删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

施氮量对潮土区冬小麦-夏玉米轮作农田氮磷淋溶的影响

本站小编 Free考研考试/2022-01-01

骆晓声1,,
寇长林1,,,
王小非1,
李太魁1,
王洪媛2,,
1.河南省农业科学院植物营养与资源环境研究所 郑州 450002
2.中国农业科学院农业资源与农业区划研究所 北京 100081
基金项目: 国家重点研发计划项目2016YFD0800101
河南省农业科学院优秀青年科技基金项目2020YQ22

详细信息
作者简介:骆晓声, 主要从事农业生态环境研究。E-mail: luoxiaosheng630@163.com
通讯作者:寇长林, 主要从事农业生态环境研究,E-mail: koucl@126.com
王洪媛, 主要从事农业面源污染防治研究, E-mail: wanghongyuan@caas.cn
中图分类号:X523

计量

文章访问数:334
HTML全文浏览量:9
PDF下载量:275
被引次数:0
出版历程

收稿日期:2020-07-07
录用日期:2020-09-02
刊出日期:2021-01-01

Effects of nitrogen application on nitrogen and phosphorus leaching in fluvo-aquic soil on a winter wheat-summer maize rotation farmland

LUO Xiaosheng1,,
KOU Changlin1,,,
WANG Xiaofei1,
LI Taikui1,
WANG Hongyuan2,,
1. Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Funds: the National Key Research and Development Project of China2016YFD0800101
the Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences2020YQ22

More Information
Corresponding author:KOU Changlin, E-mail: koucl@126.com;WANG Hongyuan, E-mail: wanghongyuan@caas.cn


