张杰1,
曾辉1,
丁天宇1,
罗志英1, 2,
李丽丽3,
胡克林1,
刘刚1,,
1.中国农业大学 北京 100193
2.中山火炬高技术产业开发区农业服务中心 中山 528436
3.清华大学 北京 100084
基金项目: 国家重点研发计划项目2016YFD0800102
国家自然科学基金项目41771257
详细信息
作者简介:阿力曼, 主要研究方向为土壤裂隙的动态发育规律。E-mail:1351050909@qq.com
通讯作者:刘刚, 主要研究方向为多孔介质中的能量与质量传递过程、溶质和水分的运动规律、热脉冲探针方法的改进。E-mail:liug@cau.edu.cn
中图分类号:S143.1+3计量
文章访问数:270
HTML全文浏览量:4
PDF下载量:166
被引次数:0
出版历程
收稿日期:2020-06-27
录用日期:2020-09-08
刊出日期:2021-01-01
The effects of farmland cracks on nitrate leaching in the North China Plain
A Liman1,,ZHANG Jie1,
ZENG Hui1,
DING Tianyu1,
LUO Zhiying1, 2,
LI Lili3,
HU Kelin1,
LIU Gang1,,
1. China Agricultural University, Beijing 100193, China
2. Agricultural Service Center of Zhongshan Torch High-tech Industrial Development Zone, Zhongshan 528436, China
3. Tsinghua University, Beijing 100084, China
Funds: the National Key Research and Development Project of China2016YFD0800102
the National Natural Science Foundation of China41771257
More Information
Corresponding author:LIU Gang, E-mail:liug@cau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:土壤干缩开裂是常见的自然现象。目前关于土壤干缩开裂的研究主要集中于裂缝的最终形态特征,并且以室内试验为主。本研究通过室外大田试验,结合动态计算机图像分析及水氮运移模拟软件WHCNS,研究土壤干缩开裂的动力学过程、特征及其对农田水氮运移的影响。利用原位熔化石蜡浇筑得到了裂缝三维结构形态,借助三维激光扫描仪量化裂缝的几何特征,发现每平米裂缝平均长度为4.58 m,裂缝上表面平均宽度为5.72 mm,平均深度为9.06 cm。基于三维扫描仪提取得到的裂缝几何参数,通过WHCNS仿真模拟,发现相较于无裂隙情况,裂隙的存在分别增加了传统施肥和优化施肥情况下97.40%和256.43%的硝态氮淋失量;与优化施肥模式相比,传统施肥模式更容易造成硝态氮的淋失风险。在模拟灌溉模式对硝态氮淋洗情况的影响时,其差异不明显;强降雨的设置同样增加了硝态氮的淋失风险,导致硝态氮的年均淋洗量增加83.61%。裂缝的存在严重影响农田作物对肥料的吸收和利用,通过优化施肥量、更改灌溉模式以及避免强降雨前施肥都可以减少肥料的损失。
关键词:农田土壤/
裂缝/
三维结构/
WHCNS模型/
硝态氮淋失
Abstract:Desiccation cracking is a common soil natural phenomenon. Research on desiccation cracking has mainly focused on morphological characteristics in lab-based experiments. In this study, three-dimensional (3D) geometric crack structures were extracted using paraffin casting in the field and transient image processing. The influence of cracks on farmland water and nitrogen leaching was quantified using the Water Heat Carbon Nitrogen Simulator (WHCNS) model. The 3D structural characteristics of the cracks obtained by the laser scanner were as follows: average length per square meter = 4.58 m, average surface width = 5.72 mm, and average depth = 9.06 cm. WHCNS analysis showed that cracks increased nitrogen leaching (97.40%, traditional fertilizer; 256.43%, optimized fertilizer), and that traditional fertilizer application had a greater nitrate nitrogen leaching risk. Irrigation type did not affect nitrate leaching, but heavy rainfall increased the risk and led to an 83.61% annual leaching volume increase. Additionally, the WHCNS model was used to simulate the effects of fracture, fertilization, irrigation, and rainfall intensity on nitrate leaching. The results showed that cracks had a notable influence on nitrate nitrogen leaching using optimal and traditional fertilization methods, and optimized fertilization reduced nitrate nitrogen leaching. Precipitation intensity was a key factor affecting nitrogen leaching. In this study, the simulation only calculated the nitrate nitrogen leached to underground and ignored nitrogen runoff from heavy precipitation, reducing the effect of precipitation on nitrogen leaching; however, the timing and amount of fertilizer and precipitation should be considered together when managing fields, especially in the summer, when rainfall is concentrated. The simulation showed that irrigation did not affect nitrate nitrogen leaching, which may be related to irrigation intensity and the leaching soil layer (100 cm) set by the model. However, the basin irrigation amount simulated in this study could not leach nitrate nitrogen below the 100 cm soil layer, which may have contributed to the small differences between methods. Thus, sprinkling irrigation and optimized fertilization should be adopted in combination to take full advantage of the water and fertilizer saving methods.
