删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

气候变化对安徽省两熟制粮食作物物候期及周年气候资源分配与利用的影响

本站小编 Free考研考试/2022-01-01

阮新民1,,,
陈曦2,
岳伟2,
占新春1,
从夕汉1,
杜弘杨1,
施伏芝1,
罗志祥1
1.安徽省农业科学院水稻研究所 合肥 230031
2.安徽省农业气象中心 合肥 230031
基金项目: 国家重点研发计划项目2017YFD0301304

详细信息
作者简介:阮新民, 主要研究方向为水稻遗传育种与资源高效利用生理生态。E-mail: rxinmin@126.com
中图分类号:S344.13

计量

文章访问数:195
HTML全文浏览量:7
PDF下载量:93
被引次数:0
出版历程

收稿日期:2020-06-16
录用日期:2020-10-20
刊出日期:2021-02-01

Effects of climate change on phenophases and annual climate resources distribution and utilization of major food crops under a double-cropping system in Anhui Province

RUAN Xinmin1,,,
CHEN Xi2,
YUE Wei2,
ZHAN Xinchun1,
CONG Xihan1,
DU Hongyang1,
SHI Fuzhi1,
LUO Zhixiang1
1. Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
2. Anhui Agricultural Meteorological Center, Hefei 230031, China
Funds: the National Key Research and Development Program of China2017YFD0301304

