删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中亚农业水资源脆弱性及其变化特征分析

本站小编 Free考研考试/2022-01-01

于水1, 2, 3, 5,,
黄法融1, 2, 4, 5,,,
李兰海1, 2, 3, 4, 5
1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室 乌鲁木齐 830011
2.中国科学院伊犁河流域生态系统研究站 新源 835800
3.中国科学院大学 北京 100049
4.中国科学院中亚生态与环境研究中心 乌鲁木齐 830011
5.新疆干旱区水循环与水利用重点实验室 乌鲁木齐 830011
基金项目: 中国科学院战略性先导科技专项XDA2004030202
新疆维吾尔自治区自然科学青年基金2017D01B52

详细信息
作者简介:于水, 研究方向为水文与水资源。E-mail: yushui17@mails.ucas.edu.cn
通讯作者:黄法融, 研究方向为生态水文。E-mail: huangfr@ms.xjb.ac.cn
中图分类号:S273.1

计量

文章访问数:356
HTML全文浏览量:14
PDF下载量:106
被引次数:0
出版历程

收稿日期:2020-06-08
录用日期:2020-09-22
刊出日期:2021-02-01

Analysis of agricultural water resource vulnerability and its variable characteristics in Central Asia

YU Shui1, 2, 3, 5,,
HUANG Farong1, 2, 4, 5,,,
LI Lanhai1, 2, 3, 4, 5
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. Ili Station for Watershed Ecosystem Research, Chinese Academy of Sciences, Xinyuan 835800, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
5. Key Laboratory of Water Cycle and Utilization in Arid Zone, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
Funds: the Strategic Priority Research Program of Chinese Academy of SciencesXDA2004030202
the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China2017D01B52

More Information
Corresponding author:HUANG Farong, E-mail: huangfr@ms.xjb.ac.cn


摘要
HTML全文
(7)(5)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农业用水是链接自然环境和社会经济发展的重要环节,研究农业水资源脆弱性的时空变化对揭示水资源的可持续开发利用、保障水资源安全、应对洪旱灾害具有重要意义。为研究中亚地区农业水资源脆弱性变化特征,本文以中亚五国为研究区,基于气象、土地覆盖、地形和社会经济数据,依据脆弱性概念框架,从暴露度、敏感度和适应度3个方面选取18个指标,建立了农业水资源脆弱性评价指标体系,采用等权重法和主成分分析法确定指标权重,对1992-2017年中亚农业水资源脆弱性进行了评价及特征分析。结果表明:1)中亚农业水资源脆弱性空间分布表现为“南高北低”的特征,5国中土库曼斯坦农业水资源脆弱性最强,其次为乌兹别克斯坦、塔吉克斯坦和吉尔吉斯斯坦,而哈萨克斯坦农业水资源脆弱性最弱;研究时段内农业水资源脆弱性空间分布格局变化较小。2)中亚农业水资源脆弱性随时间变化表现为“前期升高,中期降低,后期稳定”的态势,整个研究期内研究区农业水资源脆弱性变化类型以相对稳定为主。不同地区农业水资源脆弱性随时间的变化存在差异,吉尔吉斯斯坦西部和土库曼斯坦的农业水资源脆弱性升高,乌兹别克斯坦、塔吉克斯坦以及咸海地区水资源脆弱性降低,其他地区相对稳定。3)不同地区农业水资源脆弱性对各指标的敏感性不同,北部农业水资源脆弱性动态变化对农田灌溉定额和灌溉指数以负敏感为主,对其他指标以正敏感为主,而南部对各指标的敏感性正负均有;相关性分析表明,森林覆盖率、农业用水比例、农田灌溉定额、水分胁迫指数、灌溉指数和农业水分生产率是导致中亚农业水资源脆弱性空间差异的重要因素。4)为降低农业水资源脆弱性,中亚地区需发展集约型农业,调整作物种植结构,推广耐旱品种农作物,进行节水灌溉。研究结果可为中亚农业水资源规划管理、农业生产布局调整以及农业可持续发展提供参考依据。
关键词:农业/
水资源/
脆弱性评价/
中亚
Abstract:Agricultural water utilization is a key link between natural environment and socio-economic system. It is important to investigate the vulnerability of agricultural water resources to secure water resource sustainability and mitigate flood and drought risks. To investigate the variable characteristics of agricultural water resource vulnerability in Central Asia, an index system was established with 18 indicators from three components—exposure, sensitivity, and adaptation—according to the scheme of vulnerability assessment. Based on the data on socio-economic factors, topography, land cover, and soil from 1992 to 2017, agricultural water resource vulnerability in Central Asia was calculated via the Equal-Weights and Principal Component Analysis (PCA) method. The results showed that the vulnerability of agricultural water resources in Central Asia was high in the south and low in the north. Among the five countries in Central Asia, the highest agricultural water resource vulnerability occurred in Turkmenistan, followed by Uzbekistan, Tajikistan, and Kyrgyzstan; the lowest agricultural water resource vulnerability occurred in Kazakhstan. These spatial patterns varied little over the past 26 years. Agricultural water resource vulnerability in Central Asia showed an increasing-decreasing-stabilizing pattern during the study period. Regional changes in the agricultural water resource vulnerability were dominated by a steady state during the entire study period. The variations in agricultural water resource vulnerability differed spatially over time, increasing in the west of Kyrgyzstan and Turkmenistan, declining in Uzbekistan, Tajikistan, and the Aral Sea region of Kazakhstan, and with little variation in the rest of the study area. Sensitivity analysis indicated that the agricultural water resource vulnerability varied in different areas of Central Asia. Temporal variations in the agricultural water resource vulnerability in the north were negatively related to the farmland irrigation quota and irrigation index but positively related to other indices. The sensitivities of indices were more complex in the south. Correlation analysis demonstrated that the forest coverage rate, proportion of agricultural water, farmland irrigation quota, water stress index, irrigation index, and agricultural water productivity ratio more strongly affected the spatial differences in agricultural water resource vulnerability than the other factors. Therefore, intensive agriculture practices, cropping structure adjustments, application of drought-tolerant crop varieties, and water-saving irrigation technology and measures should be implemented to reduce the vulnerability of agricultural water resources in Central Asia. This study analyzed the spatial and temporal variations in agricultural water resource vulnerability in Central Asia, explored the impact factors of these variations, and proposed recommendations to reduce the vulnerability of agricultural water resources. This work can inform agricultural water resources planning and management, adjustments of the agricultural production structure, and help to secure sustainable agricultural development in Central Asia.
Key words:Agriculture/
Water resources/
Vulnerability assessment/
Central Asia

