黄法融1, 2, 3, 4,
李倩1, 2, 3, 4,
周宏飞1, 3, 5,
李兰海1, 2, 3, 4,,
1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室 乌鲁木齐 830011
2.中国科学院伊犁河流域生态系统研究站 新源 835800
3.中国科学院大学 北京 100049
4.中国科学院中亚生态与环境研究中心/新疆干旱区水循环与水利用实验室 乌鲁木齐 830011
5.中国科学院阜康荒漠生态系统国家站 阜康 831505
基金项目: 中国科学院战略性先导科技专项XDA2004030202
中国科学院“西部青年****”B类项目2016-QNXZ-B-13
详细信息
作者简介:闫雪, 主要从事资源生态学研究。E-mail: yanxue171@mails.ucas.ac.cn
通讯作者:李兰海, 主要从事流域水文与生态系统研究。E-mail: lilh@ms.xjb.ac.cn
中图分类号:X37计量
文章访问数:396
HTML全文浏览量:24
PDF下载量:117
被引次数:0
出版历程
收稿日期:2020-06-02
录用日期:2020-09-15
刊出日期:2021-02-01
Regionalization of the matching degree of water, soil, and heat resources in Central Asia based on ecosystem services using PSO-SOFM neural network
YAN Xue1, 2, 3,,HUANG Farong1, 2, 3, 4,
LI Qian1, 2, 3, 4,
ZHOU Hongfei1, 3, 5,
LI Lanhai1, 2, 3, 4,,
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. Ili Station for Watershed Ecosystem Research, Chinese Academy of Sciences, Xinyuan 835800, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Research Centre for Ecology and Environment of Central Asia, Chinese Academy of Sciences/Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
5. Fukang Station of Desert of Ecology, Chinese Academy of Sciences, Fukang 831505, China
Funds: the Strategic Priority Research Program of Chinese Academy of SciencesXDA2004030202
the West Light Foundation of Chinese Academy of Sciences2016-QNXZ-B-13
More Information
Corresponding author:LI Lanhai, E-mail: lilh@ms.xjb.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:水土热资源匹配度分区研究对于区域农业规划具有重要意义。中亚地区长期以来缺乏合理的水土热资源管理,已引发了一系列资源环境问题,严重威胁该地区农业生产。目前的研究也较少关注中亚水土热资源匹配分区模式。本研究利用遥感数据,通过量化4种主要生态系统服务(植被固碳、土壤保持、水源供给与涵养及生物多样性保护)的时空分布特征,结合PSO-SOFM(particle swarm optimization,PSO;self-organizing feature map,SOFM)神经网络模型实现中亚水土热资源匹配度分区,并利用Spearman秩相关分析探索不同匹配度分区与生态环境因子的关系,应用偏相关分析确定气温和降水量对中亚地区生态系统服务的影响。结果表明,中亚生态系统服务总体呈东南高、西北低的空间格局,沿山地-绿洲-荒漠方向递减。在2000-2015年间,各类生态系统服务均有不同程度变化,其中植被固碳和土壤保持呈显著下降的面积占整个中亚的84.81%和84.82%;水源供给与涵养以及生物多样性保护服务呈显著下降的面积较少,占比分别为69.48%和19.8%,且这两种生态系统服务在个别地区有增加趋势。PSO-SOFM神经网络模型在中亚水土热资源匹配度分区中表现良好,根据生态系统服务值空间模式,中亚水土热资源匹配度可被划为5大类21个子类分区。在空间尺度,各类匹配度分区之间生态系统服务值有显著差异,降水是影响生态系统服务和匹配度高低的重要限制因子,而气温和土壤因素影响较弱;在时间尺度,降水和各生态系统服务值间呈显著正相关关系的范围更广,而气温对生态系统服务值有显著影响的区域主要集中在哈萨克斯坦北部草地-半荒漠生态敏感区、中亚荒漠生态脆弱区、中亚中部半荒漠生态敏感区以及巴特赫兹-卡拉比尔半荒漠生态敏感区等地。而在其他区域,气温和降水量并非决定生态系统服务值高低的主要因素,生态系统服务值的变化可能与土地开发利用模式有关。结合不同匹配度分区的生态地理条件,本研究可为中亚地区水土资源开发利用、农牧业发展以及生态环境保护提供有用信息。
关键词:水土热资源/
生态系统服务/
PSO-SOFM神经网络/
匹配度分区/
中亚
Abstract:Regionalization of the matching degree of water, soil, and heat resources is of great significance for regional agricultural planning. The long-term unreasonable management of water, soil, and heat resources has caused regional resource shortages and environmental problems in Central Asia, which seriously threatens agricultural production in this region. However, few studies have investigated the regionalization patterns of the matching degree of water, soil, and heat resources in Central Asia. In this study, the spatio-temporal patterns of four ecosystem services, including vegetation carbon sequestration, soil conservation, water supply and conservation, and biodiversity conservation, were quantified by using remote sensing data. Combined with the Particle Swarm Optimization (PSO) and Self-Organizing Feature Map (SOFM) neural network, the regionalization of the matching degree of water, soil, and heat resources was examined. The relationships among various eco-environmental factors of different matching degree zones were assessed using Spearman's rank correlation analysis. The effects of temperature and precipitation on ecosystem services in Central Asia were analyzed by using partial correlation analysis. The results showed that the ecosystem