Key words:Farmland soil/
Crack/
3D structure/
WHCNS model/
Nitrate leaching
HTML全文
图1农田土壤裂缝的图像处理过程(A为原始图像, B为几何校正后的图片, C是二值化的B图, D是C图的骨架部分)
Figure1.Image processing process of farmland soil crack (A: original image; B: geometrically corrected images; C: binarization diagram of figure B; D: skeleton part of figure C)
下载: 全尺寸图片幻灯片
图2农田土壤裂缝三维形态提取裂缝示意图(a:灌水72 h的土壤开裂情况; b:石蜡灌制后的裂隙; c:经三维扫描仪扫描并处理后的1号裂缝三维结构)
Figure2.Schematic diagram of 3D morphology extraction of farmland soil crack (a: soil cracking after 72 h of irrigation; b: cracks after paraffin irrigation; c: 3D structure of crack No. 1 after scanning and processing by 3D scanner)
下载: 全尺寸图片幻灯片
图3裂缝存在及不同施肥方式下土壤剖面硝态氮含量随时间的变化(a:模拟期间降水、灌溉和施肥的时间; b:存在土壤裂缝+传统施肥; c:存在土壤裂缝+优化施肥; d:无土壤裂缝+传统施肥; e:无土壤裂缝+优化施肥)
P为降水, I为灌溉, F为施肥; CNO3--N为土壤硝态氮含量。
Figure3.Change of nitrate content in soil profile over time under influence of soil crack and fertilization modes (a: precipitation, irrigation and fertilization during simulation period; b: soil crack + traditional fertilization; c: soil crack + optimized fertilization; d: no soil cracks + traditional fertilization; e: no soil cracks + optimized fertilization)
P is precipitation, I is irrigation, and F is fertilization.CNO3--N is soil nitrate content.
下载: 全尺寸图片幻灯片
图4不同灌溉模式下土壤剖面硝态氮含量随时间的变化(a:模拟期间降水、灌溉和施肥的时间; b:漫灌; c:喷灌)
P为降水, I为灌溉, F为施肥; CNO3--N土壤硝态氮含量。
Figure4.Change of nitrate content in soil profile over time under influence of irrigation modes (a: precipitation, irrigation and fertilization during simulation period; b: flooding irrigation; c: sprinkler irrigation)
P is precipitation, I is irrigation, and F is fertilization.CNO3--N is soil nitrate content.
下载: 全尺寸图片幻灯片
图5降水影响下的土壤剖面硝态氮浓度随时间的变化情况(b:强降水; c:正常降水)
P为降水, HP+I为强降水+灌溉, F为施肥; CNO3--N为土壤硝态氮含量。
Figure5.Change of nitrate concentration in soil profile over time under the influence of precipitation (b: heavy precipitation; c: normal precipitation)
P is precipitation, HP+I is heavy precipitation + irrigation, and F is fertilization.CNO3--N is soil nitrate content.
