温娜1,
张建丰2,
张杰1,
胡克林1,
刘刚1,,
1.中国农业大学土地科学与技术学院 北京 100193
2.西安理工大学水利水电学院 西安 710048
基金项目: 国家重点研发计划项目2016YFD0800102
国家自然科学基金项目41771257
详细信息
作者简介:曾辉, 主要研究方向为土壤中大孔隙优先流的影响。E-mail: huizeng01@163.com
通讯作者:刘刚, 主要研究方向为多孔介质中的传热传质过程、水分及热特性测量方法、热脉冲探针方法的改进。E-mail: liug@cau.edu.cn
中图分类号:S15计量
文章访问数:316
HTML全文浏览量:2
PDF下载量:178
被引次数:0
出版历程
收稿日期:2020-06-28
录用日期:2020-09-02
刊出日期:2021-01-01
Effect of macropore preferential flow on nitrogen leaching in a North China Plain farmland
ZENG Hui1,,WEN Na1,
ZHANG Jianfeng2,
ZHANG Jie1,
HU Kelin1,
LIU Gang1,,
1. College of Land Science and Technology, China Agricultural University, Beijing 100193, China
2. Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China
Funds: the National Key Research and Development Project of China2016YFD0800102
the National Natural Science Foundation of China41771257
More Information
Corresponding author:LIU Gang E-mail: liug@cau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:优先流是土壤水分入渗的一个重要途径, 大孔隙是产生优先流的关键因素。研究优先流对于土壤水分和溶质运移研究及生态环境保护、制定合理的田间管理措施等具有重要意义。本研究将田间亮蓝染色示踪试验和WHCNS (soil water heat carbon nitrogen simulator)模型模拟相结合, 研究了华北平原冬小麦-夏玉米轮作体系存在大孔隙下, 强降雨和不同施肥、灌溉情景下土壤水氮运移的情况, 以此探讨大孔隙优先流对于土体中水分和硝态氮运移的影响。结果表明:明显含有虫洞的免耕土壤入渗深度和染色面积均高于旋耕土壤; 免耕土壤的染色面积和稳定入渗速率的Pearson相关性不显著, 染色示踪不能定量化土壤稳定入渗速率。同时WHCNS模拟的0~100 cm土层硝态氮淋洗量结果显示:一方面, 相较于无大孔隙情景, 大孔隙存在会显著增加硝态氮的淋洗量; 另一方面, 大孔隙存在下优化施肥模式的硝态氮淋洗量比传统施肥模式减少46.0%。常规灌溉量下喷灌比漫灌处理的硝态氮淋洗量减少15.6%;强降雨导致硝态氮淋洗量增加119.4%。本研究为华北平原地区大孔隙存在条件下的农田水肥优化管理措施提供了理论指导。
关键词:优先流/
水分入渗/
染色示踪/
WHCNS模型/
氮素淋洗
Abstract:Preferential flow is an important mechanism that relies on macropores for moisture to infiltrate into soil. Understanding this process affects the study of soil moisture, solute transport, and environmental protections for field management practices. In this study, a brilliant blue staining tracer field experiment and the soil water heat carbon nitrogen simulator (WHCNS) model were used to explore the effects of preferential flow of macropores on soil water transport and nitrate nitrogen leaching. The WHCNS model was used to simulate soil water and nitrogen migration through macropores in a North China Plain winter wheat-summer maize rotation field with heavy rainfall, fertilization, and irrigation. A dyeing tracer was used to follow water infiltration into no-tillage and rotary-tillage soil, and Pearson correlation coefficient analysis was performed on the stained area and the no-tillage soil stable infiltration rate. The results showed that the no-tillage soil infiltration depth and dyeing area were higher than that of the rotary-tillage soil. The no-tillage soil had a deeper dyeing depth, reaching 80–100 cm, while that of rotary-tillage was shallow, reaching only 15–20 cm. The no-tillage soil had a high degree of preferential flow and transported moisture to the deep-soil. There was no correlation between the no-tillage soil dyeing area and the stable infiltration rate (P = 0.68). Therefore, dye tracers cannot quantify the soil stable infiltration rate. At the same time, the WHCNS simulation results of nitrate nitrogen leaching in 0–100 cm soil layer showed that the