More Information
Corresponding author:RUAN Xinmin, E-mail: rxinmin@126.com


摘要
HTML全文
(2)(6)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了进一步明确江淮区域气候变化对两熟制粮食作物物候期及周年光温水资源分配与利用的影响,以安徽省12个农业气象观察站1992-2013年气象数据、作物生长发育期数据与产量数据为基础,采用线性趋势、相关分析、回归分析等方法,分析不同区域不同熟制作物物侯期变化趋势,以及气候变化对积温、辐射和降水资源分配与利用的影响。结果表明,1992-2013年沿淮淮北冬小麦-大豆种植模式,冬小麦播种期提前趋势显著(P < 0.05),平均每10 a提前3.03 d,成熟期变化不显著,全生育期平均每10 a增加3.54 d;大豆播种期和开花期则显著推迟(P < 0.05),平均每10 a推迟3.06 d和0.86 d,全生育期平均每10 a减少3.65 d。江淮冬小麦-一季稻模式,水稻播种期、抽穗期和成熟期均显著提前(P < 0.05),平均每10 a分别提前5.12 d、3.87 d和2.92 d,全生育增加2.2 d;小麦有同样的变化趋势,全生育期表现为每10 a缩短0.8 d。沿江江南双季早稻物候期变化不明显,全生育期每10 a缩短0.6 d;晚稻平均每10 a播种期推迟1.14 d,抽穗期与成熟期分别提前0.71 d和6.85 d,成熟期提前趋势显著(P < 0.01),全生育期每10 a缩短5.17 d。沿淮淮北冬小麦与江淮一季稻以及沿江早稻和晚稻生长季积温呈增加趋势,大豆与江淮冬小麦积温减少。沿淮淮北与江淮冬小麦及沿江早稻和晚稻生长季辐射呈增加趋势,大豆与一季稻则表现为减少。不同种植模式第1季作物冬小麦和早稻的降水均有减少趋势,而第2季作物大豆、一季稻和晚稻则呈增加趋势。冬小麦-一季稻种植模式周年光温水生产效率最高。线性回归分析表明,积温和辐射与沿淮淮北冬小麦和沿江双季稻的产量均呈显著线性正相关(P < 0.05),光温是提高其产量的主要限制因子。江淮一季稻积温过高和降水过多也限制产量提升。气候变化改变了两熟制粮食作物物侯期,进一步影响了光温水气候资源的分配与利用效率。通过改良品种、改变播栽时间、提高抗逆性等适应措施,可以在一定程度上抵消气候变化对作物生长的不利影响。
关键词:江淮区域/
两熟制/
物候期/
产量/
气候资源/
资源分配特征/
资源利用效率
Abstract:To examine the effects of climate change on the phenophases and annual climate resources distribution and utilization of major food crops under a double-cropping system in Anhui Province, this study analyzed variations in the phenophases of different cropping systems in different regions and the effects of climate change on distribution and utilization of accumulated temperature, radiation, and precipitation. The analyses included linear fitting, correlation analysis, and regression analysis and incorporated data of the daily average temperature, daily sunshine hours, and daily precipitation from 1992 to 2013 of twelve meteorological stations in the Jianghuai area. The results showed that the sowing date of winter wheat was significantly advanced (P < 0.05) by 3.03 days (d) per decade, on average, under the double-cropping system of winter wheat-soybean in the area along Huaihe River from 1992 to 2013. Changes in the maturity stage of winter wheat were not significant, but the average increase in the whole growth period was 3.54 d per decade. The soybean sowing date and flowering date were significantly delayed (P < 0.05) by 3.06 and 0.86 d per decade, respectively, and the average decrease in the whole growth period was 3.65 d per decade. For the double-cropping system of winter wheat-single rice in the Jianghuai region, the sowing date, heading date, and maturation date of rice were significantly advanced (P < 0.05) by 5.12, 3.87, and 2.92 d per decade, respectively; and the whole growth period increased by 2.20 d per decade Wheat showed the same trends as rice, though non-significant, and the whole growth period was shortened by 0.8 d per decade. For the double cropping rice, the change in phenophases for early rice was non-significant, and the whole growth period was shortened by 0.6 d per decade, on average. The sowing date of late rice was delayed by 1.14 d per decade, on average, whereas the heading date and maturation date were advanced by 0.71 and 6.85 d per decade, respectively. The advance of the maturation date was extremely significant (P < 0.01). The whole growth period of late rice was shortened by 5.17 d per decade. The accumulative temperature increased for winter wheat in Huaibei, single rice in Jianghuai, and double rice along the Yangtze River but decreased for soybean and winter wheat in Jianghuai. The radiation of winter wheat, early rice, and late rice increased, whereas that of soybean and single rice decreased. The precipitation of the first-season crops decreased, but that of the second-season crops increased. The climatic productivity of winter wheat-single rice planting patterns was the highest of all cropping systems. Linear regression analysis showed that the accumulative temperature and radiation were significantly positively correlated with the yield of double-cropping rice and winter wheat in Huaibei (P < 0.05), and radiation and temperature were the main limiting factors for further improvements to its production. Excessive temperature and precipitation of single-season rice in the Jianghuai region also limited yield improvements. Climate change has affected the phenophases of crops in double-cropping systems and influenced the allocation and utilization efficiency of climate resources. The adverse effects of climate change on crops can be offset by improving the varieties, changing the sowing dates, and enhancing stress tolerance.
Key words:Jianghuai region/
Double cropping system/
Crop phenophases/
Yield/
Climatic resources/
Resource distribution/
Resource use efficiency

HTML全文


图1安徽省农业气象站点分布图
Figure1.Distribution map of agrometeorological observation stations in Anhui Province


下载: 全尺寸图片幻灯片


图2安徽省不同区域作物产量与气象因子的关系
Figure2.Relationship between crop yield and climatic factors in different regions in Anhui Province