HTML全文


图1中亚五国地理位置及高程
Figure1.Location and DEM of the five Central Asian countries


下载: 全尺寸图片幻灯片


图21992-2017年中亚农业水资源脆弱性评价指标空间分布[a: 人均水资源量(m3·cap.-1); b: 作物生育期降水量(mm); c: 作物生育期平均气温(℃); d: 作物生育期潜在蒸散量(mm); e: 地形起伏度; f: 产水系数; g: 农村安全饮用水指数(%); h: 土壤有效含水量(mm·m-1); i: 森林覆盖率(%); j: 农业用水比例(%); k: 农田灌溉定额(×104 m3·km-2); l: 水分胁迫指数(%); m: 灌溉指数(%); n: 土地覆盖类型(1裸地, 2城镇, 3草地, 4耕地, 5林地, 6水体); o: 农业增加值用水量(m3·$-1); p: 农业水分生产率(kg·m-3); q: 人均农业生产总值指数($·cap.-1); r: 施政效率; A: 暴露度; B: 敏感度; C: 适应度]
Figure2.Spatial distribution of agricultural water resources vulnerability indices in Central Asia from 1992 to 2017 (a: per capita water resources, m3·cap.-1; b: precipitation in crop growth period, mm; c: average temperature in crop growth period, ℃; d: potential evapotranspiration in crop growth period, mm; e: degree of relief; f: water producing coefficient; g: rural safe drinking water index, %; h: soil available water content, mm·m-1; i: forest coverage rate, %; j: proportion of agricultural water consumption, %; k: farmland irrigation quota, ×104m3·km-2; l: water stress index, %; m: irrigation index, %; n: land cover types (1 bare land, 2 urban lands, 3 grassland, 4 cropland, 5 forest land, 6 water bodies); o: water for agricultural added values (m3·$-1); p: agricultural water productivity ratio (kg·m-3); q: per capita agricultural production index ($·cap.-1); r: administrative efficiency; A: exposure; B: sensitivity; C: adaptation)