presence of macropores increased the nitrate nitrogen leaching in both traditional and optimal fertilization modes, compared with no macropores. On the other hand, in the presence of macropores, optimized fertilization reduced nitrate nitrogen leaching by 46.0% compared with that in traditional fertilization. The sprinkler irrigation reduced leaching by 15.6% compared with that in conventional flood irrigation, and heavy rainfall increased leaching by 119.4%. If the farmland has macropores, organic fertilizer and sprinkler irrigation may be used to save water and reduce nitrate nitrogen leaching; however, increased leaching is expected during heavy rainfall. Therefore, climatic conditions should be considered when fertilizing to determine suitable irrigation amounts. This study used a field tracing experiment and WHCNS model simulation to demonstrate that preferential flow can increase soil water infiltration and nitrate nitrogen downward movement and provides guidance for optimizing farmland water and fertilizer management with macropores in the North China Plain.
Key words:Preferential flow/
Water infiltration/
Dye tracer/
WHCNS model/
Nitrogen leaching
HTML全文
图1上庄实验站亮蓝染色示踪试验示意图
1:亮蓝溶液; 2:马氏瓶发泡口; 3:输水软管; 4:土壤; 5:外环; 6:内环; 7:马氏瓶; 8:清水。
Figure1.Schematic diagram of bright blue staining tracer test at Shangzhuang Experimental Station
1: bright blue solution; 2: Markov bottle foaming mouth; 3: water hose; 4: soil; 5: outer ring; 6: inner ring; 7: Markov bottle; 8: fresh water.
下载: 全尺寸图片幻灯片
图2灌注法提取的虫洞形态示意图(a、b)和经三维扫描仪得到的虫洞三维结构示意图(c)
a、b虫洞形态分别采自科学园和上庄实验站, c是a经三维扫描仪处理得到的三维结构图。
Figure2.Schematic diagram of wormhole shape extracted by perfusion method (a, b) and schematic diagram of three-dimensional structure of wormhole obtained by 3D scanner (c)
The wormhole shapes in the figure a and b are collected from Kexueyuan and Shangzhuang Experimental Station, respectively, and the figure c is a three-dimensional structure map of the figure a obtained by processing with a three-dimensional scanner.
下载: 全尺寸图片幻灯片
图3科学园(KXY)和上庄实验站(SZ)部分观测点染色剖面图
Figure3.Dyeing cross-sectional view of some soil profiles of observation points of the Kexueyuan (KXY) and Shangzhuang Experimental Station (SZ)
下载: 全尺寸图片幻灯片
图4有无虫洞及不同施肥方式下各土层硝态氮含量变化的模拟结果
a:传统施肥+有虫洞; b:优化施肥+有虫洞; c:传统施肥+无虫洞; d:优化施肥+无虫洞; 竖线指灌溉点; 带单箭头的竖线指施肥点。
Figure4.Simulation results of soil nitrate nitrogen content of each soil layer with or without wormholes under different fertilization methods
a: traditional fertilization + wormhole; b: optimized fertilization + wormhole; c: traditional fertilization + without wormhole; d: optimized fertilization + without wormhole. Vertical lines refer to irrigation points; vertical lines with single arrows refer to fertilization points.
下载: 全尺寸图片幻灯片
图5不同灌溉方式下各土层硝态氮含量变化的模拟结果
a:喷灌; b:漫灌; 竖线指灌溉点; 带单箭头的竖线指施肥点。
Figure5.Simulation results of soil nitrate nitrogen content of each soil layer under different irrigation methods
a: sprinkler irrigation; b: furrow irrigation. Vertical lines refer to irrigation points; vertical lines with single arrows refer to fertilization points.