services were generally high in the southeast while low in the northwest, decreasing from the mountains to the oases and the deserts. The four ecosystem services showed different degrees of change from 2000 to 2015 in Central Asia. Areas with significantly reduced vegetation carbon sequestration and soil conservation accounted for 84.81% and 84.82% of Central Asia, respectively, and areas with significantly reduced water supply and conservation and biodiversity conservation accounted for 69.48% and 19.8% of Central Asia, respectively. However, the ecosystem services from water supply and conservation and biodiversity conservation increased in some areas. The PSO-SOFM neural network model performed well in the regionalization of the matching degree of water, soil, and heat resources in Central Asia. The matching degree of water, soil, and heat resources in Central Asia can be divided into five categories with 21 sub-categories according to the patterns of ecosystem services. At the spatial scale, there were significant differences in the ecosystem services among different matching degree zones. Precipitation was the most important limiting factor affecting the ecosystem service values and matching degree, whereas the effects of temperature and soil properties were less important. At the temporal scale, the areas with a significant positive correlation between precipitation and ecosystem services were larger. The significant effect of temperature on ecosystem service values was mainly concentrated in ecological sensitive zone of northern Kazakh steppe and semi-desert, ecological fragile zone of desert in Central Asia, ecological sensitive zone of central semi-desert in Central Asia and ecological sensitive zone of semi-desert in Badghyz and Karabil. In other regions, temperature and precipitation were not the main factors affecting ecosystem services. Changes in the ecosystem service values may be related to land use types. Combined with the ecological and geographical conditions of different matching degree zones, this study provides useful information for the development and utilization of water and land resources, agriculture and animal husbandry development, and environmental protection in Central Asia.
Key words:Water, soil and heat resources/
Ecosystem services/
PSO-SOFM neural network/
Matching degree regionalization/
Central Asia
HTML全文
图1中亚五国地理位置及高程
Figure1.Location and elevation of five countries in Central Asia
下载: 全尺寸图片幻灯片
图2中亚2000-2015年平均生态系统服务值空间分布
GL: 草地; BL: 裸地; WB: 水体; UL: 城市。
Figure2.Spatial distribution of average ecosystem services during 2000-2015 in Central Asia
GL: grassland; BL: bare land; WB: water body; UL: urban land.
下载: 全尺寸图片幻灯片
图3中亚2000-2015年生态系统服务变化趋势及显著性
UC: 基本不变; SLD: 轻度降低; SLI: 轻度提高; SD: 显著降低; SI: 显著提高。GL: 草地; BL: 裸地; WB: 水体; UL: 城市。
Figure3.Trends and their significance of ecosystem services during 2000-2015 in Central Asia
UC: unchanged; SLD: slight decrease; SLI: slight increase; SD: significant decrease; SI: significant increase. GL: grassland; BL: bare land; WB: water body; UL: urban land.
下载: 全尺寸图片幻灯片
图4不同聚类方案的分类效果指数(CQI)
Figure4.Clustering Quality Index (CQI) of different clustering schemes
下载: 全尺寸图片幻灯片
图5PSO-SOFM神经网络中亚水土热资源匹配度聚类结果
Ⅰ: 森林-草原高匹配区; Ⅱ: 草原中高匹配区; Ⅲ: 草原-半荒漠中等匹配区; Ⅳ: 半荒漠中低匹配区; Ⅴ: 荒漠低匹配区。
Figure5.Clustering result of matching degree of water, soil and heat resources in Central Asia by PSO-SOFM neural network
Ⅰ: zone of forest steppe with high matching degree; Ⅱ: zone of steppe with middle to high matching degree; Ⅲ: zone of steppe semi-desert with middle matching degree; Ⅳ: zone of semi-desert with middle to low matching degree; Ⅴ: zone of desert with low matching degree.