下载: 全尺寸图片幻灯片

表1安徽省不同地区种植模式平均播种/收获期与1992—2013年变化特征
Table1.Average sowing/harvest period and variation characteristics from 1992 to 2013 of different planting patterns in different regions in Anhui Province
地区
Region
种植模式
Cropping system
地点
Station
播种期Seeding time抽穗/开花期Heading time成熟期Maturation全生育期
Growth duration (d)
范围
Range
平均值
Mean
变化趋势
Temporal trend [d?(10a)?1]
范围
Range
平均值Mean变化趋势
Temporal trend [d?(10a)?1]
范围
Range
平均值
Mean
变化趋势
Temporal trend [d?(10a)?1]
沿淮淮北
Area along and in north of Huaihe River
冬小麦-大豆
Winter wheat-soybean
亳州
Bozhou
10-02~10-2610-15?4.58s04-10~04-1904-19?0.8ns05-21~06-0805-312.97ns228
06-07~07-0106-185.94ns07-2709-11~10-1609-280.29ns102
蒙城
Mengcheng
10-15~11-1610-256.65s04-05~04-2604-1505-18~06-0205-270.20ns213
06-01~07-0506-142.03ns07-10~08-0907-241.49 ns09-06~10-0609-224.93s100
宿县
Suxian
10-09~11-0810-21?3.60ns04-09~04-2904-19?0.99ns05-26~06-1005-310.66ns222
06-10~06-2806-190.68ns07-18~08-1207-31?4.75ns09-14~10-0409-260.98ns100
凤阳
Fengyang
10-14~12-0810-31?10.26ns04-08~04-3004-17?2.19ns05-25~06-1005-300.05ns216
06-08~06-2906-165.40ns07-18~08-1107-265.00s09-13~10-0409-242.67ns100
江淮
Yangtze-Huaihe River
冬小麦-一季稻
Winter wheat-single season rice
寿县Souxian10-16~11-1410-24?2.48ns04-03~05-0204-14?4.01s05-22~06-0405-27?2.20s215
05-07~05-1105-08?0.58ns08-08~08-2408-16?0.05ns09-14~10-0609-21?1.18ns135
天长
Tianchang
10-18~11-0310-27?1.36ns04-06~04-2404-153.10ns05-29~06-0405-310.71ns216
04-15~04-2904-2110.18s08-05~08-1508-09?1.14ns09-13~09-2609-21?1.41ns153
滁州
Chuzhou
10-14~11-0410-250.24ns04-08~04-2804-14?1.08ns05-25~06-0905-300.50ns216
04-09~05-1604-27?10.90s07-30~08-2908-15?3.46ns09-05~10-0909-23?1.73ns149
合肥
Hefei
10-14~11-1010-28?0.39ns03-20~04-2704-11?0.38ns05-12~06-0605-24?5.97s209
05-04~05-1605-08?0.98ns08-10~09-0108-18?3.77s09-12~10-0809-22?5.85s136
沿江江南
Area along and in south of Yangtze River
双季稻
Double cropping rice
桐城
Tongcheng
04-01~04-0704-04?0.51ns06-16~06-3006-230.48ns07-16~07-2407-19?0.23ns106
06-18~06-2806-200.72ns09-10~09-2409-180.87ns10-20~11-0910-28?8.51s130
东至
Dongzhi
03-30~04-0104-013.43ns06-26~06-2706-262.29s07-17~07-2507-19?1.07ns109
06-21~06-2206-21?2.35s09-07~09-1709-10?4.27ns10-16~10-2010-18?2.14ns118
宿松
Susong
04-05~04-1104-08?2.50ns06-26~07-0306-275.27s07-16~07-2407-196.69s102
06-11~06-1806-155.49s09-05~09-2009-148.24ns10-11~10-2010-162.20ns124
宣城
Xuancheng
04-05~04-1804-13?4.33ns06-18~07-0606-27?0.89ns07-15~07-2807-21?3.77s100
06-18~07-0406-262.30ns09-07~09-2309-130.12ns10-08~10-3010-20?3.77s116
均值
Mean
冬小麦-大豆
Winter wheat-soybean
沿淮淮北
Along Huaihe River
10-02~12-0810-22?3.03s04-05~04-3004-18?1.11ns05-18~06-1005-300.51ns220
06-01~07-0506-183.06s07-10~08-1207-270.86s09-06~10-1609-26?0.59ns100
冬小麦-一季稻
Winter wheat-singleseason rice
江淮
Yangtze River
10-14~11-1410-26?0.80ns03-20~05-0204-14?1.22ns05-12~06-0905-28?1.60ns214
04-09~05-1605-02?5.12s07-30~09-0108-17?3.87s09-05~10-0909-22?2.92s143
双季稻
Double cropping rice
沿江江南
Along Yangtze River
03-30~04-1804-080.75ns06-16~07-0606-260.87ns07-15~07-2807-20?1.35ns103
06-11~07-0406-221.14ns09-05~09-2409-15?0.71ns10-08~11-0910-23?6.85s123
s: 趋势显著; ns: 趋势不显著。s: trends are significant at P < 0.05 level; ns: trends are not significant at P < 0.05 level.