摘要
HTML全文
(3)(5)
参考文献(31)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:潮土是我国华北地区主要土壤类型之一, 潮土区是我国冬小麦-夏玉米作物的主要产区, 研究不同施氮量潮土氮磷淋溶特征对于指导区域农田面源污染防控具有重要意义。本研究设置3个施肥处理, 即传统施氮(CON)、优化施氮(OPT)和优化再减氮(OPTJ), 利用田间渗漏池法, 研究潮土冬小麦-夏玉米轮作农田硝态氮及总磷淋溶特征。结果表明: 2016—2018年, 冬小麦-夏玉米轮作周年不同施肥处理90 cm土层年淋溶水量79.0~102.5 mm, 不同淋溶事件间土壤淋溶液硝态氮浓度波动较大, CON、OPT和OPTJ处理单次淋溶事件硝态氮浓度分别为18.9~208.7(平均为72.7) mg·L-1、9.0~99.2(平均为33.8) mg·L-1、4.7~55.5(平均为15.4) mg·L-1。本研究区域冬小麦-夏玉米轮作模式的氮素淋溶风险较高, 磷素淋溶风险较低。传统施氮处理(CON)下农田硝态氮的平均淋溶量和表观淋失系数分别为66.4 kg·hm-2和10.3%, 而总磷(TP)为0.06 kg·hm-2和0.04%。氮肥减施会显著降低氮素淋失, OPT和OPTJ处理的氮素淋溶减排率可达56.3%和78.9%。两个年度CON、OPT和OPTJ处理硝态氮平均表观淋失溶系数分别为10.3%、6.2%和4.9%, 随着施氮量的增加, 硝态氮淋失溶系数动态增加。氮淋溶具有较大的年际变化, 降雨量高的2018年比降雨少的2017年硝态氮淋溶量多57.0%。两个年度CON、OPT和OPTJ处理总磷平均淋溶量分别为0.06 kg·hm-2、0.06 kg·hm-2和0.08 kg·hm-2。适量减施氮肥会增加作物产量, OPT处理的作物产量是CON处理的1.08倍。然而, 过量减施则会带来减产风险, OPTJ处理氮肥减施56%, 作物产量比CON处理降低2.0%~8.1%。总之, 潮土区农田硝态氮淋溶风险较大, 适量减施氮肥能够在保证作物产量的基础上显著降低氮素淋失损失。
关键词:潮土/
施氮量/
淋溶/
冬小麦-夏玉米轮作/
硝态氮/
总磷/
产量
Abstract:Fluvo-aquic soil is predominant in the North China Plain, where a large amount of wheat and corn are grown in China. Understanding the relationship between nitrogen and phosphorus leaching and nitrogen application is important for preventing and controlling nonpoint source pollution in this area. The field seepage pool method was used to explore nitrate nitrogen and total phosphorus leaching in fluvo-aquic soil on a winter wheat and summer maize rotation farmland. Three fertilization treatments were tested: traditional nitrogen application (CON), optimized nitrogen application (OPT), and optimized nitrogen plus nitrogen reduction (OPTJ). The results showed that from 2016 to 2018, the annual leachate volume from the 90 cm soil layer was between 79.0 and 102.5 mm (all treatments). The leached nitrate nitrogen concentrations were 18.9-208.7 (average 72.7) mg·L-1 (CON), 9.0-99.2 (average 33.8) mg·L-1 (OPT), and 4.7-55.5 (average 15.4) mg·L-1 (OPTJ), fluctuating among leaching events. The nitrogen leaching risk was higher, and the phosphorus leaching risk was lower in the fluvo-aquic soil area. The average leaching amount was 66.4 kg·hm-2 and apparent leaching loss coefficient was 10.3% for nitrate nitrogen; these values for total phosphorus were 0.06 kg·hm-2 and 0.04%, respectively. Reducing nitrogen fertilizer decreased nitrogen leaching by 56.3% (OPT) and 78.9% (OPTJ), and the apparent leaching coefficients were 10.3% (CON), 6.2% (OPT), and 4.9% (OPTJ), indicating that nitrate nitrogen leaching increased as nitrogen fertilizer increased. Nitrogen leaching had interannual variation; 2018 had high rainfall, and the leaching amount was 57.0% higher than in 2017, which had low rainfall. During the sampling years, the total phosphorus leached was 0.06 kg·hm-2 (CON), 0.06 kg·hm-2 (OPT), and 0.08 kg·hm-2 (OPTJ). A moderate nitrogen fertilizer reduction increased crop yield; the OPT yield was 1.08 times higher than the CON yield. However, excessive fertilizer reduction decreased yield. OPTJ had 56% less nitrogen than CON, and the yield decreased by 2.0%-8.1%. The partial factor productivities were 25.3 kg·hm-2 (CON), 35.7 kg·hm-2 (OPT), and 57.4 kg·hm-2 (OPTJ) for winter wheat and 28.5 kg·hm-2 (CON), 44.8 kg·hm-2 (OPT), and 62.7 kg·hm-2 (OPTJ) for summer maize. The nitrogen fertilizer partial factor productivities of OPT and OPTJ were significantly higher than that of CON. These results showed that the nitrate nitrogen leaching potential was high in fluvo-aquic soil, and reducing nitrogen fertilizer could significantly reduce nitrogen loss without decreasing crop yield. Considering crop yield and nitrate nitrogen leaching risk together, the optimal nitrogen amount for winter wheat and summer maize farmland in the study area was 465 kg·hm-2. When nitrogen decreased to 285 kg·hm-2, nitrogen leaching sharply decreased, but the crop yield decreased slightly.
Key words:Fluvo-aquic soil/
Nitrogen application rate/
Leaching/
Winter wheat-summer maize rotation system/
Nitrate nitrogen/
Total phosphorus/
Yield

HTML全文


图1两个监测年度试验点月降雨量及灌溉量
Figure1.Monthly rainfall and irrigation in the experiment site during two sampling years


下载: 全尺寸图片幻灯片


图22017年和2018年不同施肥处理冬小麦-夏玉米轮作周期年淋溶水量
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。不同小写字母表示同一年份不同处理间在0.05水平差异显著。
Figure2.Annual leachate amounts under different fertilization treatments for winter wheat-summer maize rotation in 2017 and 2018
CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus nitrogen reduction. Different lowercase letters indicate significant differences among different treatments in the same year at P < 0.05 level.