下载: 全尺寸图片幻灯片
图6中亚水土热资源匹配度分区结果
Ⅰ: 森林-草原高匹配区; Ⅱ: 草原中高匹配区; Ⅲ: 草原-半荒漠中等匹配区; Ⅳ: 半荒漠中低匹配区; Ⅴ: 荒漠低匹配区。Ⅰ1: 哈萨克斯坦北部森林-草原固碳保土区; Ⅰ2: 阿尔泰山森林-草原固碳保土产水区; Ⅰ3: 天山高山-山麓草原固碳保土产水区; Ⅰ4: 天山森林-草原固碳保土产水区; Ⅰ5: 阿赖林地-高山草甸固碳保土产水区; Ⅰ6: 吉萨尔-阿赖北部草地固碳保土区; Ⅰ7: 吉萨尔-阿赖南部草地固碳保土产水区; Ⅱ1: 东欧大草原土壤保持区; Ⅱ2: 哈萨克斯坦大草原北部土壤保持区; Ⅱ3: 阿尔泰-天山山麓草原固碳区; Ⅱ4: 天山草原固碳区; Ⅱ5: 吉萨尔-阿赖固碳区; Ⅲ1: 哈萨克斯坦北部草地-半荒漠生态敏感区; Ⅲ2: 准噶尔-阿尔泰半荒漠生态敏感区; Ⅲ3: 中亚东南部草原-荒漠生态敏感区; Ⅳ1: 中亚中部半荒漠生态敏感区; Ⅳ2: 天山高山草原草甸生态敏感区; Ⅳ3: 巴特赫兹-卡拉比尔半荒漠生态敏感区; Ⅴ1: 中亚荒漠生态脆弱区; Ⅴ2: 巴尔喀什湖荒漠生态脆弱区; Ⅴ3: 帕米尔高原荒漠生态脆弱区。
Figure6.Regionalization result of matching degree of water, soil and heat resources in Central Asia
Ⅰ: zone of forest steppe with high matching degree; Ⅱ: zone of steppe with middle to high matching degree; Ⅲ: zone of steppe semi-desert with middle matching degree; Ⅳ: zone of semi-desert with middle to low matching degree; Ⅴ: zone of desert with low matching degree. Ⅰ1: zone of carbon sequestration and soil conservation of forest and grassland in northern Kazakhstan; Ⅰ2: zone of carbon sequestration, soil conservation and water supply of forest grassland in Altai Montane; Ⅰ3: zone of carbon sequestration, soil conservation and water supply in Tianshan Montane and its foothill steppe; Ⅰ4: zone of carbon sequestration, soil conservation and water supply of forest and grassland in Tianshan Montane; Ⅰ5: zone of carbon sequestration, soil conservation and water supply of woodlands and steppe in Alai; Ⅰ6: zone of carbon sequestration and soil conservation of steppe in northern Gissaro-Alai; Ⅰ7: zone of carbon sequestration, soil conservation and water supply of grassland in southern Gissaro-Alai; Ⅱ1: zone of soil conservation in Pontic steppe; Ⅱ2: zone of soil conservation in northern Kazakh steppe; Ⅱ3: zone of carbon sequestration of foothill steppe in Altai and Tianshan Montane; Ⅱ4: zone of carbon sequestration of steppe in Tianshan Montane; Ⅱ5: zone of carbon sequestration in Gissaro-Alai; Ⅲ1: ecological sensitive zone of northern Kazakh steppe and semi-desert; Ⅲ2: ecological sensitive zone of Junggar-Altai semi-desert; Ⅲ3: ecological sensitive zone of steppe and semi-desert in Southeast Central Asia; Ⅳ1: ecological sensitive zone of central semi-desert in Central Asia; Ⅳ2: ecological sensitive zone of steppe and meadows in Tianshan Montane; Ⅳ3: ecological sensitive zone of semi-desert in Badghyz and Karabil; Ⅴ1: ecological fragile zone of desert in Central Asia; Ⅴ2: ecological fragile zone of desert in Balkhash Lake; Ⅴ3: ecological fragile zone of desert in Pamir.
下载: 全尺寸图片幻灯片
图7中亚不同水土热资源匹配度分区4种生态系统服务分布特征
A: 植被固碳; B: 土壤保持; C: 水源供给与涵养; D: 生物多样性保护。Ⅰ: 森林-草原高匹配区; Ⅱ: 草原中高匹配区; Ⅲ: 草原-半荒漠中等匹配区; Ⅳ: 半荒漠中低匹配区; Ⅴ: 荒漠低匹配区。
Figure7.Regional characteristics of four ecosystem services in different matching degree zones of water, soil and heat resources in Central Asia
A: vegetation carbon sequestration; B: soil conservation; C: water supply and conservation; D: biodiversity conservation. Ⅰ: zone of forest steppe with high matching degree; Ⅱ: zone of steppe with middle to high matching degree; Ⅲ: zone of steppe semi-desert with middle matching degree; Ⅳ: zone of semi-desert with middle to low matching degree; Ⅴ: zone of desert with low matching degree.