下载: 导出CSV
表2安徽省不同地区种植模式积温特征与分配及1992—2013年变化趋势
Table2.Active accumulated temperature and change characteristics from 1992 to 2013 and distribution of different planting patterns in different regions in Anhui Province
种植季
Cropping season
指标
Index
沿淮淮北
Area along and in north of Huaihe River
江淮
Yangtze-Huaihe River
沿江江南
Area along and in south of Yangtze River
冬小麦-大豆
Winter wheat-soybean
冬小麦-一季稻
Winter wheat-single season rice
双季稻
Double cropping rice
第1季
First season
平均值Mean (℃?d)1603.5a1602.3a1424.0b
范围Range (℃?d)1412.2~1822.91371.6~1899.81132.9~1610.8
变化趋势Temporal trend [℃?d?(10a)?1]4.83ns?3.28ns12.64s
分配率Distribution rate (%)38.130.723.0
第2季
Second season
平均值Mean (℃?d)2607.3b3637.9a2441.2c
范围Range (℃?d)2207.9~2957.13171.3~4017.42180.6~2619.8
变化趋势Temporal trend [℃?d?(10a)?1]?8.29s4.00ns22.33s
分配率Distribution rate (%)61.969.739.6
周年
Annual
平均值Mean (℃?d)4210.8c5221.8b6176.4a
范围Range (℃?d)3637.1~4685.34791.2~ 5883.15507.0~6656.1
变化趋势Temporal trend [℃?d?(10a)?1]?3.46ns?17.63s17.12ns
两季比First season/second season0.620.440.59
s: 趋势显著; ns: 趋势不显著。不同小写字母表示各地区平均有效积温在P < 0.05水平差异显著。s: trends are significant at P < 0.05 level; ns: trends are not significant at P < 0.05 level. Mean values of active accumulated temperature of different regions followed by different letters are significantly different at a P < 0.05 level.


下载: 导出CSV
表3安徽省不同地区种植模式辐射特征与分配及1992—2013年变化趋势
Table3.and distribution of different planting patterns in different regions in Anhui Province
种植季
Cropping season
指标
Index
沿淮淮北
Area along and in north of Huaihe River
江淮
Yangtze-Huaihe River
沿江江南
Area along and in south of Yangtze River
冬小麦-大豆
Winter wheat-soybean
冬小麦-一季稻
Winter wheat-single season rice
双季稻
Double cropping rice
第1季
First season
平均值Mean (MJ?m?2)2303.0a2135.5a1820.2b
范围Range (MJ?m?2)1999.0~2628.11630.9~2435.51571.8~2096.0
变化趋势Temporal trend [MJ?m?2?(10a)?1]2.45ns9.45s11.50ns
分配率Distribution rate (%)57.645.435.0
第2季
Second season
平均值Mean (MJ?m?2)1693.8c2444.9a2001.5b
范围Range (MJ?m?2)1309.3~2280.02038.6~2876.31603.2~2347.0
变化趋势Temporal trend [MJ?m?2?(10a)?1]?24.4s?0.72ns11.50ns
分配率Distribution rate (%)42.452.038.5
周年
Annual
平均值Mean (MJ?m?2)3996.8 c4700.4 b5214.1 a
范围Range (MJ?m?2)3454.1~4785.53982.1~5451.94363.6~5787.5
变化趋势Temporal trend [MJ?m?2?(10a)?1]?21.96s?12.52ns?7.13ns
两季比First season/second season1.360.880.91
s: 趋势显著; ns: 趋势不显著。不同小写字母表示各地区平均辐射在P < 0.05水平差异显著。s: trends are significant at P < 0.05 level; ns: trends are not significant at P < 0.05 level. Mean values of radiation of different regions followed by different letters are significantly different at a P < 0.05 level.


