删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

降雨对吉林省黑土区雨养春玉米农田氮磷淋溶的影响

本站小编 Free考研考试/2022-01-01

焦云飞,
李强,
高洪军,
王周,
张秀芝,
朱平,
彭畅,
吉林省农业科学院 长春 130033
基金项目: 国家重点研发计划课题2016YFD0800101
国家重点研发计划课题2016YFD0300803
吉林省重大科技专项课题20200503004SF

详细信息
作者简介:焦云飞, 主要研究方向为农业面源污染控制。E-mail: jyf20151029@163.com
通讯作者:彭畅, 主要研究方向为黑土资源保护与农业面源污染控制。E-mail: pengchang2005@163.com
中图分类号:S157.1

计量

文章访问数:273
HTML全文浏览量:4
PDF下载量:613
被引次数:0
出版历程

收稿日期:2020-07-14
录用日期:2020-09-17
刊出日期:2021-01-01

Effects of rainfall on nitrogen and phosphorus leaching in rainfed spring maize black soil farmland in Jilin Province, China

JIAO Yunfei,
LI Qiang,
GAO Hongjun,
WANG Zhou,
ZHANG Xiuzhi,
ZHU Ping,
PENG Chang,
Jilin Academy of Agricultural Sciences, Changchun 130033, China
Funds: the National Key Research and Development Program of China2016YFD0800101
the National Key Research and Development Program of China2016YFD0300803
the Science and Technology Development Project of Jilin Province20200503004SF

More Information
Corresponding author:PENG Chang E-mail: pengchang2005@163.com


摘要
HTML全文
(5)(5)
参考文献(45)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:吉林省黑土区是我国玉米生产的重要基地, 农业集约化程度较高, 农业面源污染风险较大。因此, 掌握吉林省黑土区降雨与农田氮磷淋溶的关系, 对区域生态农业可持续发展意义重大。本研究基于吉林省4个面源污染监测点, 于2016—2019年春玉米季对降雨情况、淋溶量、淋溶液氮磷浓度及淋溶强度等进行了动态监测, 系统分析了吉林省黑土区自然降雨与农田氮磷淋溶的关系。结果表明: 1)吉林省黑土区降雨年际间和监测点间差异较大, 年际间波动在424~554 mm, 春玉米全生育期平均降雨量为475 mm; 不同监测点降雨量大小依次为通化(593~785 mm)>公主岭(512~699 mm)>梨树(305~434 mm)>农安(197~342 mm)。2)淋溶量和降雨强度呈极显著正相关关系, 降雨强度每增加10 mm·(24h)-1, 淋溶量增加1.81 mm。全生育期(4—10月)降雨量与淋溶次数、淋溶概率分别呈极显著和显著正相关, 降雨量每增加100 mm, 淋溶次数约增加3次, 淋溶概率上升6%。当全生育期降雨量超过74 mm时, 淋溶概率增加, 可能引起淋溶; 而当全生育期降雨量达到217 mm时, 淋溶次数增加, 可以发生淋溶。产生淋溶的降雨等级一般以中雨(10~24.9 mm)和大雨(25~49.9 mm)为主。3)淋溶量和淋溶液总氮浓度呈极显著正相关, 与总磷浓度无明显相关关系。4)总氮淋溶强度与降雨强度呈极显著正相关, 降雨强度每增加10 mm·(24h)-1, 总氮淋溶强度增加0.73 kg·hm-2, 而总磷淋溶强度与降雨强度无明显相关性。由此可见, 吉林省黑土区农田在春玉米雨养条件下以氮素淋溶为主, 且与降雨密切相关, 应因地制宜采取农艺措施在源头上阻控农业面源污染的发生, 为农业生态可持续发展提供有效途径。
关键词:黑土区/
降雨/
氮磷淋溶/
春玉米
Abstract:The black soil area of Jilin Province is important for maize production in China, where agricultural development and nonpoint source pollution risks are intensifying. Understanding the effects of nitrogen and phosphorus leaching from rainfed spring maize farmland is important for the sustainable development of the region. This study investigated rainfall and leaching amounts, nitrogen and phosphorus leachate concentrations, and leaching intensity from 2016 to 2019 at four nonpoint source pollution monitoring stations in Jilin Province, China, and analyzed the relationship between rainfall and farmland nitrogen and phosphorus leaching. The results showed that the inter-annual and inter-regional rainfall differences were large, ranging from 424 to 554 mm. The average rainfall during spring maize growth season was 475 mm. Tonghua monitoring station had the most rain (593–785 mm), followed by Gongzhuling station (512–699 mm) and Lishu station (305–434 mm); Nong'an station had the least rain (197–342 mm). Tonghua and Nong'an growth seasons had primarily light and moderate rain, and Gongzhuling and Lishu had moderate and heavy rain and thunderstorms. There was a significant positive correlation between the leaching amount and rain intensity (P < 0.01). For every 10 mm·(24h)-1 increase in rain intensity, the leaching amount increased by 1.81 mm. Rainfall during the spring maize growth season (April to October) was also significantly correlated with the leaching amount (P < 0.05). For every 100 mm rain increase, the leached sample number and the leaching probability increased (3 times and 6%, respectively). When the growing season rainfall exceeded 74 mm, the leaching probability increased, and when it exceeded 217 mm, leaching could occur. Leaching occurred when rain levels were 10.0–24.9 mm (moderate rain) and 25.0–49.9 mm (heavy rain). There was a significant positive correlation between leaching amount and total nitrogen concentration, but no correlation with total phosphorus concentration. The total nitrogen leaching intensity had a strong positive correlation (P < 0.01) with rain intensity; for every 10 mm·(24h)-1 increase in rain intensity, the total nitrogen leaching intensity increased by 0.73 kg·hm-2. The total phosphorus leaching intensity did not correlate with rain intensity. Nitrogen primarily leached from black soil area farmland in Jilin Province during the rainfed spring maize growth season and was correlated with rainfall. Agronomic measures should be adopted to prevent agricultural nonpoint source pollution at the source.
Key words:Black soil area/
Rainfall/
Nitrogen and phosphorus leaching/
Spring maize