下载: 全尺寸图片幻灯片
图8中亚不同水土热资源匹配度分区生态环境因子间Spearman秩相关分析结果(Slo: 坡度; NPP: 植被净初级生产力; P: 降水; Alt: 海拔; K: 土壤可蚀性因子; T: 气温; Fsi: 土壤渗流能力因子)
Figure8.Spearman's rank correlation of ecological and environmental factors among different matching degree zones of water, soil and heat resources in Central Asia (Slo: slope; NPP: net primary productivity; P: precipitation; Alt: altitude; K: soil erodibility factor; T: temperature; Fsi: soil permeability capacity factor)
下载: 全尺寸图片幻灯片
图9中亚地区生态系统服务值与气温(A1, B1, C1, D1)和降水量(A2, B2, C2, D2)的偏相关性
A: 植被固碳; B: 土壤保持; C: 水源供给与涵养; D: 生物多样性保护。NS: 相关不显著; SLN: 弱负相关; SLP: 弱正相关; SN: 强负相关; SP: 强正相关。GL: 草地; BL: 裸地; WB: 水体; UL: 城市。
Figure9.Partial correlation between ecosystem services values and temperature (A1, B1, C1, D1), as well as precipitation (A2, B2, C2, D2) in Central Asia
A: vegetation carbon sequestration; B: soil conservation; C: water supply and conservation; D: biodiversity conservation. NS: not significant correlation; SLN: slight negative correlation; SLP: slight positive correlation; SN: significant negative correlation; SP: significant positive correlation. GL: grassland; BL: bare land; WB: water body; UL: urban land.
下载: 全尺寸图片幻灯片
表1中亚各水土热资源匹配度子区生态系统服务及气候因子值
Table1.Ecosystem services and climate factors values of sub-regions with different matching degree of water, soil and heat resources in Central Asia
分区 Region | 匹配度分区结果 Sub-region of matching degree | 植被固碳 Vegetation carbon sequestration [g(C)·m-2] | 土壤保持 Soil conservation [g(C)·m-2] | 水源供给与涵养 Water supply and conservation [g(C)·m-2] | 生物多样性保护 Biodiversity conservation [g(C)·m-2] | 平均气温 Average temperature (℃) | 平均降水 Average precipitation (mm) |
森林-草原高匹配区 Zone of forest steppe with high matching degree (Ⅰ) | Ⅰ1哈萨克斯坦北部森林-草原固碳保土区 Zone of carbon sequestration and soil conservation of forest and grassland in northern Kazakhstan | 30.60 | 34.77 | 3.64 | 7.75 | 3.0 | 334.8 |
Ⅰ2阿尔泰山森林-草原固碳保土产水区 Zone of carbon sequestration, soil conservation and water supply of forest grassland in Altai Montane | 37.91 | 35.69 | 13.04 | 14.62 | 2.1 | 621.6 | |
Ⅰ3天山高山-山麓草原固碳保土产水区 Zone of carbon sequestration, soil conservation and water supply in Tianshan Montane and its foothill steppe | 33.06 | 32.12 | 19.70 | 15.84 | 4.4 | 698.8 | |
Ⅰ4天山森林-草原固碳保土产水区 Zone of carbon sequestration, soil conservation and water supply of forest and grassland in Tianshan Montane | 36.39 | 34.68 | 14.59 | 16.95 | 4.0 | 689.6 | |
Ⅰ5阿赖林地-高山草甸固碳保土产水区 Zone of carbon sequestration, soil conservation and water supply of woodlands and steppe in Alai | 28.52 | 29.91 | 8.78 | 22.23 | 12.5 | 605.2 | |
Ⅰ6吉萨尔-阿赖北部草地固碳保土区 Zone of carbon sequestration and soil conservation of steppe in northern Gissaro-Alai | 35.86 | 30.32 | 11.85 | 17.05 | 8.6 | 537.5 | |
Ⅰ7吉萨尔-阿赖南部草地固碳保土产水区Zone of carbon sequestration, soil conservation and water supply of grassland in southern Gissaro-Alai | 28.44 | 24.14 | 16.28 | 28.03 | 10.4 | 942.5 | |
草原中高匹配区 Zone of steppe with middle to high matching degree (Ⅱ) | Ⅱ1东欧大草原土壤保持区 Zone of soil conservation in Pontic steppe | 20.89 | 22.31 | 2.65 | 6.33 | 6.9 | 291.5 |
Ⅱ2哈萨克斯坦大草原北部土壤保持区 Zone of soil conservation in northern Kazakh steppe | 22.90 | 26.27 | 2.53 | 5.21 | 3.4 | 296.5 | |
Ⅱ3阿尔泰-天山山麓草原固碳区 Zone of carbon sequestration of foothill steppe in Altai and Tianshan Montane | 24.37 | 22.91 | 6.21 | 7.04 | 4.6 | 389.6 | |
Ⅱ4天山草原固碳区 Zone of carbon sequestration of steppe in Tianshan Montane | 23.79 | 21.94 | 7.08 | 11.31 | 7.5 | 580.6 | |
Ⅱ5吉萨尔-阿赖固碳区 Zone of carbon sequestration in Gissaro-Alai | 21.93 | 18.24 | 8.98 | 14.05 | 10.8 | 731.4 | |
草原-半荒漠中等匹配区 Zone of steppe semi-desert with middle matching degree (Ⅲ) | Ⅲ1哈萨克斯坦北部草地-半荒漠生态敏感区 Ecological sensitive zone of northern Kazakh steppe and semi-desert | 15.76 | 16.61 | 2.06 | 3.27 | 5.2 | 250.9 |
Ⅲ2准噶尔-阿尔泰半荒漠生态敏感区 Ecological sensitive zone of Junggar-Altai semi-desert | 16.78 | 17.00 | 3.07 | 4.13 | 3.7 | 344.0 | |
Ⅲ3中亚东南部草原-荒漠生态敏感区 Ecological sensitive zone of steppe and semi-desert in Southeast Central Asia | 16.02 | 13.93 | 3.74 | 5.88 | 8.3 | 461.1 | |
半荒漠中低匹配区 Zone of semi-desert with middle to low matching degree (Ⅳ) | Ⅳ1中亚中部半荒漠生态敏感区 Ecological sensitive zone of central semi-desert in Central Asia | 10.49 | 10.79 | 0.96 | 1.86 | 8.3 | 187.5 |