下载: 全尺寸图片幻灯片


图32017年和2018年不同处理冬小麦-夏玉米轮作农田土壤淋溶液硝态氮浓度
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。不同小写字母表示同一淋溶次数不同处理间在0.05水平差异显著。
Figure3.Leachate nitrate nitrogen concentrations under different fertilization treatments for winter wheat-summer maize rotation system in 2017 and 2018
CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus further nitrogen reduction. Different lowercase letters indicate significant differences among different treatments at the same leaching time at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1不同施肥处理冬小麦和夏玉米季氮磷和钾肥总施用量
Table1.Total application rates of nitrogen, phosphorus and potassium fertilizers of different fertilization treatments for winter wheat and summer maize seasons?kg·hm-2
处理Treatment 冬小麦Winter wheat 夏玉米Summer maize
N P2O5 K2O N P2O5 K2O
CON 315.0 90.0 90.0 330.0 67.5 67.5
OPT 225.0 90.0 90.0 240.0 67.5 67.5
OPTJ 135.0 90.0 90.0 150.0 67.5 67.5
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus nitrogen reduction.


下载: 导出CSV
表22017年和2018年不同处理冬小麦-夏玉米产量及氮肥偏生产力
Table2.Yields and average nitrogen partial factor productivities under different fertilization treatments for winter wheat and summer maize in 2017 and 2018
处理Treatment 产量Yield (kg·hm-2) 氮肥偏生产力PFP (kg·kg-1)
小麦(2017) Wheat 玉米(2017) Maize 小麦(2018) Wheat 玉米(2018) Maize 小麦(2017) Wheat 玉米(2017) Maize 小麦(2018) Wheat 玉米(2018) Maize
CON 7274.0±399.8a 9008.5±1443.6a 8694.0±243.1a 9791.1±442.0a 23.1±1.3c 27.3.±4.4c 27.6±0.8c 29.7±1.3c
OPT 7170.5±292.0a 10 657.5±1254.5a 8885.9±1613.2a 10 831.1±616.2a 31.9±1.3b 44.4±5.2b 39.5±7.2b 45.1±2.6b
OPTJ 7400.3±325.6a 9215.0±743.0a 7990.0±415.3a 9596.7±574.6a 54.8±2.4a 61.4±5.0a 59.2±3.1a 64.0±3.8a
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。数值表示平均值±标准差。不同小写字母表示不同处理间差异达显著水平(P < 0.05)。CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus nitrogen reduction. PFP: partial factor productivity from applied N. The data is average value ± standard deviation. Different lowercase letters mean significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表32017年和2018年不同施肥处理冬小麦-夏玉米轮作农田硝态氮淋溶量及表观淋失溶系数
Table3.Nitrate nitrogen leaching amounts and apparent nitrate nitrogen leaching loss coefficients under different fertilization treatments for winter wheat-summer maize rotation system in 2017 and 2018
年度Year 淋溶量Leaching amount (kg·hm-2) 硝态氮表观淋失溶系数Apparent nitrate nitrogen leaching loss coefficient(%)
CON OPT OPTJ CON OPT OPTJ
2017 53.8±1.8a 21.3±6.6b 10.0±2.0c 8.3±0.3a 4.6±1.4b 3.5±0.7b
2018 78.9±8.6a 36.7±12.5b 18.0±6.4b 12.2±1.3a 7.9±2.7b 6.3±2.2b
平均Average 66.4 29.0 14.0 10.3 6.2 4.9
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。同行不同小写字母表示不同处理之间差异显著(P < 0.05)。CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus nitrogen reduction. Different lowercase letters in the same row indicate significant differences at P < 0.05 level among different treatments.