下载: 全尺寸图片幻灯片
表1试验地土壤X射线衍射仪测定的矿物组成
Table1.Soil mineral composition of the experimental field determined by X-ray diffractometer?
蒙脱石 Montmorillonite | 石英 Quartz | 斜长石 Albite | 微斜长石 Microcline | 云母 Muscovite | 绿泥石 Clinochlore | 闪石 Amphibole |
5 | 53 | 18 | 13 | 5 | 3 | 3 |
下载: 导出CSV
表2WHCNS模型中土壤水力学性质参数
Table2.Parameters of soil hydraulics in WHCNS model
土层深度 Soil depth (cm) | 容重 Soil bulk density (g?cm-3) | Ks(cm?d-1) | θs (cm3?cm-3) | θr (cm3?cm-3) | FC (cm3?cm-3) | WP (cm3?cm-3) | 大孔隙度 Macroporsity (%) | ||
有土壤裂缝 With soil crack | 无土壤裂缝 No soil crack | 有土壤裂缝 With soil crack | 无土壤裂缝 No soil crack | ||||||
0~10 | 1.53 | 743 340.35 | 23.72 | 0.45 | 0.08 | 0.30 | 0.15 | 1.31 | 0 |
10~20 | 1.49 | 16.10 | 16.10 | 0.49 | 0.08 | 0.36 | 0.16 | 0 | 0 |
20~40 | 1.44 | 18.83 | 18.83 | 0.48 | 0.08 | 0.36 | 0.18 | 0 | 0 |
40~60 | 1.36 | 24.61 | 24.61 | 0.46 | 0.08 | 0.34 | 0.17 | 0 | 0 |
60~100 | 1.36 | 28.12 | 28.12 | 0.48 | 0.08 | 0.36 | 0.18 | 0 | 0 |
Ks是饱和导水率, θs是饱和含水量, θr是残余含水量, FC是田间持水量, WP是萎蔫点。Ks is saturated water conductivity. θs is saturated water content. θr is residual water content. FC is field water capacity. WP is wilting point. |
下载: 导出CSV
表3WHCNS模型模拟设置以及硝态氮淋洗量
Table3.WHCNS model simulation setting and nitrate leaching volume
编号 Number | 模拟设置 Simulation setting | 年均淋洗量 Annual average leaching (kg?hm-2) | ||||||||
土壤裂缝 Soil crack | 施肥 Fertilization | 灌溉 Irrigation | 降水 Precipitation | |||||||
方式 Pattern | 量Amount [kg(N)?hm-2] | 方式 Regime | 次/量 Times / amount (mm) | |||||||
1 | 有 Yes | 传统 Traditional | 560 | 喷灌 Spray | 8/45 | 正常 Normal (635 mm) | 236.93 | |||
2 | 无 No | 传统 Traditional | 560 | 喷灌 Spray | 8/45 | 正常 Normal (635 mm) | 120.03 | |||
3 | 有 Yes | 优化 Optimized | 380 | 喷灌 Spray | 8/45 | 正常 Normal (635 mm) | 198.60 | |||
4 | 无 No | 优化 Optimized | 380 | 喷灌 Spray | 8/45 | 正常 Normal (635 mm) | 50.72 | |||
5 | 有 Yes | 传统 Traditional | 560 | 漫灌 Flooding | 4/135 | 正常 Normal (635 mm) | 241.39 | |||
6 | 有 Yes | 传统 Traditional | 560 | 喷灌 Spray | 8/45 | 强 Heavy (750 mm) | 435.02 |
下载: 导出CSV
参考文献
[1] | 张展羽, 陈于, 孔莉莉, 等.土壤干缩裂缝几何特征对入渗的影响[J].农业机械学报, 2015, 46(10):192-197 doi: 10.6041/j.issn.1000-1298.2015.10.025 ZHANG Z Y, CHEN Y, KONG L L, et al. Impacts of desiccation crack geometric characteristics on infiltration in soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10):192-197 doi: 10.6041/j.issn.1000-1298.2015.10.025 |
[2] | PENG X, HORN R, PETH S, et al. Quantification of soil shrinkage in 2D by digital image processing of soil surface[J]. Soil and Tillage Research, 2006, 91(1/2):173-180 |
[3] | GREVE A, ANDERSEN M S, ACWORTH R I. Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil[J]. Journal of Hydrology, 2010, 393(1/2):105-113 |
[4] | NOVá K V. Soil-crack characteristics-estimation methods applied to heavy soils in the NOPEX area[J]. Agricultural and Forest Meteorology, 1999, 98/99:501-507 doi: 10.1016/S0168-1923(99)00119-7 |
[5] | NOVáK V, ?IM?UNEK J, VAN GENUCHTEN M T. Infiltration of water into soil with cracks[J]. Journal of Irrigation & Drainage Engineering, 2000, 126(1):41-47 |