下载: 全尺寸图片幻灯片


图31992-2017年不同时段中亚农业水资源脆弱性时空分布
Figure3.Spatio-temporal distribution of agricultural water resources vulnerability in Central Asia in different periods from 1992 to 2017


下载: 全尺寸图片幻灯片


图41992-2017年不同时期中亚农业水资源脆弱性变化类型分布
Figure4.Distributions of agricultural water resources vulnerability change types in Central Asia in different periods from 1992 to 2017


下载: 全尺寸图片幻灯片


图5中亚农业水资源脆弱性对暴露度二级指标敏感系数的空间分布[a: 人均水资源量(m3·cap.-1); b: 作物生育期降水量(mm); c: 作物生育期平均气温(℃); d: 作物生育期潜在蒸散量(%); e: 产水系数]
Figure5.Spatial distribution of sensitivity coefficients of agricultural water resources vulnerability to exposure indices in Central Asia (a: per capita water resources; b: precipitation in crop growth period; c: average temperature in crop growth period; d: potential evapotranspiration in crop growth period; e: water producing coefficient)


下载: 全尺寸图片幻灯片


图6中亚农业水资源脆弱性对敏感度二级指标敏感系数空间分布[a: 农村安全饮用水指数(%); b: 森林覆盖率(%); c: 农业用水比例(%); d: 农田灌溉定额(x104m3·km-2); e: 水分胁迫指数(%)]
Figure6.Spatial distribution of sensitivity coefficients of agricultural water resources vulnerability to sensitivity indices in Central Asia (a: rural safe drinking water index; b: forest coverage rate; c: proportion of agricultural water consumption; d: farmland irrigation quota; e: water stress index)


下载: 全尺寸图片幻灯片


图7中亚农业水资源脆弱性对适应度二级指标敏感系数空间分布[a: 灌溉指数; b: 土地覆盖类型; c: 农业增加值用水量(m3· Y-1); d: 农业水分生产率(kg·m-3); e: 人均农业生产总值指数(Y·cap.-1); f: 施政效率]
Figure7.Spatial distribution of sensitivity coefficients of agricultural water resources vulnerability to adaptation indices in Central Asia (a: irrigation index; b: land cover type; c: water for agricultural added value; d: agricultural water productivity ratio; e: per capita agricultural production index; f: administrative efficiency)


下载: 全尺寸图片幻灯片

表1中亚农业水资源脆弱性评价指标体系
Table1.Indices for evaluation of agricultural water resources vulnerability in Central Asia
一级指标
First grade
二级指标
Second grade
三级指标
Third grade
指标指向
Grade effect
暴露度
Exposure
人均水资源量
Per capita water resources
可再生水资源量/人口数量
Renewable water resources/population

Negative
作物生育期降水量
Precipitation in crop growth period
4-10月降水量
Precipitation from April to October

Negative
作物生育期平均气温
Average temperature in crop growth period
4-10月平均气温
Average temperature from April to October

Positive
作物生育期潜在蒸散量
Potential evapotranspiration in crop growth period
4-10月潜在蒸散量
Potential evapotranspiration from April to October

Positive
地形起伏度
Degree of relief
高程最大值-高程最小值
DEM maximum-DEM minimum

Positive
产水系数
Water producing coefficient
可再生水资源量/4-10月降水量
Renewable water resources/precipitation from April to October

Negative
敏感度
Sensitivity
农村安全饮用水指数
Rural safe drinking water index
农村饮用水达标人口/总人口
Rural safe drinking water population/total population

Negative
土壤有效含水量
Soil available water content
土壤数据
Soil data

Negative
森林覆盖率
Forest coverage rate
森林面积/国土面积
Forest area/national land area

Negative
农业用水比例
Proportion of agricultural water
农业用水量/总用水量
Agricultural water withdrawal/total water withdrawal

Positive
农田灌溉定额
Farmland irrigation quota
农业用水量/耕地面积
Agricultural water withdrawal/arable land area

Positive
水分胁迫指数
Water stress index
淡水总流出量/(可再生水资源量-环境流量)
Total freshwater withdrawal/(renewable water resources-environmental flow requirements)