下载: 全尺寸图片幻灯片
图6有无强降雨条件下各土层硝态氮含量变化的模拟结果
a:正常降雨; b:存在强降雨; 竖线指灌溉点; 带单箭头的竖线指施肥点; 带双箭头的竖线指强降雨发生点。
Figure6.Simulation results of changes in nitrate nitrogen content of each soil layer with or without heavy rainfall
: normal rainfall; b: heavy rainfall. Vertical lines refer to irrigation points; vertical lines with single arrows refer to fertilization points; vertical lines with double arrows refer to points where heavy rainfall occurs.
下载: 全尺寸图片幻灯片
表1WHCNS模型土壤水力学参数
Table1.Soil hydraulic parameters of WHCNS model
土壤深度Soil depth (cm) | 容重Bulk density (g·cm-3) | Ks (cm·d-1) | θs(cm3·cm-3) | θr(cm3·cm-3) | FC (cm3·cm-3) | WP (cm3·cm-3) | 大孔隙度Macroporosity (%) | ||
有虫洞With wormhole | 无虫洞Without wormhole | 有虫洞With wormhole | 无虫洞Without wormhole | ||||||
0~10 | 1.53 | 4988.40 | 23.72 | 0.45 | 0.08 | 0.30 | 0.15 | 0.0039 | 0 |
10~20 | 1.49 | 16.10 | 16.10 | 0.49 | 0.08 | 0.36 | 0.16 | 0 | 0 |
20~40 | 1.44 | 18.83 | 18.83 | 0.48 | 0.08 | 0.36 | 0.18 | 0 | 0 |
40~60 | 1.36 | 24.61 | 24.61 | 0.46 | 0.08 | 0.34 | 0.17 | 0 | 0 |
60~100 | 1.36 | 28.12 | 28.12 | 0.48 | 0.08 | 0.36 | 0.18 | 0 | 0 |
Ks:饱和导水率; θs:饱和含水量; θr:残余含水量; FC:田间持水量; WP:萎蔫点。Ks: saturated hydraulic conductivity; θs: saturated water content; θr: residual water content; FC: field water capacity; WP: wilting point. |
下载: 导出CSV
表2科学园观测点稳定入渗速率和染色面积的正态性检验
Table2.Normality test of stable infiltration rate and dyed area at observation points of Kexueyuan
统计量Statistics | df | Sig. | |
稳定入渗速率Stable infiltration rate (cm·min-1) | 0.88 | 9 | 0.14 |
染色面积Dyed area (cm2) | 0.91 | 9 | 0.29 |
df:自由度; Sig.:显著性。df: degrees of freedom; Sig.: significance. |
下载: 导出CSV
表3WHCNS模型模拟的不同情景模式下0~100 cm土壤硝态氮的淋洗量
Table3.Leaching amount of nitrate nitrogen of 0-100 cm soil under different scenarios simulated by WHCNS model
有无虫洞及施肥方式With or without wormhole and fertilization method | 灌溉方式Irrigation method | 强降雨Heavy rainfall | ||||||||
WW+Con | WW+Opt | NW+Con | NW+Opt | FI | SI | WHR | NR | |||
硝态氮淋洗量Nitrate nitrogen leaching [kg(N)·hm-2] | 152.75 | 82.47 | 132.10 | 70.82 | 168.98 | 142.63 | 81.80 | 37.29 | ||
WW:有虫洞; Con:传统施肥; NW:无虫洞; Opt:优化施肥; FI:漫灌; SI:喷灌; WHR:有强降雨; NR:正常降雨。有无虫洞及施肥方式和灌溉方式下统计的是硝态氮年平均淋洗量, 强降雨统计的是一个夏玉米全生长季的年平均淋洗量。WW: with wormholes; Con: traditional fertilization; NW: without wormholes; Opt: optimized fertilization; FI: furrow irrigation; SI: sprinkler irrigation; WHR: with heavy rainfall; NR: normal rainfall. The statistics of wormholes and fertilization methods, and irrigation methods are the annual average leaching amount of nitrate nitrogen, and the statistics of heavy rainfall are the average annual leaching amount of a summer corn growing season. |
下载: 导出CSV
参考文献
[1] | 闫佰忠, 唐国林, 宋亚路.氮在土壤中的迁移与转化研究[J].中国环境管理丛书, 2009, (2): 42-44 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGN200902026.htm YAN B Z, TANG G L, SONG Y L. Study on the migration and transformation of nitrogen in soil[J]. China Environment Management, 2009, (2): 42-44 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGN200902026.htm |
[2] | BEVEN K, GERMANN P. Macropores and water flow in soils[J]. Water Resources Research, 1982, 18(5): 1311-1325 doi: 10.1029/WR018i005p01311 |