HTML全文


图1吉林省雨养春玉米氮磷淋溶监测点位分布图
Figure1.Distribution of monitoring stations for nitrogen and phosphorus leaching of rainfed spring maize in Jilin Province


下载: 全尺寸图片幻灯片


图2田间渗滤池(地下部分)及取水装置(地上部分)示意图
Figure2.Schematic diagram of field leakage pond (underground part) and water intake device (aboveground part)


下载: 全尺寸图片幻灯片


图32016—2019年吉林省4个监测点雨养春玉米生育期降雨量变化
Figure3.Variations of rainfall during rainfed spring maize growth season in four monitoring stations in Jilin Province from 2016 to 2019


下载: 全尺寸图片幻灯片


图4吉林省4个监测点春玉米生育期降雨量与淋溶概率(a)和淋溶次数(b)的关系及不同降雨强度下淋溶次数分布(c)
Figure4.Relationship between rainfall and leaching probability (a) and leaching times (b), and proportions of leaching times of different rainfall levels to total leaching times (c) during rainfed spring maize growth season in four monitoring stations of Jilin Province


下载: 全尺寸图片幻灯片


图52016—2019年吉林省4个监测点春玉米生育期淋溶量与淋溶液总磷浓度的关系(a)及总磷浓度比较(b)
Figure5.Relationship between leaching amount and total phosphorus (TP) concentration of leachate (a) and TP concentration of leachate (b) during rainfed spring maize growth season in four monitoring stations in Jilin Province from 2016 to 2019