下载: 导出CSV
表4试验期不同施肥处理冬小麦-夏玉米轮作农田根层土壤硝态氮残留特征
Table4.Residue nitrate nitrogen in root zone soil under different fertilization treatments for winter wheat-summer maize rotation system during sampling period?kg·hm-2
土层Soil layer (cm) 2018小麦基肥前Before base fertilizer of wheat in 2018 2018小麦追肥前Before topdressing of wheat in 2018
CON OPT OPTJ CON OPT OPTJ
0~30 117.5±31.1a 111.6±35.1ab 57.2±9.5b 111.8±43.9a 49.1±23.0ab 27.5±8.3b
30~60 150.6±30.8a 95.0±16.5b 33.5±28.9c 76.8±29.5a 50.0±28.6ab 34.9±9.2b
60~90 132.2±25.7a 57.4±5.5b 24.3±12.4c 83.2±21.4a 63.6±17.5ab 39.8±14.9b
合计Total 400.3 264.0 115.0 271.9 162.7 102.3
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。同行不同小写字母表示不同处理之间差异显著(P < 0.05)。CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus nitrogen reduction. Different lowercase letters in the same row indicate significant differences at P < 0.05 level among different treatments.


下载: 导出CSV
表52017年和2018年不同施肥处理冬小麦-夏玉米轮作农田土壤淋溶液总磷浓度及淋溶量
Table5.Leachate concentrations and leaching amount of total phosphorus under different fertilization treatments for winter wheat-summer maize rotation system in 2017 and 2018
处理Treatment 总磷浓度Total P concentration (mg·L-1) 总磷淋溶量Total P leaching amount (kg·hm-2)
2017 2018 2017 2018
CON 0.10±0.06a 0.04±0.02a 0.09±0.01a 0.03±0.00a
OPT 0.08±0.03a 0.06±0.02a 0.07±0.03a 0.04±0.01a
OPTJ 0.10±0.07a 0.06±0.03a 0.12±0.02a 0.04±0.01a
CON:传统施氮; OPT:优化施氮; OPTJ:优化再减氮。同列不同小写字母表示不同处理间差异显著(P < 0.05)。CON: traditional nitrogen application; OPT: optimized nitrogen application; OPTJ: optimized nitrogen plus nitrogen reduction. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.