Ⅳ2天山高山草原草甸生态敏感区 Ecological sensitive zone of steppe and meadows in Tianshan Montane | 11.57 | 8.51 | 2.91 | 1.43 | -1.3 | 444.7 | |
Ⅳ3巴特赫兹-卡拉比尔半荒漠生态敏感区 Ecological sensitive zone of semi-desert in Badghyz and Karabil | 11.33 | 9.87 | 2.17 | 5.93 | 17.2 | 318.8 | |
荒漠低匹配区 Zone of desert with low matching degree (Ⅴ) | Ⅴ1中亚荒漠生态脆弱区 Ecological fragile zone of desert in Central Asia | 5.57 | 5.80 | 0.35 | 0.84 | 13.5 | 125.5 |
Ⅴ2巴尔喀什湖荒漠生态脆弱区 Ecological fragile zone of desert in Balkhash Lake | 7.83 | 7.48 | 0.63 | 1.20 | 8.4 | 165.9 | |
Ⅴ3帕米尔高原荒漠生态脆弱区 Ecological fragile zone of desert in Pamir | 7.19 | 4.60 | 3.10 | 1.52 | -4.7 | 614.9 |
下载: 导出CSV
参考文献
[1] | RINGLER C, BHADURI A, LAWFORD R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency?[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 617-624 doi: 10.1016/j.cosust.2013.11.002 |
[2] | 耿庆玲. 西北旱区农业水土资源利用分区及其匹配特征研究[D]. 杨凌: 中国科学院教育部水土保持与生态环境研究中心, 2014 GENG Q L. Research on zoning of agricultural water and land resources utilization and their matching characteristics in arid areas of northwest of China[D]. Yangling: Research Center for Eco-environments and Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Education, 2014 |
[3] | 刘彦随, 甘红, 张富刚. 中国东北地区农业水土资源匹配格局[J]. 地理学报, 2006, 61(8): 847-854 doi: 10.3321/j.issn:0375-5444.2006.08.007 LIU Y S, GAN H, ZHANG F G, et al. Analysis of the matching patterns of land and water resources in Northeast China[J]. Acta Geographica Sinica, 2006, 61(8): 847-854 doi: 10.3321/j.issn:0375-5444.2006.08.007 |
[4] | LIU D, LIU C L, FU Q, et al. Construction and application of a refined index for measuring the regional matching characteristics between water and land resources[J]. Ecological Indicators, 2018, 91: 203-211 doi: 10.1016/j.ecolind.2018.04.011 |
[5] | LI T T, LONG H L, ZHANG Y N, et al. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system[J]. Land Use Policy, 2017, 60: 26-36 doi: 10.1016/j.landusepol.2016.10.013 |
[6] | 张莹, 雷国平, 张弘强, 等. 微观尺度分析挠力河流域耕地利用水土资源匹配时空动态[J]. 农业工程学报, 2019, 35(8): 185-194 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908022.htm ZHANG Y, LEI G P, ZHANG H Q, et al. Spatiotemporal dynamics of land and water resources matching of cultivated land use based on micro scale in Naoli River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 185-194 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908022.htm |
[7] | 郭艳. 面向生态系统服务的水土资源优化配置研究——以郑州市为例[D]. 郑州: 郑州大学, 2016 GUO Y. The research of ecosystem service-oriented optimal allocation of land and water resources—A case study of Zhengzhou City[D]. Zhengzhou: Zhengzhou University, 2016 |
[8] | 刘焱序, 傅伯杰, 王帅, 等. 从生物地理区划到生态功能区划——全球生态区划研究进展[J]. 生态学报, 2017, 37(23): 7761-7768 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201723001.htm LIU Y X, FU B J, WANG S, et al. From biogeography to ecological function: Progress and prospect of global ecological regionalization research[J]. Acta Ecologica Sinica, 2017, 37(23): 7761-7768 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201723001.htm |
[9] | 闫雪, 孟德坤, 陈迪桃, 等. 基于生态系统服务的中亚水土热资源匹配度时空变化特征[J]. 应用生态学报, 2020, 31(3): 794-806 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003012.htm YAN X, MENG D K, CHEN D T, et al. Spatio-temporal characteristics of the matching degree of water, soil, and heat resources based on ecosystem services in Central Asia[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 794-806 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003012.htm |
[10] | 高江波, 黄姣, 李双成, 等. 中国自然地理区划研究的新进展与发展趋势[J]. 地理科学进展, 2010, 29(11): 1400-1407 doi: 10.11820/dlkxjz.2010.11.032 GAO J B, HUANG J, LI S C, et al. The new progresses and development trends in the research of physio-geographical regionalization in China[J]. Progress in Geography, 2010, 29(11): 1400-1407 doi: 10.11820/dlkxjz.2010.11.032 |
[11] | PARK Y S, CéRéGHINO R, COMPIN A, et al. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters[J]. Ecological Modelling, 2003, 160(3): 265-280 doi: 10.1016/S0304-3800(02)00258-2 |
[12] | GAO Y, FENG Z, WANG Y, et al. Clustering urban multifunctional landscapes using the self-organizing feature map neural network model[J]. Journal of Urban Planning and Development, 2014, 140(2): 05014001 doi: 10.1061/(ASCE)UP.1943-5444.0000170 |