下载: 全尺寸图片幻灯片

表1吉林省春玉米氮磷淋溶监测点基本情况
Table1.Basic information of spring maize nitrogen and phosphorus leaching monitoring stations in Jilin Province
监测点Monitoring station 小区面积Plot area (m2) 小区数量Plot number 面积Total area (m2) 化肥施用量Fertilization rate (kg·hm-2) 基本情况Basic situation
N P K2O
农安Nong’an 54 3 162 219 67.5 67.5 属中温带大陆性气候。主要土壤类型为黑土、黑钙土。It has a mid-temperate continental climate. The main soil types are black soil and chernozem.
梨树Lishu 38 3 114 270 139.5 139.5 属北温带半湿润大陆季风性气候, 主要土壤类型有黑土、黑钙土、淡黑钙土、棕壤、白浆土等。It is a semi-humid northern temperate continental monsoon climate. The main soil types are black soil, chernozem, light chernozem, brown earth, albic soil, etc.
公主岭Gongzhuling 2 3 6 240 90 90 属中温带湿润地区大陆性季风气候。主要土壤类型为黑土、黑钙土。It has a humid temperate continental monsoon climate. The main soil types are black soil and chernozem.
通化Tonghua 54 3 162 240 114 120 属中温带湿润气候区, 主要土壤类型为黑土、暗棕壤。It is in the humid middle temperate zone. The main soil types are black soil and dark brown soil.


下载: 导出CSV
表22016—2019年吉林省4个监测点雨养春玉米生育期降雨统计
Table2.Statistical analysis of rainfall during rainfed spring maize growth season in different monitoring stations in Jilin Province from 2016 to 2019
监测点Monitoring station 等级Level 年均降雨次数Annual average rainfall times 年均降雨量Annual mean rainfall (mm) 最大日降雨量Max daily rainfall (mm)
公主岭Gongzhuling 小雨Light rain 16.8 87.9 9.7
中雨Moderate rain 8.8 134.9 24.4
大雨Heavy rain 5.8 191.0 43.8
暴雨Thunderstorm 2.8 155.4 81.0
大暴雨Torrential rain 0.3 27.4 109.7
梨树Lishu 小雨Light rain 3.3 21.7 9.7
中雨Moderate rain 6.0 98.3 24.0
大雨Heavy rain 2.5 80.9 40.0
暴雨Thunderstorm 2.8 183.3 86.7
农安Nong’an 小雨Light rain 6.0 48.2 9.8
中雨Moderate rain 9.0 139.7 23.9
大雨Heavy rain 1.0 30.0 33.0
暴雨Thunderstorm 0.5 28.4 63.5
通化Tonghua 小雨Light rain 19.0 181.7 9.7
中雨Moderate rain 12.0 251.9 24.8
大雨Heavy rain 1.5 76.0 33.8
暴雨Thunderstorm 1.2 118.1 52.5
除通化为2019年降雨数据外, 其他监测点均为2016—2019年数据。The rainfall data are from 2016 to 2019 except Tonghua, where the rainfall data is in 2019.


下载: 导出CSV
表32016—2019年吉林省4个监测点春玉米生育期降雨强度(x)与淋溶量(y)的关系
Table3.Relationship between rainfall intensity (x) and leaching amount (y) during rainfed spring maize growth season in four monitoring stations in Jilin Province from 2016 to 2019
监测点Monitoring station 拟合方程Fitted equation 样本量Sample size r
公主岭Gongzhuling y=0.0348x+1.7318 61 0.5102**
梨树Lishu y=0.1079x+6.7734 11 0.2980
农安Nong’an y=0.2427x+5.5176 14 0.6963**
通化Tonghua y=0.0946x+5.0444 43 0.3829*
所有点Four stations y=0.1810x+2.4433 133 0.5460**
**和*分别表示拟合方程在P < 0.01和P < 0.05水平显著。** and * mean significance at P < 0.01 and P < 0.05 levels of the fitted equations, respectively.