Positive
适应度
Adaptation
灌溉指数
Irrigation index
灌溉面积/耕地面积
Irrigation area/arable land area

Positive
土地覆盖类型
Land cover type
土地覆盖类型数据
Land cover features data

Negative
农业增加值用水量
Water for agricultural added value
农业用水量/农业增加值
Agricultural water withdrawal/agricultural added values

Negative
农业水分生产率
Agricultural water productivity ratio
谷物产量/农业用水量
Grain yield/agricultural water withdrawal

Positive
人均农业生产总值指数
Per capita agricultural production index
农业生产总值/人口数量
Gross agricultural production/population

Positive
施政效率
Administrative efficiency
(法律法规+监管质量+政府效能)/3
(Rule of law+regulatory quality+government effectiveness)/3

Positive


下载: 导出CSV
表21992-2017年中亚农业水资源脆弱性一级指标权重系数
Table2.Weight coefficients of first grade indices for evaluation of agricultural water resources vulnerability in Central Asia from 1992 to 2017
指标 Index 1992-1996 1997-2001 2002-2006 2007-2011 2012-2017 1992-2017
暴露度 Exposure 0.244 0.271 0.249 0.242 0.249 0.243
敏感度 Sensitivity 0.456 0.500 0.423 0.432 0.451 0.440
适应度 Adaptation 0.300 0.229 0.328 0.326 0.300 0.317


下载: 导出CSV
表31992-2017年不同时段中亚农业水资源脆弱性的面积与比例
Table3.Areas and proportions of agricultural water resources vulnerability in Central Asia in different periods from 1992 to 2017
脆弱性等级
Vulnerability level
1992-1996 1997-2001 2002-2006 2007-2011 2012-2017 1992-2017
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
微度 Slight 182.75 44.75 160.83 39.38 199.24 48.79 191.29 46.84 200.96 49.21 190.85 46.73
轻度 Light 93.64 22.93 108.95 26.68 79.85 19.55 86.55 21.19 76.88 18.82 86.98 21.30
中度 Moderate 20.58 5.04 27.47 6.73 18.60 4.56 31.92 7.82 40.99 10.04 20.61 4.94
重度 Heavy 68.44 16.76 61.11 14.97 63.52 15.55 56.60 13.86 55.67 13.63 70.85 17.35
极度 Extreme 42.97 10. 52 50.01 12.25 47.16 11.55 42.03 10.29 33.88 8.30 39.53 9.68


下载: 导出CSV
表41992-2017年不同时期中亚农业水资源脆弱性变化类型的面积与比例
Table4.Areas and proportions of different change types of agricultural water resources vulnerability in Central Asia in different periods from 1992 to 2017
变化类型
Change type
1992-2001 1997-2006 2002-2011 2007-2017 1992-2017
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
面积
Area(×104 km2)
比例
Ratio(%)
显著降低 Significant decrease 0.49 0.12 15.95 3.91 4.37 1.07 0.26 0.06 61.33 15.02
缓慢降低 Slow decrease 22.66 5.55 122.27 29.94 44.45 10.09 57.48 14.08 1.05 0.26
相对稳定 Relative stable 192.05 47.03 205.46 50.31 283.79 69.49 347.52 85.10 279.71 68.49
缓慢升高 Slow increase 186.38 45.64 63.63 15.58 54.28 13.29 2.61 0.64 18.98 4.65
显著升高 Significant increase 6.78 1.66 1.06 0.26 21.48 5.26 0.50 0.12 47.31 11.59