下载: 导出CSV
表4安徽省不同地区种植模式降水特征与分配及1992—2013年变化趋势
Table4.Precipitation and change characteristics from 1992 to 2013 and distribution of different planting patterns in different regions in Anhui Province
种植季
Cropping season
指标
Index
沿淮淮北
Area along and in north of Huaihe River
江淮
Yangtze-Huaihe River
沿江江南
Area along and in south of Yangtze River
冬小麦-大豆
Winter wheat-soybean
冬小麦-一季稻
Winter wheat-single season rice
双季稻
Double cropping rice
第1季
First season
平均值Mean (mm)202.3c284.0b453.4a
范围Range (mm)84.1~456.7115.9~602.8149.6~627.9
变化趋势Temporal trend [mm?(10a)?1]?3.52ns?5.35ns?7.76ns
分配率Distribution rate (%)26.930.233.5
第2季
Second season
平均值Mean (mm)547.3a640.0a640.9a
范围Range (mm)188.6~1062.3214.5~1104.5391.4~843.8
变化趋势Temporal trend [mm?(10a)?1]4.47ns4.89ns2.67ns
分配率Distribution rate (%)73.168.047.4
周年
Annual
平均值Mean (mm)749.6 c941.0 b1352.4 a
范围Range (mm)328.8~1313.6462.6~1572.91140.0~1743.8
变化趋势Temporal trend [mm?(10a)?1]0.95ns?2.22ns0.67ns
两季比First season/second season0.370.450.71
ns: 趋势不显著。不同小写字母表示各地区平均降水在P < 0.05水平差异显著。ns: trends are not significant at P < 0.05 level. Mean values of precipitation of different regions followed by different letters are significantly different at a P < 0.05 level.


下载: 导出CSV
表5安徽不同区域种植模式产量与光温水资源相关分析
Table5.Correlation analysis between yield and meteorological factors in different regions in Anhui Province
气象因子
Meteorological factor
产量Yield
沿淮淮北
Area along and in north of Huaihe River
江淮
Yangtze-Huaihe River
沿江江南
Area along and in south of Yangtze River
冬小麦Winter wheat大豆Soybean冬小麦Winter wheat一季稻Single season rice早稻Early rice双季晚稻Late rice
积温
Active accumulated temperature
0.297*?0.082?0.224?0.426*0.2400.599**
辐射Radiation0.266*0.085?0.055?0.025?0.0960.439*
降水Precipitation?0.157?0.203?0.140?0.436*0.1630.043
*和**分别表示在P < 0.05和P < 0.01水平上显著相关。*, ** mean significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表6安徽省不同地区种植模式光温水资源生产效率
Table6.Production efficiencies of accumulated temperature (AT), radiation and precipitation of different planting patterns in different regions in Anhui Province
指标
Index
种植季
Cropping season
沿淮淮北
Area along and in north of Huaihe River
江淮
Yangtze-Huaihe River
沿江江南
Area along and in south of Yangtze River
冬小麦-大豆
Winter wheat-soybean
冬小麦-一季稻
Winter wheat-single season rice
双季稻
Double cropping rice
积温生产效率
Production efficiency of AT (kg?hm?2?℃?1)
第1季First season3.53a3.65a2.47b
第2季Second season0.94b2.10a2.12a
周年Annual1.91b2.61a2.02ab
光能生产效率
Production efficiency of radiation (g?MJ?1)
第1季First season0.25a0.27a0.33s
第2季Second season0.15b0.32a0.33a
周年Annual0.21b0.29a0.24ab
降水生产效率
Production efficiency of precipitation (kg?hm?2?mm?1)
第1季First season34.2a25.8a9.9b
第2季Second season4.8b12.7a12.8b
周年Annual11.4ab15.3a9.8b
不同小写字母表示同一指标同一季各地区间在P < 0.05水平差异显著。Different letters mean significant differences among different regions for the same index in the same cropping season at P < 0.05 level.