[13] | PENG J, MA J, YUAN Y, et al. Integrated urban land-use zoning and associated spatial development: Case study in Shenzhen, China[J]. Journal of Urban Planning and Development, 2015, 141(4): 05014025 doi: 10.1061/(ASCE)UP.1943-5444.0000245 |
[14] | FEI D Q, CHENG Q, MAO X F, et al. Land use zoning using a coupled gridding-self-organizing feature maps method: A case study in China[J]. Journal of Cleaner Production, 2017, 161: 1162-1170 doi: 10.1016/j.jclepro.2017.05.028 |
[15] | 李慧蕾, 彭建, 胡熠娜, 等. 基于生态系统服务簇的内蒙古自治区生态功能分区[J]. 应用生态学报, 2017, 28(8): 2657-2666 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201708030.htm LI H L, PENG J, HU Y N, et al. Ecological function zoning in Inner Mongolia Autonomous Region based on ecosystem service bundles[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2657-2666 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201708030.htm |
[16] | 毛祺, 彭建, 刘焱序, 等. 耦合SOFM与SVM的生态功能分区方法——以鄂尔多斯市为例[J]. 地理学报, 2019, 74(3): 460-474 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903006.htm MAO Q, PENG J, LIU Y X, et al. An ecological function zoning approach coupling SOFM and SVM: A case study in Ordos[J]. Acta Geographica Sinica, 2019, 74(3): 460-474 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903006.htm |
[17] | PENG J, HU X X, QIU S J, et al. Multifunctional landscapes identification and associated development zoning in mountainous area[J]. Science of the Total Environment, 2019, 660: 765-775 doi: 10.1016/j.scitotenv.2019.01.023 |
[18] | 冯喆, 蒋洪强, 卢亚灵. 基于大数据方法和SOFM聚类的中国经济—环境综合分区研究[J]. 地理科学, 2019, 39(2): 242-251 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201902008.htm FENG Z, JIANG H Q, LU Y L. China's economic-environment comprehensive zoning based on big data method and SOFM clustering[J]. Scientia Geographica Sinica, 2019, 39(2): 242-251 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201902008.htm |
[19] | 黄姣, 高阳, 赵志强, 等. 基于GIS与SOFM网络的中国综合自然区划[J]. 地理研究, 2011, 30(9): 1648-1659 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201109008.htm HUANG J, GAO Y, ZHAO Z Q, et al. Comprehensive physiographic regionalization of China using GIS and SOFM neural network[J]. Geographical Research, 2011, 30(9): 1648-1659 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201109008.htm |
[20] | PETROV G N, NORMATOV I S. Conflict of interests between water users in the Central Asian region and possible ways to its elimination[J]. Water Resources, 2010, 37(1): 113-120 doi: 10.1134/S0097807810010112 |
[21] | YANG P, CHEN Y N. An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, Central Asia[J]. Quaternary International, 2015, 358: 106-112 doi: 10.1016/j.quaint.2014.09.077 |
[22] | LUO G P, AMUTI T, ZHU L, et al. Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-markov model[J]. Regional Environmental Change, 2014, 15(2): 277-289 doi: 10.1007/s10113-014-0638-4 |
[23] | SORG A, MOSELLO B, SHALPYKOVA G, et al. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia[J]. Environmental Science & Policy, 2014, 43: 68-77 http://www.sciencedirect.com/science/article/pii/S1462901113002463 |
[24] | 邓海军, 陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响[J]. 地理学报, 2018, 73(7): 1309-1323 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201807011.htm DENG H J, CHEN Y N. The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia[J]. Acta Geographica Sinica, 2018, 73(7): 1309-1323 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201807011.htm |
[25] | 邓铭江, 龙爱华. 中亚各国在咸海流域水资源问题上的冲突与合作[J]. 冰川冻土, 2011, 33(6): 1376-1390 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201106021.htm DENG M J, LONG A H. Water resources issue among the Central Asian countries around the Aral Sea: Conflict and cooperation[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1376-1390 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201106021.htm |
[26] | 姚海娇, 周宏飞, 苏风春. 从水土资源匹配关系看中亚地区水问题[J]. 干旱区研究, 2013, 30(3): 391-395 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201303001.htm YAO H J, ZHOU H F, SU F C. Water problems based on spatial matching patterns of water and land resources in Central Asia[J]. Arid Zone Research, 2013, 30(3): 391-395 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201303001.htm |