下载: 导出CSV
表51992-2017年不同时段中亚农业水资源脆弱性与各指标的相关系数
Table5.Correlation coefficients between agricultural water resources vulnerability and different indices in Central Asia in different periods from 1992 to 2017
一级指标
First grade index
二级指标
Second grade index
1992-1996 1997-2001 2002-2006 2007-2011 2012-2017 1992-2017
暴露度
Exposure
人均水资源量 Per capita water resources -0.74 -0.80 -0.83 -0.78 -0.77 -0.78
作物生育期降水量 Precipitation in crop growth period -0.46 -0.45 -0.45 -0.45 -0.49 -0.46
作物生育期平均气温
Average temperature in crop growth period
0.39 0.40 0.45 0.40 0.42 0.41
作物生育期潜在蒸散量
Potential evapotranspiration in crop growth period
0.49 0.50 0.53 0.44 0.47 0.48
地形起伏度 Degree of relief 0.24 0.25 0.19 0.24 0.21 0.23
产水系数 Water producing coefficient -0.56 -0.55 -0.64 -0.64 -0.54 -0.60
敏感度
Sensitivity
农村安全饮用水指数 Rural safe drinking water index -0.75 -0.78 -0.78 -0.83 -0.80 -0.80
土壤有效含水量 Soil available water content -0.16 -0.17 -0.12 -0.16 -0.16 -0.15
森林覆盖率 Forest coverage rate 0.91 0.90 0.93 0.92 0.92 0.93
农业用水比例 Proportion of agricultural water consumption 0.94 0.93 0.93 0.94 0.91 0.94
农田灌溉定额 Farmland irrigation quota 0.96 0.96 0.97 0.96 0.95 0.97
水分胁迫指数 Water stress index 0.89 0.89 0.94 0.90 0.90 0.91
适应度
Adaptation
灌溉指数 Irrigation index 0.95 0.95 0.96 0.96 0.95 0.96
土地覆盖类型 Land cover type -0.20 -0.23 -0.23 -0.22 -0.25 -0.23
农业增加值用水量 Water for agricultural added value 0.62 0.67 0.79 0.62 0.87 0.63
农业水分生产率 Agricultural water productivity ratio -0.96 -0.95 -0.95 -0.96 -0.95 -0.96
人均农业生产总值指数
Per capita agricultural production index
-0.83 -0.34 -0.90 -0.74 -0.15 -0.64
施政效率 Administrative efficiency -0.81 -0.83 -0.93 -0.94 -0.96 -0.94