下载: 导出CSV

参考文献(32)
[1]赵彦茜, 肖登攀, 唐建昭, 等. 气候变化对我国主要粮食作物产量的影响及适应措施[J]. 水土保持研究, 2019, 26(6): 317-326 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201906048.htm
ZHAO Y X, XIAO D P, TANG J Z, et al. Effects of climate change on the yield of major grain crops and its adaptation measures in China[J]. Research of Soil and Water Conservation, 2019, 26(6): 317-326 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201906048.htm
[2]NAGAHAMA A, KUBOTA Y, SATAKE A. Climate warming shortens flowering duration: A comprehensive assessment of plant phenological responses based on gene expression analyses and mathematical modeling[J]. Ecological Research, 2018, 33(5): 1059-1068 doi: 10.1007/s11284-018-1625-x
[3]张玉芳, 庞艳梅, 刘琰琰, 等. 近50年四川省水稻生产潜力变化特征分析[J]. 中国生态农业学报, 2014, 22(7): 813-820 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014709&flag=1
ZHANG Y F, PANG Y M, LIU Y Y, et al. Potential productivity of rice in Sichuan Province in recent five decades[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7): 813-820 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014709&flag=1
[4]李克南, 杨晓光, 慕臣英, 等. 全球气候变暖对中国种植制度可能影响Ⅷ——气候变化对中国冬小麦冬春性品种种植界限的影响[J]. 中国农业科学, 2013, 46(8): 1583-1594 doi: 10.3864/j.issn.0578-1752.2013.08.007
LI K N, YANG X G, MU C Y, et al. The possible effects of global warming on cropping systems in China Ⅷ—The effects of climate change on planting boundaries of different winter-spring varieties of winter wheat in China[J]. Scientia Agricultura Sinica, 2013, 46(8): 1583-1594 doi: 10.3864/j.issn.0578-1752.2013.08.007
[5]刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202001003.htm
LIU Y J, GE Q S, DAI J H. Research progress in crop phenology under global climate change[J]. Acta Geographica Sinica, 2020, 75(1): 14-24 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202001003.htm
[6]张宸赫, 王琳, 赵天良, 等. 气候变暖背景下中国冬小麦物候期的时空特征[J]. 江苏农业科学, 2016, 44(4): 448-452 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201604126.htm
ZHANG C H, WANG L, ZHAO T L, et al. Temporal and spatial characteristics of China's winter wheat phenological period under background of climate warming[J]. Jiangsu Agricultural Science, 2016, 44(4): 448-452 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201604126.htm
[7]崔读昌. 气候变暖对水稻生育期影响的情景分析[J]. 应用气象学报, 1995, 6(3): 361-365 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX503.014.htm
CUI D C. The scenario analysis of possible effect of warming climate on rice growing period[J]. Quarterly Journal of Applied Meteorology, 1995, 6(3): 361-365 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX503.014.htm
[8]雷秋良, 徐建文, 姜帅, 等. 气候变化对中国主要作物生育期的影响研究进展[J]. 中国农学通报, 2014, 30(11): 205-209 doi: 10.11924/j.issn.1000-6850.2013-1328
LEI Q L, XU J W, JIANG S, et al. The knowledge of climate change impacts on growth durations of major crops in China[J]. Chinese Agricultural Science Bulletin, 2014, 30(11): 205-209 doi: 10.11924/j.issn.1000-6850.2013-1328
[9]习敏, 杜祥备, 吴文革, 等. 稻麦两熟系统适期晚播对周年产量和资源利用效率的影响[J]. 应用生态学报, 2020, 31(1): 165-172 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202001022.htm
XI M, DU X B, WU W G, et al. Effects of late sowing of two season crops on annual yield and resource use efficiency in rice-wheat double cropping system[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 165-172 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202001022.htm
[10]杜祥备, 孔令聪, 习敏, 等. 江淮区域稻麦两熟制周年资源分配、利用特征[J]. 中国生态农业学报(中英文), 2019, 27(7): 1078-1087 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0710&flag=1