下载: 导出CSV

参考文献(31)
[1]巨晓棠, 谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报, 2014, 20(4): 783-795 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201404001.htm
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201404001.htm
[2]夏梦洁, 马乐乐, 师倩云, 等.黄土高原旱地夏季休闲期土壤硝态氮淋溶与降水年型间的关系[J].中国农业科学, 2018, 51(8): 1537-1546 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201808011.htm
XIA M J, MA L L, SHI Q Y, et al. The relationship of NO3--N leaching and rainfall types during summer fallow in the Loess Plateau dryland[J]. Scientia Agricultura Sinica, 2018, 51(8): 1537-1546 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201808011.htm
[3]PADILLA F M, GALLARDO M, MANZANO-AGUGLIARO F. Global trends in nitrate leaching research in the 1960-2017 period[J]. Science of the Total Environment, 2018, 643: 400-413 doi: 10.1016/j.scitotenv.2018.06.215
[4]PLAZA-BONILLA D, NOLOT J M, RAFFAILLAC D, et al. Cover crops mitigate nitrate leaching in cropping systems including grain legumes: Field evidence and model simulations[J]. Agriculture, Ecosystems & Environment, 2015, 212: 1-12 http://www.sciencedirect.com/science/article/pii/S0167880915300050
[5]OENEMA O, WITZKE H P, KLIMONT Z, et al. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27[J]. Agriculture, Ecosystems & Environment, 2009, 133(3/4): 280-288 http://www.sciencedirect.com/science/article/pii/S0167880909001376
[6]ROELSMA J, HENDRIKS R F A. Comparative study of nitrate leaching models on a regional scale[J]. Science of the Total Environment, 2014, 499: 481-496 doi: 10.1016/j.scitotenv.2014.07.030
[7]DEMURTAS C E, SEDDAIU G, LEDDA L, et al. Replacing organic with mineral N fertilization does not reduce nitrate leaching in double crop forage systems under Mediterranean conditions[J]. Agriculture, Ecosystems & Environment, 2016, 219: 83-92 doi: 10.1016/j.agee.2015.12.010
[8]JABLOUN M, SCHELDE K, TAO F L, et al. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark[J]. European Journal of Agronomy, 2015, 62: 55-64 doi: 10.1016/j.eja.2014.09.007
[9]王静, 郭熙盛, 王允青.秸秆覆盖与平衡施肥对巢湖流域农田磷素流失的影响研究[J].中国土壤与肥料, 2009, (5): 53-56 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200905013.htm
WANG J, GUO X S, WANG Y Q. Effects of straw mulch and balanced fertilization on phosphorus loss from farmland in Chaohu Lake Region[J]. Soil and Fertilizer Sciences in China, 2009, (5): 53-56 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200905013.htm
[10]肖辉, 潘洁, 程文娟, 等.不同有机肥对设施土壤有效磷累积与淋溶的影响[J].土壤通报, 2012, 43(5): 1195-1200 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201205030.htm
XIAO H, PAN J, CHENG W J, et al. Effect of different organic manures on accumulation and leaching of Olsen-P in greenhouse soil[J]. Chinese Journal of Soil Science, 2012, 43(5): 1195-1200 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201205030.htm
[11]MEISINGER J J, DELGADO J A. Principles for managing nitrogen leaching[J]. Journal of Soil and Water Conservation, 2002, 57(6): 485-498 http://dialnet.unirioja.es/servlet/articulo?codigo=683961
[12]CUI Z L, ZHANG F S, CHEN X P, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test[J]. Field Crops Research, 2008, 105(1/2): 48-55 http://europepmc.org/abstract/AGR/IND44007619
[13]陈云增, 陈志凡, 马建华, 等.沙颍河流域典型癌病高发区土壤硝态氮对地下水和蔬菜硝酸盐积累的影响[J].环境科学学报, 2016, 36(3): 990-998 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201603032.htm
CHEN Y Z, CHEN Z F, MA J H, et al. Effects of soil nitrate nitrogen on the nitrate accumulation in groundwater and vegetables in a typical high cancer incidence area of Shaying River basin[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 990-998 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201603032.htm
[14]赵同科, 张成军, 杜连凤, 等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报, 2007, 26(2): 779-783 doi: 10.3321/j.issn:1672-2043.2007.02.072
ZHAO T K, ZHANG C J, DU L F, et al. Investigation on nitrate concentration in groundwater in seven provinces (city) surrounding the Bo-Hai Sea[J]. Journal of Agro-Environment Science, 2007, 26(2): 779-783 doi: 10.3321/j.issn:1672-2043.2007.02.072
[15]王仕琴, 郑文波, 孔晓乐.华北农区浅层地下水硝酸盐分布特征及其空间差异性[J].中国生态农业学报, 2018, 26(10): 1476-1482 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201810007.htm
WANG S Q, ZHENG W B, KONG X L. Spatial distribution characteristics of nitrate in shallow groundwater of the agricultural area of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1476-1482 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201810007.htm