下载: 导出CSV

参考文献(42)
[1]商彦蕊. 自然灾害综合研究的新进展——脆弱性研究[J]. 地域研究与开发, 2000, 19(2): 73-77 doi: 10.3969/j.issn.1003-2363.2000.02.019
SHANG Y R. Vulnerability study—The new development of synthetized study on natural disasters[J]. Areal Research and Development, 2000, 19(2): 73-77 doi: 10.3969/j.issn.1003-2363.2000.02.019
[2]DOERFLIGER N, JEANNIN P Y, ZWAHLEN F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method)[J]. Environmental Geology, 1999, 39(2): 165-176 doi: 10.1007/s002540050446
[3]BOSCH D D. Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty[J]. Journal of Environmental Quality, 1995, 24(2): 387-388
[4]GOGU R C, DASSARGUES. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods[J]. Environmental Geology, 2000, 39(6): 549-559 doi: 10.1007/s002540050466
[5]崔利芳, 王宁, 葛振鸣, 等. 海平面上升影响下长江口滨海湿地脆弱性评价[J]. 应用生态学报, 2014, 25(2): 553-561 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201402033.htm
CUI L F, WANG N, GE Z M, et al. Vulnerability assessment on the coastal wetlands in the Yangtze Estuary under sea-level rise[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 553-561 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201402033.htm
[6]马芳冰, 王烜, 李春晖. 水资源脆弱性评价研究进展[J]. 水资源与水工程学报, 2012, 23(1): 30-37 https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201201009.htm
MA F B, WANG X, LI C H. Research progress in water resources vulnerability assessment[J]. Journal of Water Resources and Water Engineering, 2012, 23(1): 30-37 https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201201009.htm
[7]邹君, 杨琴. 基于GIS/RS的衡阳盆地农村水资源系统脆弱性动态演变研究[J]. 中国生态农业学报, 2015, 23(12): 1597-1604 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151213&flag=1
ZOU J, YANG Q. Evaluation of the vulnerability of rural water resources system in Hengyang Basin based on GIS and RS[J]. Chinese Journal of Eco-Agriculture, 2015, 23(12): 1597-1604 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151213&flag=1
[8]邹君, 郑文武, 杨玉蓉. 基于GIS/RS的南方丘陵区农村水资源系统脆弱性评价——以衡阳盆地为例[J]. 地理科学, 2014, 34(8): 1010-1017 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201408015.htm
ZOU J, ZHENG W W, YANG Y R. Evaluation of water resources system vulnerability in southern hilly rural region based on the GIS/RS—Take Hengyang Basin as an example[J]. Scientia Geographica Sinica, 2014, 34(8): 1010-1017 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201408015.htm
[9]夏军, 邱冰, 潘兴瑶, 等. 气候变化影响下水资源脆弱性评估方法及其应用[J]. 地球科学进展, 2012, 27(4): 443-451 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201204009.htm
XIA J, QIU B, PAN X Y, et al. Assessment of water resources vulnerability under climate change and human activities[J]. Advances in Earth Science, 2012, 27(4): 443-451 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201204009.htm
[10]刘绿柳. 水资源脆弱性及其定量评价[J]. 水土保持通报, 2002, 22(2): 41-44 doi: 10.3969/j.issn.1000-288X.2002.02.012
LIU L L. Concept and quantitive assessment of vulnerability of water resource[J]. Bulletin of Soil and Water Conservation, 2002, 22(2): 41-44 doi: 10.3969/j.issn.1000-288X.2002.02.012
[11]冯少辉, 李靖, 朱振峰, 等. 云南省滇中地区水资源脆弱性评价[J]. 水资源保护, 2010, 26(1): 13-16 doi: 10.3969/j.issn.1004-6933.2010.01.004
FENG S H, LI J, ZHU Z F, et al. Study on water resources vulnerability assessment in Central Yunnan[J]. Water Resources Protection, 2010, 26(1): 13-16 doi: 10.3969/j.issn.1004-6933.2010.01.004
[12]黄友波, 郑冬燕, 夏军, 等. 黑河地区水资源脆弱性及其生态问题分析[J]. 水资源与水工程学报, 2004, 15(1): 32-37 doi: 10.3969/j.issn.1672-643X.2004.01.007
HUANG Y B, ZHENG D Y, XIA J, et al. Analysis of water resources vulnerability and ecological problems in Heihe River Basin[J]. Journal of Water Resources and Water Engineering, 2004, 15(1): 32-37 doi: 10.3969/j.issn.1672-643X.2004.01.007
[13]焦士兴, 陈林芳, 王安周, 等. 河南省农业水资源脆弱性时空特征及障碍度诊断[J]. 农业现代化研究, 2020, 41(2): 312-320 https://www.cnki.com.cn/Article/CJFDTOTAL-NXDH202002015.htm
JIAO S X, CHEN L F, WANG A Z, et al. The spatial-temporal patterns of vulnerability analysis and the obstacle diagnosis of agricultural water resource in Henan Province[J]. Research of Agricultural Modernization, 2020, 41(2): 312-320 https://www.cnki.com.cn/Article/CJFDTOTAL-NXDH202002015.htm
[14]杨琴, 柯樱海, 李小娟, 等. 湖南省水资源脆弱性时空演变研究[J]. 河南理工大学学报: 自然科学版, 2018, 37(3): 79-85 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201803011.htm