[6] | 张中彬, 彭新华.土壤裂隙及其优先流研究进展[J].土壤学报, 2015, 52(3):477-488 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503002.htm ZHANG Z B, PENG X H. A review of researches on soil cracks and their impacts on preferential flows[J]. Acta Pedologica Sinica, 2015, 52(3):477-488 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503002.htm |
[7] | CHERTKOV V Y. Modelling cracking stages of saturated soils as they dry and shrink[J]. European Journal of Soil Science, 2002, 53(1):105-118 |
[8] | GOEHRING L. Evolving fracture patterns:Columnar joints, mud cracks and polygonal terrain[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(2004):20120353 |
[9] | VOGEL H J, HOFFMANN H, LEOPOLD A, et al. Studies of crack dynamics in clay soil:Ⅱ. A physically based model for crack formation[J]. Geoderma, 2005, 125(3/4):213-223 http://www.sciencedirect.com/science/article/pii/S0016706104001958 |
[10] | DASOG G S, SHASHIDHARA G B. Dimension and volume of cracks in a vertisol under different crop covers[J]. Soil Science, 1993, 156(6):424-428 |
[11] | ABOU NAJM M R, JABRO J D, IVERSEN W M, et al. New method for the characterization of three-dimensional preferential flow paths in the field[J]. Water Resources Research, 2010, 46(2):W02503 |
[12] | ZHANG Z B, ZHOU H, ZHAO Q G, et al. Characteristics of cracks in two paddy soils and their impacts on preferential flow[J]. Geoderma, 2014, 228/229:114-121 |
[13] | LIU G, LI B G, HU K L, et al. Simulating the gas diffusion coefficient in macropore network images:Influence of soil pore morphology[J]. Soil Science Society of America Journal, 2006, 70(4):1252-1261 |
[14] | 高海鹰, 黄丽江, 张奇, 等.不同降雨强度对农田土壤氮素淋失的影响及LEACHM模型验证[J].农业环境科学学报, 2008, 27(4):1346-1352 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200804015.htm GAO H Y, HUANG L J, ZHANG Q, et al. Nitrogen leaching under different rainfall intensities for agricultural soils-laboratory experiments and numerical modeling using LEACHM[J]. Journal of Agro-Environment Science, 2008, 27(4):1346-1352 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200804015.htm |
[15] | DECHMI F, BURGUETE J, SKHIRI A. SWAT application in intensive irrigation systems:Model modification, calibration and validation[J]. Journal of Hydrology, 2012, 470/471:227-238 |
[16] | 薛长亮, 张克强, 杨德光, 等. RZWQM模拟小麦-玉米轮作系统氮素运移及损失特征[J].中国生态农业学报, 2015, 23(2):150-158 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015203&flag=1 XUE C L, ZHANG K Q, YANG D G, et al. RZWQM simulation of nitrogen transport and loss under winter wheat/summer maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2):150-158 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015203&flag=1 |
[17] | HOOGMOED W B, BOUMA J. A simulation model for predicting infiltration into cracked clay soil[J]. Soil Science Society of America Journal, 1980, 44(3):458-461 |
[18] | JANSSEN M, LENNARTZ B, W?HLING T. Percolation losses in paddy fields with a dynamic soil structure:Model development and applications[J]. Hydrological Processes, 2010, 24(7):813-824 |
[19] | 梁浩, 胡克林, 李保国, 等.土壤-作物-大气系统水热碳氮过程耦合模型构建[J].农业工程学报, 2014, 30(24):54-66 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201424007.htm LIANG H, HU K L, LI B G, et al. Coupled simulation of soil water-heat-carbon-nitrogen process and crop growth at soil-plant-atmosphere continuum system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24):54-66 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201424007.htm |