下载: 导出CSV
表42016—2019年吉林省4个监测点春玉米生育期淋溶量(x)与淋溶液总氮浓度(y)的关系
Table4.Relationship between leaching amount (x) and total nitrogen concentration of leachate (y) during rainfed spring maize growth season in four monitoring stations in Jilin Province from 2016 to 2019
监测点Monitoring station 拟合方程Fitted equation 样本量Sample size r
公主岭Gongzhuling y=1.4092x+5.0456 63 0.2771
梨树Lishu y=0.6281x+44.842 9 0.1691
农安Nong’an y=?0.2984x+24.682 15 0.7345
通化Tonghua y=0.2073x+12.934 42 0.1153
所有点Four stations y=1.2910x+8.9103 128 0.4548**
*表示拟合方程在P < 0.05水平显著。* means significance at P < 0.05 level of the fitted equations.


下载: 导出CSV
表52016—2019年吉林省4个监测点春玉米生育期降雨强度(x)与总氮及总磷淋溶强度(y)的关系
Table5.Relationship between rainfall intensity (x) and total nitrogen or total phosphorus leaching intensity (y) during rainfed spring maize growth season in four monitoring stations in Jilin Province from 2016 to 2019
监测点Monitoring station 总氮淋溶强度Total nitrogen leaching intensity 总磷淋溶强度Total phosphorus leaching intensity
拟合方程Fitted equation 样本量Sample size r 拟合方程Fitted equation 样本量Sample size r
公主岭Gongzhuling y=0.0027x+0.19 63 0.2119 y=4E-05x+0.0015 63 0.2575
梨树Lishu y=0.0899x+1.5586 9 0.3531 y=4E-05x+0.0092 11 0.0566
农安Nong’an y=0.0280x+2.7903 12 0.4126 y=-9E-05x+0.0124 14 0.1562
通化Tonghua y=0.0167x+0.6838 9 0.2993 y=-1E-05x+0.0095 42 0.0283
所有点Four stations y=0.0732x-0.2046 122 0.4950** y=4E-05x+0.0053 126 0.1030