[3] | FLüHLER H, DURNER W, FLURY M. Lateral solute mixing processes — a key for understanding field-scale transport of water and solutes[J]. Geoderma, 1996, 70(2/4): 165-183 http://www.sciencedirect.com/science/article/pii/0016706195000798 |
[4] | GERKE H H. Preferential flow descriptions for structured soils[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 382-400 doi: 10.1002/jpln.200521955 |
[5] | LIN H. Linking principles of soil formation and flow regimes[J]. Journal of Hydrology, 2010, 393(1/2): 3-19 http://www.cabdirect.org/abstracts/20113409487.html |
[6] | GHODRATI M, JURY W A. A field study using dyes to characterize preferential flow of water[J]. Soil Science Society of America Journal, 1990, 54(6): 1558-1563 doi: 10.2136/sssaj1990.03615995005400060008x |
[7] | KRAMERS G, RICHARDS K G, HOLDEN N M. Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis[J]. Geoderma, 2009, 153(3/4): 362-371 http://www.sciencedirect.com/science/article/pii/S0016706109002754 |
[8] | 徐宗恒, 徐则民, 官琦, 等.不同植被发育斜坡土体优先流特征[J].山地学报, 2012, 30(5): 521-527 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201205002.htm XU Z H, XU Z M, GUAN Q, et al. The characteristic of preferential flow in different vegetated slope soils[J]. Journal of Mountain Science, 2012, 30(5): 521-527 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201205002.htm |
[9] | FISHKIS O, NOELL U, DIEHL L, et al. Multitracer irrigation experiments for assessing the relevance of preferential flow for non-sorbing solute transport in agricultural soil[J]. Geoderma, 2020, 371: 114386 doi: 10.1016/j.geoderma.2020.114386 |
[10] | HUSSAIN S I, FREY S K, BLOWES D W, et al. Reactive transport of manure-derived nitrogen in the vadose zone: consideration of macropore connectivity to subsurface receptors[J]. Vadose Zone Journal, 2019, 18(1): 1-18 doi: 10.2136/vzj2019.01.0002 |
[11] | CHENG J H, ZHANG H J, ZHANG Y Y, et al. Characteristics of preferential flow paths and their impact on nitrate nitrogen transport on agricultural land[J]. Polish Journal of Environmental Studies, 2014, 23(6): 1959-1964 http://or.nsfc.gov.cn/handle/00001903-5/456267 |
[12] | 吕文星.三峡库区三种土地利用方式优先流特征及其对硝态氮运移的影响[D].北京: 北京林业大学, 2013 LYU W X. Characteristics of preferential flow and its effect on nitrate nitrogen transport in three land use types of the Three Gorges Reservoir Area[D]. Beijing: Beijing Forestry University, 2013 |
[13] | LARSSON M H, JARVIS N J. A dual-porosity model to quantify macropore flow effects on nitrate leaching[J]. Journal of Environmental Quality, 1999, 28(4): 1298-1307 http://dl.sciencesocieties.org/publications/jeq/abstracts/28/4/JEQ0280041298 |
[14] | ZENG S C, SU Z Y, CHEN B G, et al. Nitrogen and phosphorus runoff losses from orchard soils in south China as affected by fertilization depths and rates[J]. Pedosphere, 2008, 18(1): 45-53 doi: 10.1016/S1002-0160(07)60101-5 |
[15] | 梁浩, 胡克林, 李保国, 等.土壤-作物-大气系统水热碳氮过程耦合模型构建[J].农业工程学报, 2014, 30(24): 54-66 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201424007.htm LIANG H, HU K L, LI B G, et al. Coupled simulation of soil water-heat-carbon-nitrogen process and crop growth at soil-plant-atmosphere continuum system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 54-66 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201424007.htm |