[27] | 何理, 王喻宣, 尹方平, 等. 全球气候变化影响下中亚水土资源与农业发展多元匹配特征研究[J]. 中国科学: 地球科学, 2020, 50(9): 1268-1279 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009009.htm HE L, WANG Y X, YIN F P, et al. The multivariate matching properties among water and soil resources and agricultural development in Central Asia under global climate change[J]. Scientia Sinica Terrae, 2020, 50(9): 1268-1279 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009009.htm |
[28] | WEI S G, DAI Y J, DUAN Q Y, et al. A global soil data set for earth system modeling[J]. Journal of Advances in Modeling Earth Systems, 2014, 6(1): 249-263 doi: 10.1002/2013MS000293 |
[29] | DE GROOT R S, WILSON M A, BOUMANS R M J. A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics, 2002, 41(3): 393-408 doi: 10.1016/S0921-8009(02)00089-7 |
[30] | PAULA B M, OSCAR M N. Land-use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina[J]. Agriculture, Ecosystems & Environment, 2012, 154: 34-43 http://www.sciencedirect.com/science/article/pii/S0167880911002490 |
[31] | CARRE?O L, FRANK F C, VIGLIZZO E F. Tradeoffs between economic and ecosystem services in Argentina during 50 years of land-use change[J]. Agriculture, Ecosystems & Environment, 2012, 154: 68-77 http://www.sciencedirect.com/science/article/pii/S0167880911001745 |
[32] | 张立伟, 傅伯杰, 吕一河, 等. 基于综合指标法的中国生态系统服务保护有效性评价研究[J]. 地理学报, 2016, 71(5): 768-780 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201605007.htm ZHANG L W, FU B J, Lü Y H, et al. The using of composite indicators to assess the conservational effectiveness of ecosystem services in China[J]. Acta Geographica Sinica, 2016, 71(5): 768-780 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201605007.htm |
[33] | 陈峰, 李红波, 张安录. 基于生态系统服务的中国陆地生态风险评价[J]. 地理学报, 2019, 74(3): 432-445 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903004.htm CHEN F, LI H B, ZHANG A L. Ecological risk assessment based on terrestrial ecosystem services in China[J]. Acta Geographica Sinica, 2019, 74(3): 432-445 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903004.htm |
[34] | 欧阳志云, 王如松, 赵景柱. 生态系统服务功能及其生态经济价值评价[J]. 应用生态学报, 1999, 10(5): 635-639 doi: 10.3321/j.issn:1001-9332.1999.05.034 OUYANG Z Y, WANG R S, ZHAO J Z. Ecosystem services and their economic valuation[J]. Chinese Journal of Applied Ecology, 1999, 10(5): 635-639 doi: 10.3321/j.issn:1001-9332.1999.05.034 |
[35] | IRISARRI J G N, OESTERHELD M, PARUELO J M, et al. Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach[J]. Journal of Vegetation Science, 2012, 23(1): 114-126 doi: 10.1111/j.1654-1103.2011.01326.x |
[36] | 余新晓, 吴岚, 饶良懿, 等. 水土保持生态服务功能评价方法[J]. 中国水土保持科学, 2007, 5(2): 110-113 doi: 10.3969/j.issn.1672-3007.2007.02.021 YU X X, WU L, RAO L Y, et al. Assessment methods of ecological functions of soil and water conservation measures[J]. Science of Soil and Water Conservation, 2007, 5(2): 110-113 doi: 10.3969/j.issn.1672-3007.2007.02.021 |
[37] | SIDLE R C, ZIEGLER A D, NEGISHI J N, et al. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia[J]. Forest Ecology and Management, 2006, 224(1/2): 199-225 http://www.cabdirect.org/abstracts/20063113622.html |
[38] | SANNIGRAHI S, ZHANG Q, JOSHI P K, et al. Examining effects of climate change and land use dynamic on biophysical and economic values of ecosystem services of a natural reserve region[J]. Journal of Cleaner Production, 2020, 257: 120424 doi: 10.1016/j.jclepro.2020.120424 |
[39] | POSTEL S L, THOMPSON JR B H. Watershed protection: Capturing the benefits of nature's water supply services[J]. Natural Resources Forum, 2005, 29(2): 98-108 doi: 10.1111/j.1477-8947.2005.00119.x |
[40] | 严恩萍, 林辉, 党永峰, 等. 2000—2012年京津风沙源治理区植被覆盖时空演变特征[J]. 生态学报, 2014, 34(17): 5007-5020 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201417024.htm YAN E P, LIN H, DANG Y F, et al. The spatiotemporal changes of vegetation cover in Beijing-Tianjin sandstorm source control region during 2000-2012[J]. Acta Ecologica Sinica, 2014, 34(17): 5007-5020 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201417024.htm |
[41] | KOHONEN T. Self-organizing neural projections[J]. Neural Networks, 2006, 19(6/7): 723-733 http://www.sciencedirect.com/science/article/pii/S0893608006000645 |