DU X B, KONG L C, XI M, et al. Characteristics of resource allocation and utilization of rice-wheat double cropping system in the Jianghuai Area[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1078-1087 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0710&flag=1
[11]周宝元, 马玮, 孙雪芳, 等. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201904011.htm
ZHOU B Y, MA W, SUN X F, et al. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system[J]. Acta Agronomica Sinica, 2019, 45(4): 589-600 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201904011.htm
[12]郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1-11 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201501001.htm
GUO J P. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1-11 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201501001.htm
[13]高辉明, 张正斌, 徐萍, 等. 2001—2009年中国北部冬小麦生育期和产量变化[J]. 中国农业科学, 2013, 46(11): 2201-2210 doi: 10.3864/j.issn.0578-1752.2013.11.003
GAO H M, ZHANG Z B, XU P, et al. Changes of winter wheat growth period and yield in northern China from 2001-2009[J]. Scientia Agricultura Sinica, 2013, 46(11): 2201-2210 doi: 10.3864/j.issn.0578-1752.2013.11.003
[14]王胜, 徐敏, 宋阿伟, 等. 1961—2012年安徽省24节气气候变化及冬小麦和一季稻物候期的响应[J]. 生态学杂志, 2013, 32(9): 2390-2397 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201309022.htm
WANG S, XU M, SONG A W, et al. Climate changes in 24 solar terms and responses of winter wheat and single-season rice phenophases in Anhui Province of East China in 1961-2012[J]. Chinese Journal of Ecology, 2013, 32(9): 2390-2397 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201309022.htm
[15]唐晓培, 宋妮, 陈智芳, 等. 黄淮海地区冬小麦种植北界时空演变及未来趋势分析[J]. 农业工程学报, 2019, 35(9): 129-137 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201909016.htm
TANG X P, SONG N, CHEN Z F, et al. Spatial-temporal distribution and change trend of northern limit of winter wheat planting in Huang-Huai-Hai Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 129-137 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201909016.htm
[16]李德, 杨太明, 张学贤. 气候变暖背景下宿州冬小麦适播期的确定[J]. 中国农业气象, 2012, 33(2): 254-258 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201202017.htm
LI D, YANG T M, ZHANG X X. Determination of optimum sowing date of winter wheat in Suzhou under global warming[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 254-258 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201202017.htm
[17]HU X Y, HUANG Y, SUN W J, et al. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s[J]. Agricultural and Forest Meteorology, 2017, 247: 34-41 doi: 10.1016/j.agrformet.2017.07.014
[18]AHMAD S, ABBAS G, AHMED M, et al. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan[J]. Field Crops Research, 2019, 230: 46-61 doi: 10.1016/j.fcr.2018.10.008
[19]曾凯, 周玉, 宋忠华. 气候变暖对江南双季稻灌浆期的影响及其观测规范探讨[J]. 气象, 2011, 37(4): 468-473 doi: 10.3969/j.issn.1671-6345.2011.04.012
ZENG K, ZHOU Y, SONG Z H. Effects of climatic warming on the date of grain filling of rice in the south of Yangtze River and its monitoring regulation[J]. Meteorological Monthly, 2011, 37(4): 468-473 doi: 10.3969/j.issn.1671-6345.2011.04.012
[20]赵彦茜, 肖登攀, 柏会子, 等. 中国作物物候对气候变化的响应与适应研究进展[J]. 地理科学进展, 2019, 38(2): 224-235 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201902006.htm
ZHAO Y X, XIAO D P, BO H Z, et al. Research progress on the response and adaptation of crop phenology to climate change in China[J]. Progress in Geography, 2019, 38(2): 224-235 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201902006.htm
[21]PATIL R H, LAEGDSMAND M, OLESEN J E, et al. Growth and yield response of winter wheat to soil warming and rainfall patterns[J]. The Journal of Agricultural Science, 2010, 148(5): 553-566 doi: 10.1017/S0021859610000419