[16] | ZHANG H Y, HU K L, ZHANG L J. Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China[J]. Agricultural Water Management, 2019, 212: 273-282 doi: 10.1016/j.agwat.2018.09.018 |
[17] | 孙权, 张建丰, 张杰, 等.自动双环入渗仪设计与试验[J].农业工程学报, 2020, 36(10): 318-324 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202010038.htm SUN Q, ZHANG J F, ZHANG J, et al. Design and experiment of automatic double-ring infiltrometer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 318-324 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202010038.htm |
[18] | PRIEKSAT M A, ANKENY M D, KASPAR T C. Design for an automated, self-regulating, single-ring infiltrometer[J]. Soil Science Society of America Journal, 1992, 56(5): 1409-1411 doi: 10.2136/sssaj1992.03615995005600050013x |
[19] | WANG H Y, LI B G, JIN L, et al. Exploring a sustainable cropping system in the North China Plain using a modelling approach[J]. Sustainability, 2020, 12(11): 4588 doi: 10.3390/su12114588 |
[20] | LIANG H, QI Z M, HU K L, et al. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?[J]. Journal of Environmental Management, 2016, 181: 16-25 http://europepmc.org/abstract/MED/27294676 |
[21] | LIANG H, HU K L, QIN W, et al. Ground cover rice production system reduces water consumption and nitrogen loss and increases water and nitrogen use efficiencies[J]. Field Crops Research, 2019, 233: 70-79 doi: 10.1016/j.fcr.2019.01.003 |
[22] | LI Z J, HU K L, LI B G, et al. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach[J]. Agricultural Water Management, 2015, 159: 19-34 doi: 10.1016/j.agwat.2015.05.010 |
[23] | LIANG H, HU K L, BATCHELOR W D, et al. Modeling dissolved organic nitrogen dynamics under different N management practices for intensive greenhouse production using an improved WHCNS_veg model[J]. Geoderma, 2019, 337: 1039-1050 doi: 10.1016/j.geoderma.2018.11.018 |
[24] | GERMANN P F, HENSEL D. Poiseuille flow geometry inferred from velocities of wetting fronts in soils[J]. Vadose Zone Journal, 2006, 5(3): 867-876 doi: 10.2136/vzj2005.0080 |
[25] | 邢素丽, 杜金钟, 刘孟朝, 等.大尺度冬小麦-夏玉米微喷灌精准自动施肥增产效应[J].农业工程学报, 2019, 35(6): 100-106 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906012.htm XING S L, DU J Z, LIU M C, et al. Yield increasing effect of precision automatic fertilization and micro-spray irrigation for winter wheat-summer maize in large-scale[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 100-106 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906012.htm |
[26] | 黄绍敏, 皇甫湘荣, 宝德俊, 等.土壤中硝态氮含量的影响因素研究[J].农业环境保护, 2001, 20(5): 351-354 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200105018.htm HUANG S M, HUANGPU X R, BAO D J, et al. Factors affecting content of nitrate-nitrogen in soil[J]. Agro-Environmental Protection, 2001, 20(5): 351-354 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200105018.htm |
[27] | 郑欣, 程金花, 张洪江, 等.北京地区2种类型土壤优先流染色形态特征及其影响因素[J].水土保持学报, 2018, 32(3): 113-119 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201803018.htm ZHENG X, CHENG J H, ZHANG H J, et al. Characteristics and influencing factors of preferential flow dyeing morphology of two soils in Beijing[J]. Journal of Soil and Water Conservation, 2018, 32(3): 113-119 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201803018.htm |
