.com.cn/Periodical/stxzz201804007
MU Y N, AN S Q, ZHI Y B, et al. Effects of water level on intra- and inter-specific relationships of Spartina anglica and Scirpus triqueter[J]. Chinese Journal of Ecology, 2018, 37(4):1010-1017 http://d.old.wanfangdata.com.cn/Periodical/stxzz201804007
[13]周建, 李红丽, 罗芳丽, 等.施氮对空心莲子草(Alternanthera philoxeroides)和莲子草(Alternanthera sessilis)种间关系的影响[J].生态学报, 2015, 35(24):8258-8267 http://d.old.wanfangdata.com.cn/Periodical/stxb201524034
ZHOU J, LI H L, LUO F L, et al. Effects of nitrogen addition on interspecific competition between Alternanthera philoxeroides and Alternanthera sessilis[J]. Acta Ecologica Sinica, 2015, 35(24):8258-8267 http://d.old.wanfangdata.com.cn/Periodical/stxb201524034
[14]解婷婷, 苏培玺, 周紫鹃, 等.集群栽培对棉花种内关系的影响[J].植物学报, 2015, 50(1):83-89 http://d.old.wanfangdata.com.cn/Periodical/zwxtb201501009
XIE T T, SU P X, ZHOU Z J, et al. Effect of cluster planting pattern on intraspecific interactions of cotton[J]. Chinese Bulletin of Botany, 2015, 50(1):83-89 http://d.old.wanfangdata.com.cn/Periodical/zwxtb201501009
[15]解婷婷, 苏培玺, 周紫鹃, 等.集群种植方式对棉花田间小气候效应和产量的影响[J].西北农业学报, 2014, 23(3):55-61 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201403011
XIE T T, SU P X, ZHOU Z J, et al. Effect of cluster planting on filed microclimate and yield of cotton[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(3):55-61 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201403011
[16]SU P X, LIU X M, ZHANG L X, et al. Comparison of δ13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants[J]. Israel Journal of Plant Sciences, 2004, 52(2):87-97 doi: 10.1560-2CCM-K5A6-WFWQ-K5CU/
[17]KIKVIDZE Z, KHETSURIAN L, KIKODZE D, et al. Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus[J]. Journal of Vegetation Science, 2006, 17(1):77-82 doi: 10.1111-j.1654-1103.2006.tb02425.x/
[18]宋兴虎, WAGAN T A, SOULIYANONH B, 等.氮肥用量及其后效对棉花产量和生物质累积动态的影响[J].棉花学报, 2018, 30(2):145-154 http://d.old.wanfangdata.com.cn/Periodical/mhxb201802005
SONG X H, WAGAN T A, SOULIYANONH B, et al. Nitrogen fertilizer and its residual effect on cotton yield and biomass accumulation[J]. Cotton Science, 2018, 30(2):145-154 http://d.old.wanfangdata.com.cn/Periodical/mhxb201802005
[19]刘朋程, 孙红春, 刘连涛, 等.限量灌溉对不同棉花品种干物质积累分配、产量和水分利用效率的影响[J].棉花学报, 2018, 30(4):316-325 http://d.old.wanfangdata.com.cn/Periodical/mhxb201804004
LIU P C, SUN H C, LIU L T, et al. Effects of limited irrigation on accumulation and distribution of dry matter, yield, and water use efficiency of different cotton varieties[J]. Cotton Science, 2018, 30(4):316-325 http://d.old.wanfangdata.com.cn/Periodical/mhxb201804004
[20]张鹏, 蒋静, 马娟娟, 等.不同水氮处理对盐渍土水氮盐变化和燕麦产量的影响[J].灌溉排水学报, 2018, 37(5):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps201805001
ZHANG P, JIANG J, MA J J, et al. Effects of different irrigations and nitrogen applications on distribution of water, nitrogen and salt in saline soil as well as the yield of oat[J]. Journal of Irrigation and Drainage, 2018, 37(5):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps201805001
[21]杜彩艳, 段宗颜, 潘艳华, 等.干旱胁迫对玉米苗期植株生长和保护酶活性的影响[J].干旱地区农业研究, 2015, 33(3):124-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201503022
DU C Y, DUAN Z Y, PAN Y H, et al. Effect of drought stress on growth and activities of antioxidant enzymes of maize seedling[J]. Agricultural Research in the Arid Areas, 2015, 33(3):124-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201503022
[22]崔红艳, 方子森.水氮互作对胡麻干物质生产和产量的影响[J].西北植物学报, 2016, 36(1):156-164 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb201601021
CUI H Y, FANG Z S. Effect of nitrogen and irrigation interaction on dry matter production and grain yield of oil flax under different irrigation modes[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1):156-164 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb201601021
[23]栗丽, 洪坚平, 王宏庭, 等.水氮处理对冬小麦生长、产量和水氮利用效率的影响[J].应用生态学报, 2013, 24(5):1367-1373 http://d.old.wanfangdata.com.cn/Periodical/yystxb201305026
LI L, HONG J P, WANG H T, et al. Effects of watering and nitrogen fertilization on the growth, grain yield, and water- and nitrogen use efficiency of winter wheat[J]. Chinese Journal of Applied Ecology, 2013, 24(5):1367-1373 http://d.old.wanfangdata.com.cn/Periodical/yystxb201305026
[24]PUGNAIRE F I, LUQUE M T. Changes in plant interactions along a gradient of environmental stress[J]. Oikos, 2001, 93(1):42-49 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1034/j.1600-0706.2001.930104.x
[25]BERTNESS M D, CALLAWAY R M. Positive interactions in communities[J]. Trends in Ecology & Evolution, 1994, 9(5):191-193 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_344433
[26]SOLIVERES S, ELDRIDGE D J, HEMMINGS F, et al. Nurse plant effects on plant species richness in drylands:The role of grazing, rainfall and species specificity[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(6):402-410 http://www.sciencedirect.com/science/article/pii/S1433831912000558
[27]MOLINA-MONTENEGRO M A, RICOTE-MARTíNEZ N, MU?OZ-RAMíREZ C, et al. Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica[J]. Journal of Vegetation Science, 2013, 24(3):463-472 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1654-1103.2012.01480.x
[28]TIELB?RGER K, KADMON R. Temporal environmental variation tips the balance between facilitation and interference in desert plants[J]. Ecology, 2000, 81(6):1544-1553 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1890/0012-9658(2000)081[1544:TEVTTB]2.0.CO;2
[29]HOLMGREN M, CHEFFER M. Strong facilitation in mild environments:The stress gradient hypothesis revisited[J]. Journal of Ecology, 2010, 98(6):1269-1275 doi: 10.1111-j.1365-2745.2010.01709.x/
[30]MAESTRE F T, VALLADARES F, REYNOLDS J F. The stress-gradient hypothesis does not fit all relationships between plant-plant interactions and abiotic stress:Further insights from arid environments[J]. Journal of Ecology, 2006, 94(1):17-22
[31]庞芮.水肥胁迫对一年生植物种间关系的影响[D].兰州: 兰州大学, 2018: 23-25
PANG R. Effects of water and fertilizer stress on species interaction in annual plant communities[D]. Lanzhou: Lanzhou University, 2018: 23-25

相关话题/棉花 植物 甘肃农业大学 生态 生物