[22]周宝元, 葛均筑, 侯海鹏, 等. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937-949 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202006013.htm
ZHOU B Y, GE J Z, HOU H P, et al. Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers Plain[J]. Acta Agronomica Sinica, 2020, 46(6): 937-949 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202006013.htm
[23]陈天晔, 袁嘉琦, 刘艳阳, 等. 江淮下游不同播期对稻-麦周年作物产量、品质及温光资源利用的影响[J]. 作物学报, 2020, 46(10): 1566-1578 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202010010.htm
CHEN T Y, YUAN J Q, LIU Y Y, et al. Effects of different sowing dates on crop yield, quality, and annual light-temperature resources utilization for rice-wheat double cropping system in the lower reaches of the Yangtze-Huaihe Rivers valley[J]. Acta Agronomica Sinica, 2020, 46(10): 1566-1578 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202010010.htm
[24]艾治勇, 郭夏宇, 刘文祥, 等. 农业气候资源变化对双季稻生产的可能影响分析[J]. 自然资源学报, 2014, 29(12): 2089-2102 doi: 10.11849/zrzyxb.2014.12.010
AI Z Y, GUO X Y, LIU W X, et al. Analysis on possible influences of agricultural climate resources change on double-season rice production[J]. Journal of Natural Resources, 2014, 29(12): 2089-2102 doi: 10.11849/zrzyxb.2014.12.010
[25]岳伟, 陈金华, 阮新民, 等. 安徽省沿江地区双季稻光热资源利用效率变化特征及对气象产量的影响[J]. 中国生态农业学报(中英文), 2019, 27(6): 929-940 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0612&flag=1
YUE W, CHEN J H, RUAN X M, et al. Variation in characteristics of light and heat resource utilization efficiency of double-season rice and its impact on meteorological yield along the Yangtze River in Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 929-940 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0612&flag=1
[26]崔读昌. 中国粮食作物气候资源利用效率及其提高的途径[J]. 中国农业气象, 2001, 22(2): 25-32 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200102005.htm
CUI D C. Climatic resources utilization coefficiency of cereal crops in China and development measures[J]. Chinese Journal of Agrometeorology, 2001, 22(2): 25-32 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200102005.htm
[27]RAY D K, GERBER J S, MACDONALD G K, et al. Climate variation explains a third of global crop yield variability[J]. Nature Communications, 2015, 6: 5989 http://www.ncbi.nlm.nih.gov/pubmed/25609225
[28]YUAN B, GUO J P, YE M Z, et al. Variety distribution pattern and climatic potential productivity of spring maize in Northeast China under climate change[J]. Chinese Science Bulletin, 2012, 57(26): 3497-3508
[29]付雪丽, 张惠, 贾继增, 等. 冬小麦-夏玉米"双晚"种植模式的产量形成及资源效率研究[J]. 作物学报, 2009, 35(9): 1708-1714 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200909020.htm
FU X L, ZHANG H, JIA J Z, et al. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system[J]. Acta Agronomica Sinica, 2009, 35(9): 1708-1714 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200909020.htm
[30]WU W B, VERBURG P H, TANG H J. Climate change and the food production system: Impacts and adaptation in China[J]. Regional Environmental Change, 2014, 14(1): 1-5 doi: 10.1007/s10113-013-0528-1
[31]WANG J, WANG E L, YANG X G, et al. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation[J]. Climatic Change, 2012, 113(3/4): 825-840 http://www.tandfonline.com/servlet/linkout?suffix=cit0019&dbid=16&doi=10.1080%2F10807039.2014.955392&key=10.1007%2Fs10584-011-0385-1
[32]ZHANG Y, ZHAO Y X. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming[J]. PLoS One, 2017, 12(5): e01767660 http://pubmedcentralcanada.ca/pmcc/articles/PMC5411072/

相关话题/资源 作物 气象 农业 辐射