[28] | 张静举.广西喀斯特区甘蔗地土壤大孔隙流特征研究[D].桂林: 桂林理工大学, 2018 ZHANG J J. Study on the macropore flow characteristics of sugarcane soil in karst region of Guangxi[D]. Guilin: Guilin University of Technology, 2018 |
[29] | GISH T J, COFFMAN C B. Solute transport under no-till field corn[J]. Transactions of the ASAE, 1987, 30(5): 1358-1363 doi: 10.13031/2013.30571 |
[30] | 杨霞, 邵东国, 徐保利.东北寒区黑土稻田土壤水分剖面二维运动规律研究[J].水利学报, 2018, 49(8): 1017-1026 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201808013.htm YANG X, SHAO D G, XU B L. Indoor experiment and simulation of soil water two-dimensional movement of the paddy fields in the northeast frigid of China[J]. Journal of Hydraulic Engineering, 2018, 49(8): 1017-1026 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201808013.htm |
[31] | 陈淼, 李小娟, 陈歆, 等.不同施肥处理下热带土壤硝态氮累积特征及与土壤pH值、辣椒产量的关系[J].西南农业学报, 2018, 31(5): 1045-1050 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201805027.htm CHEN M, LI X J, CHEN X, et al. Characteristics of nitrate nitrogen accumulation in tropical soil and its relationship with pH and chilly yield under different fertilization treatments[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(5): 1045-1050 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201805027.htm |
[32] | 秦雪超, 潘君廷, 郭树芳, 等.化肥减量替代对华北平原小麦-玉米轮作产量及氮流失影响[J].农业环境科学学报, 2020, 39(7): 1558-1567 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202007016.htm QIN X C, PAN J T, GUO S F, et al. Effects of chemical fertilizer reduction combined with biogas fertilizer on crop yield of wheat-maize rotation and soil nitrogen loss in North China Plain[J]. Journal of Agro-Environment Science, 2020, 39(7): 1558-1567 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202007016.htm |
[33] | 王彬俨, 程金花, 张洪江, 等.北京昌平区农地土壤优先流影响硝态氮运移的试验分析[J].中国水土保持科学, 2013, 11(4): 36-41 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201304007.htm WANG B Y, CHENG J H, ZHANG H J, et al. Experimental analysis of preferential flow and its effect on nitrate nitrogen migration in soil of farmland at Changping District in Beijing[J]. Science of Soil and Water Conservation, 2013, 11(4): 36-41 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201304007.htm |
[34] | PATIL M D, DAS B S, BHADORIA P B S. A simple bund plugging technique for improving water productivity in wetland rice[J]. Soil and Tillage Research, 2011, 112(1): 66-75 doi: 10.1016/j.still.2010.11.010 |
[35] | 杜春先, 聂俊华, 王祥峰.室内模拟有机肥中NO3-、NO2-的淋失规律及其对土壤环境的影响[J].山东农业科学, 2004, (6): 48-50 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI200406019.htm DU C X, NIE J H, WANG X F. Effect of organic fertilizer on soil environment NO3-, NO2- under the condition of imitation[J]. Shandong Agricultural Sciences, 2004, (6): 48-50 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI200406019.htm |
[36] | 孙泽强, 康跃虎, 刘海军.喷灌冬小麦农田土壤水分分布特征及水量平衡[J].干旱地区农业研究, 2006, 24(1): 100-107 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200601021.htm SUN Z Q, KANG Y H, LIU H J. Characteristics of nitrate distribution in deep unsaturated zone in farmland[J]. Agricultural Research in the Arid Areas, 2006, 24(1): 100-107 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200601021.htm |