下载: 导出CSV

参考文献(45)
[1]吉林省统计局, 国家统计局吉林调查总队.吉林统计年鉴[M].北京:中国统计出版社, 2018
Jilin Provincial Bureau of Statistics, Jilin Investigation Team of National Bureau of Statistics. Jilin Statistical Yearbook[M]. Beijing: China Statistical Publication, 2018
[2]彭畅, 朱平, 牛红红, 等.农田氮磷流失与农业非点源污染及其防治[J].土壤通报, 2010, 41(2): 508-512 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201002053.htm
PENG C, ZHU P, NIU H H, et al. Nitrogen and phosphorus loss of farmland agricultural non-point source pollution and its prevention[J]. Chinese Journal of Soil Science, 2010, 41(2): 508-512 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201002053.htm
[3]王辉, 王全九, 邵明安.降水条件下黄土坡地氮素淋溶特征的研究[J].水土保持学报, 2005, 19(5): 61-64 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200505014.htm
WANG H, WANG Q J, SHAO M A. Characteristics of nitrogen leaching from sloping land on Loess Plateau under rainfall conditions[J]. Journal of Soil and Water Conservation, 2005, 19(5): 61-64 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200505014.htm
[4]CARPENTER S R, CARACO N F, CORRELL D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecological Applications, 1998, 8(3): 559-568 doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
[5]胡春胜, 程一松, 于贵瑞.华北平原施氮对农田土壤溶液中硝态氮含量的影响[J].资源科学, 2001, 23(6): 46-48 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200106009.htm
HU C S, CHENG Y S, YU G R. Effects of nitrogenous fertilizer application on nitrate N concentration of soil solution in North China Plain[J]. Resources Science, 2001, 23(6): 46-48 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200106009.htm
[6]王欢元, 胡克林, 李保国, 等.不同管理模式下农田水氮利用效率及其环境效应[J].中国农业科学, 2011, 44(13): 2701-2710 doi: 10.3864/j.issn.0578-1752.2011.13.008
WANG H Y, HU K L, LI B G, et al. Analysis of water and nitrogen use efficiencies and their environmental impact under different water and nitrogen management practices[J]. Scientia Agricultura Sinica, 2011, 44(13): 2701-2710 doi: 10.3864/j.issn.0578-1752.2011.13.008
[7]张云贵, 刘宏斌, 李志宏, 等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报, 2005, 11(6): 711-716 doi: 10.3321/j.issn:1008-505X.2005.06.001
ZHANG Y G, LIU H B, LI Z H, et al. Study of nitrate leaching potential from agricultural land in Northern China under long-term fertilization conditions[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6): 711-716 doi: 10.3321/j.issn:1008-505X.2005.06.001
[8]卢艳丽, 白由路, 王磊, 等.华北小麦-玉米轮作区缓控释肥应用效果分析[J].植物营养与肥料学报, 2011, 17(1): 209-215 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201101030.htm
LU Y L, BAI Y L, WANG L, et al. Efficiency analysis of slow/controlled release fertilizer on wheat-maize in North China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 209-215 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201101030.htm
[9]胡立峰, 胡春胜, 安忠民, 等.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报, 2005, 19(6): 186-189 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200506045.htm
HU L F, HU C S, AN Z M, et al. Effects of different tillage patterns on crop yields and nitrate leaching in soil[J]. Journal of Soil and Water Conservation, 2005, 19(6): 186-189 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200506045.htm
[10]HANSEN E M, MUNKHOLM L J, MELANDER B, et al. Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations[J]. Soil and Tillage Research, 2010, 109(1): 1-8 doi: 10.1016/j.still.2010.04.001
[11]陈淑峰, 吴文良, 胡克林, 等.华北平原高产粮区不同水氮管理下农田氮素的淋失特征[J].农业工程学报, 2011, 27(2): 65-73 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201102012.htm
CHEN S F, WU W L, HU K L, et al. Characteristics of nitrate leaching in high yield farmland under different irrigation and fertilization managements in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 65-73 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201102012.htm
[12]MACK U D, FEGER K H, GONG Y S, et al. Soil water balance and nitrate leaching in winter wheat-summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 454-460
[13]SUN H Y, SHEN Y J, YU Q, et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain[J]. Agricultural Water Management, 2010, 97(8): 1139-1145
[14]BEAUDOIN N, SAAD J K, VAN LAETHEM C, et al. Nitrate leaching in intensive agriculture in Northern France: Effect of farming practices, soils and crop rotations[J]. Agriculture, Ecosystems & Environment, 2005, 111(1/4): 292-310 http://www.sciencedirect.com/science/article/pii/S0167880905002896