YANG Q, KE Y H, LI X J, et al. Spatial-temporal evolution of water resources vulnerability in Hunan Province[J]. Journal of Henan Polytechnic University: Natural Science, 2018, 37(3): 79-85 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201803011.htm
[15]陈攀, 李兰, 周文财. 水资源脆弱性及评价方法国内外研究进展[J]. 水资源保护, 2011, 27(5): 32-38 doi: 10.3969/j.issn.1004-6933.2011.05.008
CHEN P, LI L, ZHOU W C. Research progress on vulnerability of water resources and assessment methods at home and abroad[J]. Water Resources Protection, 2011, 27(5): 32-38 doi: 10.3969/j.issn.1004-6933.2011.05.008
[16]POLSKY C, NEFF R, YARNAL B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram[J]. Global Environmental Change, 2007, 17(3/4): 472-485 http://www.sciencedirect.com/science/article/pii/S0959378007000210
[17]ACOSTA-MICHLIK L, ESPALDON V. Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent's adaptation to global environmental change[J]. Global Environmental Change, 2008, 18(4): 554-563 doi: 10.1016/j.gloenvcha.2008.08.006
[18]CHEN F H, WANG J S, JIN L Y, et al. Rapid warming in mid-latitude central Asia for the past 100 years[J]. Frontiers of Earth Science in China, 2009, 3(1): 42-50 doi: 10.1007/s11707-009-0013-9
[19]VARIS O, KUMMU M. The major Central Asian river basins: An assessment of vulnerability[J]. International Journal of Water Resources Development, 2012, 28(3): 433-452 doi: 10.1080/07900627.2012.684309
[20]LIOUBIMTSEVA E, HENEBRY G M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations[J]. Journal of Arid Environments, 2009, 73(11): 963-977 doi: 10.1016/j.jaridenv.2009.04.022
[21]HILL A F, MINBAEVA C K, WILSON A M, et al. Hydrologic controls and water vulnerabilities in the Naryn River basin, Kyrgyzstan: A socio-hydro case study of water stressors in Central Asia[J]. Water, 2017, 9(5): 325 doi: 10.3390/w9050325
[22]ALEKSANDROVA M, GAIN A K, GIUPPONI C. Assessing agricultural systems vulnerability to climate change to inform adaptation planning: An application in Khorezm, Uzbekistan[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(8): 1263-1287 doi: 10.1007/s11027-015-9655-y
[23]陈桃, 包安明, 郭浩, 等. 中亚跨境流域生态脆弱性评价及其时空特征分析——以阿姆河流域为例[J]. 自然资源学报, 2019, 34(12): 2643-2657 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201912013.htm
CHEN T, BAO A M, GUO H, et al. Ecological vulnerability assessment for a transboundary basin in Central Asia and its spatiotemporal characteristics analysis: Taking Amu Darya River Basin as an example[J]. Journal of Natural Resources, 2019, 34(12): 2643-2657 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201912013.htm
[24]于水, 陈迪桃, 黄法融, 等. 中亚农业水资源脆弱性空间格局及分区研究[J]. 中国农业资源与区划, 2020, 41(4): 11-20 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ202004002.htm
YU S, CHEN D T, HUANG F R, et al. Spatial pattern and zoning of agricultural water resources vulnerability during crop growth period in Central Asia[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 11-20 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ202004002.htm
[25]吉力力·阿不都外力, 马龙. 中亚环境概论[M]. 北京: 气象出版社, 2015
ABUDUWAILI J, MA L. Overview of Central Asian Environments[M]. Beijing: China Meteorological Press, 2015
[26]陈曦, 姜逢清, 王亚俊, 等. 亚洲中部干旱区生态地理格局研究[J]. 干旱区研究, 2013, 30(3): 385-390 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201303000.htm
CHEN X, JIANG F Q, WANG Y J, et al. Characteristics of the eco-geographical pattern in arid land of Central Asia[J]. Arid Zone Research, 2013, 30(3): 385-390 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201303000.htm
[27]陈佳, 杨新军, 尹莎, 等. 基于VSD框架的半干旱地区社会-生态系统脆弱性演化与模拟[J]. 地理学报, 2016, 71(7): 1172-1188 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201607008.htm
CHEN J, YANG X J, YIN S, et al. The vulnerability evolution and simulation of the social-ecological systems in the semi-arid area based on the VSD framework[J]. Acta Geographica Sinica, 2016, 71(7): 1172-1188 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201607008.htm
[28]周瑞瑞, 米文宝, 李俊杰, 等. 宁夏县域城镇居民生活质量空间分异及解析[J]. 干旱区资源与环境, 2017, 31(7): 14-21 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201707003.htm
ZHOU R R, MI W B, LI J J, et al. Spatial differentiation of quality of urban life in Ningxia on county scale[J]. Journal of Arid Land Resources and Environment, 2017, 31(7): 14-21 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201707003.htm