[16]YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/ maize rotation (2008-2014)[J]. Field Crops Research, 2017, 206: 1-10 doi: 10.1016/j.fcr.2017.02.016
[17]JU X T, ZHANG C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review[J]. Journal of Integrative Agriculture, 2017, 16(12): 2848-2862 doi: 10.1016/S2095-3119(17)61743-X
[18]秦雪超, 潘君廷, 郭树芳, 等.化肥减量替代对华北平原小麦-玉米轮作产量及氮流失影响[J].农业环境科学学报, 2020, 39(7): 1558-1567 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202007016.htm
QIN X C, PAN J T, GUO S F, et al. Effects of chemical fertilizer reduction combined with biogas fertilizer on crop yield of wheat-maize rotation and soil nitrogen loss in North China Plain[J]. Journal of Agro-Environment Science, 2020, 39(7): 1558-1567 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202007016.htm
[19]骆晓声, 寇长林, 王红建, 等.氮磷肥减施对露地蔬菜农田氮磷淋溶及蔬菜产量的影响[J].土壤通报, 2020, 51(2): 436-441 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202002023.htm
LUO X S, KOU C L, WANG H J, et al. Effects of decreasing nitrogen and phosphorus fertilizers on nitrogen and phosphorus leaching and vegetable yield in field[J]. Chinese Journal of Soil Science, 2020, 51(2): 436-441 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202002023.htm
[20]YANG X L, LU Y L, TONG Y A, et al. A 5-year lysimeter monitoring of nitrate leaching from wheat-maize rotation system: Comparison between optimum N fertilization and conventional farmer N fertilization[J]. Agriculture, Ecosystems & Environment, 2015, 199: 34-42 http://pustaka.litbang.pertanian.go.id/infoter/Pumum/Agriculture%20ecosystem.pdf
[21]GU L M, LIU T N, ZHAO J, et al. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain[J]. Journal of Integrative Agriculture, 2015, 14(2): 374-388 doi: 10.1016/S2095-3119(14)60747-4
[22]巨晓棠, 谷保静.氮素管理的指标[J].土壤学报, 2017, 54(2): 281-296 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201702001.htm
JU X T, GU B J. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281-296 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201702001.htm
[23]WANG Y C, YING H, YIN Y L, et al. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis[J]. Science of the Total Environment, 2019, 657: 96-102 doi: 10.1016/j.scitotenv.2018.12.029
[24]DAI J, WANG Z H, LI M H, et al. Winter wheat grain yield and summer nitrate leaching: Long-term effects of nitrogen and phosphorus rates on the Loess Plateau of China[J]. Field Crops Research, 2016, 196: 180-190 doi: 10.1016/j.fcr.2016.06.020
[25]LU J, BAI Z H, VELTHOF G L, et al. Accumulation and leaching of nitrate in soils in wheat-maize production in China[J]. Agricultural Water Management, 2019, 212: 407-415 doi: 10.1016/j.agwat.2018.08.039
[26]杨宪龙, 路永莉, 同延安, 等.施氮和秸秆还田对小麦-玉米轮作农田硝态氮淋溶的影响[J].土壤学报, 2013, 50(3): 564-573 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201303018.htm
YANG X L, LU Y L, TONG Y A, et al. Effects of application of nitrogen fertilizer and incorporation of straw on nitrate leaching in farmland under wheat-maize rotation system[J]. Acta Pedologica Sinica, 2013, 50(3): 564-573 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201303018.htm
[27]习斌, 翟丽梅, 刘申, 等.有机无机肥配施对玉米产量及土壤氮磷淋溶的影响[J].植物营养与肥料学报, 2015, 21(2): 326-335 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201502007.htm
XI B, ZHAI L M, LIU S, et al. Effects of combination of organic and inorganic fertilization on maize yield and soil nitrogen and phosphorus leaching[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 326-335 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201502007.htm
[28]WANG H Y, ZHANG Y T, CHEN A Q, et al. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects[J]. Field Crops Research, 2017, 207: 52-61
[29]ZHANG Y T, WANG H Y, LEI Q L, et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain[J]. Science of the Total Environment, 2018, 618: 1173-1183 http://www.sciencedirect.com/science/article/pii/S0048969717325342?via%3Dihub
[30]CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486-489
[31]巨晓棠.理论施氮量的改进及验证——兼论确定作物氮肥推荐量的方法[J].土壤学报, 2015, 52(2): 249-261 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201502001.htm
JU X T. Improvement and validation of theoretical N rate (TNR) — Discussing the methods for N fertilizer recommendation[J]. Acta Pedologica Sinica, 2015, 52(2): 249-261 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201502001.htm

相关话题/优化 土壤 农田 农业 作物