[15]HE Y, HU K L, WANG H, et al. Modeling of water and nitrogen utilization of layered soil profiles under a wheat-maize cropping system[J]. Mathematical and Computer Modelling, 2013, 58(3/4): 596-605 http://www.sciencedirect.com/science/article/pii/S0895717711006650
[16]MILROY S P, ASSENG S, POOLE M L. Systems analysis of wheat production on low water-holding soils in a Mediterranean-type environment: Ⅱ. Drainage and nitrate leaching[J]. Field Crops Research, 2008, 107(3): 211-220
[17]REN Y B, REN N Q, LI X K, et al. Efficiency of urban wetlands in removing agricultural non-point source pollution[J]. Asian Journal of Chemistry, 2013, 25(9): 4726-4730
[18]李桂花, 张艳萍, 胡克林.不同降雨和灌溉模式对作物产量及农田氮素淋失的影响[J].中国农业科学, 2013, 46(3): 545-554 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201303010.htm
LI G H, ZHANG Y P, HU K L. Modeling the effect of rainfall and irrigation on nitrate leaching and crop yield in wheat-maize cropping system in North China Plain[J]. Scientia Agricultura Sinica, 2013, 46(3): 545-554 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201303010.htm
[19]彭畅, 朱平, 张秀芝, 等.基于渗漏池法研究施肥对东北中部雨养区玉米氮素地下淋溶的影响[J].玉米科学, 2015, 23(6): 125-130 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201506022.htm
PENG C, ZHU P, ZHANG X Z, et al. Study of the influence of fertilization on nitrogen leaching underground in northeast central raining area by percolating pools[J]. Journal of Maize Sciences, 2015, 23(6): 125-130 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201506022.htm
[20]吕家珑.农田土壤磷素淋溶及其预测[J].生态学报, 2003, 23(12): 2689-2701 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200312023.htm
LYU J L. Phosphorus leaching from agricultural soils and its prediction[J]. Acta Ecologica Sinica, 2003, 23(12): 2689-2701 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200312023.htm
[21]项大力.关中农田土壤磷素淋失研究[D].杨凌: 西北农林科技大学, 2009
XIANG D L. study on phosphorus leaching losses in a soil of Guanzhong farmland[D]. Yangling: Northwest A & F University, 2019
[22]刘宏斌, 邹国元, 范先鹏, 等.农田面源污染监测方法与实践[M].北京:科学出版社, 2015: 33-37
LIU H B, ZOU G Y, FAN X P, et al. Establishment and Application of Monitoring Technology on Nonpoint Pollution from Arable Land[M]. Beijing: Science Press, 2015: 33-37
[23]鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社, 2000
LU R K. Soil and Agrochemical Analysis[M]. Beijing: China Agricultural Press, 2000
[24]THOMAS J D. The role of dissolved organic matter, particularly free amino acids and humic substances, in freshwater ecosystems[J]. Freshwater Biology, 1997, 38(1): 1-36 doi: 10.1046/j.1365-2427.1997.00206.x
[25]方如康.环境学词典[M].北京:科学出版社, 2003: 398
FANG R K. Dictionary of Environmental Science[M]. Beijing: Science Press, 2003: 398
[26]李宗勋, 李启艳, 侯晓龙, 等.不同自然降雨等级下不同郁闭度马尾松林的水土流失特征[J].水土保持学报, 2020, 34(1): 27-33 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202001004.htm
LI Z X, LI Q Y, HOU X L, et al. Characteristics of soil and water loss under different natural rainfall grades of Pinus massoniana forest with different canopy density[J]. Journal of Soil and Water Conservation, 2020, 34(1): 27-33 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202001004.htm
[27]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 28592—2012降水量等级[S].北京:中国标准出版社, 2012 https://www.cnki.com.cn/Article/CJFDTOTAL-XXAQ201902011.htm
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. GB/T 28592—2012 Grade of Precipitation[S]. Beijing: China Standard Press, 2012 https://www.cnki.com.cn/Article/CJFDTOTAL-XXAQ201902011.htm
[28]王子东, 邵黎歌.水环境监测与分析技术[M].北京:化学工业出版社, 2016: 17
WANG Z D, SHAO L G. Water Environment Monitoring and Analysis Technology[M]. Beijing: Chemical Industry Press, 2016: 17
[29]彭畅, 牛红红, 李强, 等.吉林省中部农田生态系统降雨湿沉降氮特征[J].土壤通报, 2015, 46(4): 955-961 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201504030.htm
PENG C, NIU H H, LI Q, et al. Nitrogen of atmospheric wet deposition in the central Jilin ecological system[J]. Chinese Journal of Soil Science, 2015, 46(4): 955-961 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201504030.htm
[30]康智明, 张荣霞, 叶玉珍, 等.基于GIS的福建农田氮磷地表径流流失与污染风险评估[J].中国生态农业学报, 2018, 26(12): 1887-1897 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201812016.htm