[29]林海明, 杜子芳. 主成分分析综合评价应该注意的问题[J]. 统计研究, 2013, 30(8): 25-31 https://www.cnki.com.cn/Article/CJFDTOTAL-TJYJ201308004.htm
LIN H M, DU Z F. Some problems in comprehensive evaluation in the principal component analysis[J]. Statistical Research, 2013, 30(8): 25-31 https://www.cnki.com.cn/Article/CJFDTOTAL-TJYJ201308004.htm
[30]王莺, 王静, 姚玉璧, 等. 基于主成分分析的中国南方干旱脆弱性评价[J]. 生态环境学报, 2014, 23(12): 1897-1904 doi: 10.3969/j.issn.1674-5906.2014.12.003
WANG Y, WANG J, YAO Y B, et al. Evaluation of drought vulnerability in southern China based on principal component analysis[J]. Ecology and Environmental Sciences, 2014, 23(12): 1897-1904 doi: 10.3969/j.issn.1674-5906.2014.12.003
[31]苏贤保, 李勋贵, 刘巨峰, 等. 基于综合权重法的西北典型区域水资源脆弱性评价研究[J]. 干旱区资源与环境, 2018, 32(3): 112-118 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201803021.htm
SU X B, LI X G, LIU J F, et al. Vulnerability assessment of water resources in the northwest typical area based on comprehensive weighting method[J]. Journal of Arid Land Resources and Environment, 2018, 32(3): 112-118 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201803021.htm
[32]刘倩倩, 陈岩. 基于粗糙集和BP神经网络的流域水资源脆弱性预测研究——以淮河流域为例[J]. 长江流域资源与环境, 2016, 25(9): 1317-1327 doi: 10.11870/cjlyzyyhj201609002
LIU Q Q, CHEN Y. Vulnerability prediction of basin water resources based on rough set and BP neural network—a case of Huaihe basin[J]. Resources and Environment in the Yangtze Basin, 2016, 25(9): 1317-1327 doi: 10.11870/cjlyzyyhj201609002
[33]李彤玥. 基于"暴露—敏感—适应"的城市脆弱性空间研究——以兰州市为例[J]. 经济地理, 2017, 37(3): 86-95 https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201703012.htm
LI T Y. Spatial vulnerability based on the framework of the exposure-sensitivity-adaptive capacity: A case study of Lanzhou[J]. Economic Geography, 2017, 37(3): 86-95 https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201703012.htm
[34]ZHENG H X, ZHANG L, ZHU R R, et al. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin[J]. Water Resources Research, 2009, 45(7): W00A19 doi: 10.1029/2007WR006665/abstract
[35]陈迪桃, 黄法融, 李倩, 等. 1966—2015年天山南北坡空气湿度差异及其影响因素[J]. 气候变化研究进展, 2018, 14(6): 562-572 https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806003.htm
CHEN D T, HUANG F R, LI Q, et al. Spatial variation of humidity and its influencing factors in the north asouth slopes of the Tianshan Mountains, China during 1966-2015[J]. Climate Change Research, 2018, 14(6): 562-572 https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806003.htm
[36]姚海娇, 周宏飞. 中亚地区跨界水资源问题研究综述[J]. 资源科学, 2014, 36(6): 1175-1182 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201406010.htm
YAO H J, ZHOU H F. A review of transboundary water resources in Central Asia[J]. Resources Science, 2014, 36(6): 1175-1182 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201406010.htm
[37]杨胜天, 于心怡, 丁建丽, 等. 中亚地区水问题研究综述[J]. 地理学报, 2017, 72(1): 79-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701008.htm
YANG S T, YU X Y, DING J L, et al. A review of water issues research in Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 79-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701008.htm
[38]VINOGRADOV S, LANGFORD V P E. Managing transboundary water resources in the Aral Sea Basin: In search of a solution[J]. International Journal of Global Environmental Issues, 2001, 1(3/4): 345-362 http://www.researchgate.net/publication/5107420_Managing_transboundary_water_resources_in_the_Aral_Sea_Basin_in_search_of_a_solution
[39]LIOUBIMTSEVA E. A multi-scale assessment of human vulnerability to climate change in the Aral Sea Basin[J]. Environmental Earth Sciences, 2015, 73(2): 719-729 doi: 10.1007/s12665-014-3104-1
[40]WHITE C J, TANTON T W, RYCROFT D W. The impact of climate change on the water resources of the Amu Darya Basin in Central Asia[J]. Water Resources Management, 2014, 28(15): 5267-5281 doi: 10.1007/s11269-014-0716-x
[41]WANG X X, CHEN Y N, LI Z, et al. Development and utilization of water resources and assessment of water security in Central Asia[J]. Agricultural Water Management, 2020, 240: 106297 http://www.sciencedirect.com/science/article/pii/S0378377419317767
[42]DADABAEV T. Water resource management in Central Asia: A Japanese attempt to promote water resource efficiency[J]. Journal of Comparative Asian Development, 2016, 15(1): 64-90

相关话题/农业 比例 指标 作物 生育