[42] | KOHONEN T. Essentials of the self-organizing map[J]. Neural Networks, 2013, 37: 52-65 doi: 10.1016/j.neunet.2012.09.018 |
[43] | KENNEDY J, EBERHART R C. Particle swarm optimization[J]. IEEE International Conference on Neural Networks, 1995, 4: 1942-1948 |
[44] | 吕强, 俞金寿. 基于粒子群优化的自组织特征映射神经网络及应用[J]. 控制与决策, 2005, 20(10): 1115-1119 doi: 10.3321/j.issn:1001-0920.2005.10.007 LYU Q, YU J S. Self-organizing feature map neural network based on particle swarm optimizer and its application[J]. Control and Decision, 2005, 20(10): 1115-1119 doi: 10.3321/j.issn:1001-0920.2005.10.007 |
[45] | BAILEY R G. Identifying ecoregion boundaries[J]. Environmental Management, 2005, 34(S1): S14-S26 |
[46] | GAUTHEIR T D. Detecting trends using spearman's rank correlation coefficient[J]. Environmental Forensics, 2001, 2(4): 359-362 doi: 10.1080/713848278 |
[47] | LIU C Y, DONG X F, LIU Y Y. Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China[J]. CATENA, 2015, 125: 190-199 doi: 10.1016/j.catena.2014.10.027 |
[48] | JIAO L, AN W M, LI Z S, et al. Regional variation in soil water and vegetation characteristics in the Chinese Loess Plateau[J]. Ecological Indicators, 2020, 115: 106399 doi: 10.1016/j.ecolind.2020.106399 |
[49] | FAO (Food and Agriculture Organization of the United Nations). Soil permeability[EB/OL]. Rome: FAO.[2020-05-04]. http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e09.htm |
[50] | CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752-756 doi: 10.1038/nature11688 |
[51] | 何楷迪, 孙建, 陈秋计. 气候要素和土壤质地对青藏高原草地净初级生产力和降水利用率的影响[J]. 草业科学, 2019, 36(4): 1053-1065 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201904013.htm HE K D, SUN J, CHEN Q J. Response of climate and soil texture to net primary productivity and precipitation-use efficiency in the Tibetan Plateau[J]. Pratacultural Science, 2019, 36(4): 1053-1065 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201904013.htm |
[52] | SUN J, DU W P. Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China's grasslands[J]. GIScience & Remote Sensing, 2017, 54(6): 881-897 doi: 10.1080/15481603.2017.1351147 |
[53] | 胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3): 1498-1507 doi: 10.3321/j.issn:1000-0933.2009.03.048 HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency: A review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498-1507 doi: 10.3321/j.issn:1000-0933.2009.03.048 |
[54] | ZHANG Y W, DENG L, YAN W M, et al. Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China[J]. CATENA, 2016, 137: 52-60 doi: 10.1016/j.catena.2015.08.016 |
[55] | HUXMAN T E, SNYDER K A, TISSUE D, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems[J]. Oecologia, 2004, 141(2): 254-268 doi: 10.1007/s00442-004-1682-4 |
[56] | FU Q, LI B, HOU Y, et al. Effects of land use and climate change on ecosystem services in Central Asia's arid regions: A case study in Altay Prefecture, China[J]. Science of the Total Environment, 2017, 607/608: 633-646 doi: 10.1016/j.scitotenv.2017.06.241 |
[57] | 杨胜天, 于心怡, 丁建丽, 等. 中亚地区水问题研究综述[J]. 地理学报, 2017, 72(1): 79-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701008.htm YANG S T, YU X Y, DING J L, et al. A review of water issues research in Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 79-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701008.htm |
[58] | QIU L, WEI X R, ZHANG X C, et al. Soil organic carbon losses due to land use change in a semiarid grassland[J]. Plant and Soil, 2012, 355(1/2): 299-309 doi: 10.1007%2Fs11104-011-1099-x |
[59] | PEREIRA L S, PAREDES P, CHOLPANKULOV E D, et al. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia[J]. Agricultural Water Management, 2009, 96(5): 723-735 doi: 10.1016/j.agwat.2008.10.013 |
[60] | CHEN X, BAI J, LI X Y, et al. Changes in land use/land cover and ecosystem services in Central Asia during 1990-2009[J]. Current Opinion in Environmental Sustainability, 2013, 5(1): 116-127 doi: 10.1016/j.cosust.2012.12.005 |
[61] | LOVELAND T R, MERCHANT J M. Ecoregions and ecoregionalization: Geographical and ecological perspectives[J]. Environmental Management, 2004, 34(Suppl 1): S1-S13 doi: 10.1007/s00267-003-5181-x |