KANG Z M, ZHANG R X, YE Y Z, et al. GIS-based pollution risk assessment of nitrogen and phosphorus loss in surface runoff in farmlands in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1887-1897 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201812016.htm
[31]ZHANG B L, CUI B H, ZHANG S M, et al. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China[J]. Environmental Science and Pollution Research, 2018, 25(19): 19101-19113
[32]LU H, XIE H L. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China[J]. Journal of Environmental Management, 2018, 207: 134-140 http://europepmc.org/abstract/MED/29156436
[33]苑韶峰, 吕军, 俞劲炎.氮、磷的农业非点源污染防治方法[J].水土保持学报, 2004, 18(1): 122-125 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200401032.htm
YUAN S F, LYU J, YU J Y. Methods of prevention and cure to ANPSP caused by nitrogen and phosphorous[J]. Journal of Soil and Water Conservation, 2004, 18(1): 122-125 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200401032.htm
[34]潘忠成, 袁溪, 李敏.降雨强度和坡度对土壤氮素流失的影响[J].水土保持学报, 2016, 30(1): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201601003.htm
PAN Z C, YUAN X, LI M. Effects of rainfall intensity and slope gradient on soil nitrogen loss[J]. Journal of Soil and Water Conservation, 2016, 30(1): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201601003.htm
[35]吴希媛, 张丽萍, 张妙仙, 等.不同雨强下坡地氮流失特征[J].生态学报, 2007, 27(11): 4576-4582 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200711023.htm
WU X Y, ZHANG L P, ZHANG M X, et al. Research on characteristics of nitrogen loss in sloping land under different rainfall intensities[J]. Acta Ecologica Sinica, 2007, 27(11): 4576-4582 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200711023.htm
[36]王家玉, 王胜佳, 陈义, 等.稻田土壤中氮素淋失的研究[J].土壤学报, 1996, 33(1): 28-36 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB601.003.htm
WANG J Y, WANG S J, CHEN Y, et al. Study on the nitrogen leaching in rice fields[J]. Acta Pedologica Sinica, 1996, 33(1): 28-36 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB601.003.htm
[37]牛新湘, 马兴旺.农田土壤养分淋溶的研究进展[J].中国农学通报, 2011, 27(3): 451-456 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201103092.htm
NIU X X, MA X W. Research advances on leaching of fertilizer nutrients from agricultural soils[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 451-456 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201103092.htm
[38]梁新强, 田光明, 李华, 等.天然降雨条件下水稻田氮磷径流流失特征研究[J].水土保持学报, 2005, 19(1): 59-63 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200501015.htm
LIANG X Q, TIAN G M, LI H, et al. Study on characteristic of nitrogen and phosphorus loss from rice field by natural rainfall runoff[J]. Journal of Soil and Water Conservation, 2005, 19(1): 59-63 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200501015.htm
[39]王辉, 王全九, 邵明安, 等.表土结皮影响坡地产流产沙及养分流失的试验研究[J].水土保持学报, 2008, 22(4): 62-83 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200804008.htm
WANG H, WANG Q J, SHAO M A, et al. Impact of soil crust on runoff, sediment and nutrient loss from sloping land[J]. Journal of Soil and Water Conservation, 2008, 22(4): 62-83 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200804008.htm
[40]杨学云, 古巧珍, 马路军, 等. 土磷素淋移的形态研究[J].土壤学报, 2005, 42(5): 792-798 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200505012.htm
YANG X Y, GU Q Z, MA L J, et al. Forms of phosphorus leaching in loessial soil[J]. Acta Pedologica Sinica, 2005, 42(5): 792-798 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200505012.htm
[41]ABEKOE M K, SAHRAWAT K L. Phosphate retention and extractability in soils of the humid zone in West Africa[J]. Geoderma, 2001, 102(1/2): 175-187 http://www.sciencedirect.com/science/article/pii/S0016706100001105
[42]COOKE C M, GOVE L, NICHOLSON F A, et al. Effect of drying and composting biosolids on the movement of nitrate and phosphate through repacked soil columns under steady-state hydrological conditions[J]. Chemosphere, 2001, 44(4): 797-804 http://www.sciencedirect.com/science/article/pii/S0045653500002939
[43]HANSEN J C, STRAWN D G. Kinetics of phosphorus release from manure-amended alkaline soil[J]. Soil Science, 2003, 168(12): 869-879
[44]MCDOWELL R, SHARPLEY A, BROOKES P, et al. Relationship between soil test phosphorus and phosphorus release to solution[J]. Soil Science, 2001, 166(2): 137-149
[45]TUNESI S, POGGI V, GESSA C. Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals[J]. Nutrient Cycling in Agroecosystems, 1999, 53(3): 219-227

相关话题/土壤 农田 农业 生育 污染