[20] | LIANG H, QI Z M, HU K L, et al. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?[J]. Journal of Environmental Management, 2016, 181:16-25 |
[21] | WANG H Y, LI B G, JIN L, et al. Exploring a sustainable cropping system in the North China Plain using a modelling approach[J]. Sustainability, 2020, 12(11):4588 |
[22] | LI Z J, HU K L, LI B G, et al. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach[J]. Agricultural Water Management, 2015, 159:19-34 |
[23] | 梁浩, 胡克林, 孙媛, 等.设施菜地WHCNS_Veg水氮管理模型[J].农业工程学报, 2020, 36(5):96-105 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202005011.htm LIANG H, HU K L, SUN Y, et al. Integrated water and nitrogen management model of WHCNS_Veg for greenhouse vegetable production system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5):96-105 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202005011.htm |
[24] | COOK P G. A Guide to Regional Groundwater Flow in Fractured Rock Aquifers[M]. Henley Beach:Seaview Press, 2003 |
[25] | 黄绍敏, 皇甫湘荣, 宝德俊, 等.土壤中硝态氮含量的影响因素研究[J].农业环境保护, 2001, 20(5):351-354 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200105018.htm HUANG S M, HUANGPU X R, BAO D J, et al. Factors affecting content of nitrate-nitrogen in soil[J]. Agro-Environment Science, 2001, 20(5):351-354 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200105018.htm |
[26] | 张新星, 杨振杰, 彭云, 等.我国节水灌溉的现状与分析[J].安徽农业科学, 2014, 42(33):11972-11974 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201433128.htm ZHANG X X, YANG Z J, PENG Y, et al. Status and analysis of water-saving irrigation in China[J]. Journal of Anhui Agricultural Sciences, 2014, 42(33):11972-11974 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201433128.htm |
[27] | 王彬俨, 程金花, 张洪江, 等.北京昌平区农地土壤优先流影响硝态氮运移的试验分析[J].中国水土保持科学, 2013, 11(4):36-41 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201304007.htm WANG B Y, CHENG J H, ZHANG H J, et al. Experimental analysis of preferential flow and its effect on nitrate nitrogen migration in soil of farmland at Changping District in Beijing[J]. Science of Soil and Water Conservation, 2013, 11(4):36-41 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201304007.htm |
[28] | 卢数昌, 王小波, 翁福军, 等.不同施肥处理对设施土壤硝态氮运移和芹菜生长与品质的影响[J].天津农业科学, 2015, 21(11):8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-TJNY201511003.htm LU S C, WANG X B, WENG F J, et al. Effect of different fertilization treatments on soil nitrate nitrogen movement and the growth and quality of celery in greenhouse[J]. Tianjin Agricultural Sciences, 2015, 21(11):8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-TJNY201511003.htm |
[29] | 赵付江, 赵巍, 谢松青, 等.不同灌溉方式对茄子生长水分利用和土壤硝态氮淋溶的影响[J].河北农业科学, 2018, 22(3):20-22 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO201803005.htm ZHAO F J, ZHAO W, XIE S Q, et al. Effects of different irrigation methods on growth and water use efficiency of eggplant and soil nitrate leaching[J]. Journal of Hebei Agricultural Sciences, 2018, 22(3):20-22 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO201803005.htm |