删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

冻融交替对农田氮磷淋溶影响的研究进展

本站小编 Free考研考试/2022-01-01

邓芳博1, 2,,
鲍雪莲1,
梁超1,,,
解宏图1
1.中国科学院沈阳应用生态研究所 沈阳 110016
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2016YFD0800103

详细信息
作者简介:邓芳博, 主要从事土壤微生物生态学研究。E-mail:fangbodeng@gmail.com
通讯作者:梁超, 主要从事土壤生物化学等方面的研究工作。E-mail:cliang823@gmail.com
中图分类号:S15

计量

文章访问数:339
HTML全文浏览量:12
PDF下载量:263
被引次数:0
出版历程

收稿日期:2020-06-24
录用日期:2020-09-04
刊出日期:2021-01-01

A review of the freeze-thaw cycling effect on arable soil nitrogen and phosphorus leaching

DENG Fangbo1, 2,,
BAO Xuelian1,
LIANG Chao1,,,
XIE Hongtu1
1. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key Research and Development Program of China2016YFD0800103

More Information
Corresponding author:LIANG Chao, E-mail:cliang823@gmail.com


摘要
HTML全文
(1)(0)
参考文献(141)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农田施肥过量导致氮磷养分淋溶引发的水体污染问题日益突出,冻融交替是中高纬度、高海拔和部分温带地区的自然现象,对冻土区农田生态系统的土壤生物地球化学过程有重要影响。了解冻融交替如何影响土壤氮磷养分淋溶,对建立阻控养分淋溶的措施至关重要。本文对国内外已有的研究结果进行归纳和梳理,从土壤物理、化学和生物学角度阐述了冻融交替对农田土壤氮磷淋溶的作用机制和影响因素。冻融交替主要是通过以下几个方面影响养分淋溶:1)土壤水的相变对土壤颗粒、孔隙结构、微生物细胞的破坏作用;2)对土壤微生物群落组成、结构及其参与的养分循环的影响;3)最终导致土壤对养分和水分固持能力、可淋溶养分的含量和形态以及淋溶通道的改变。此外,气候因素包括气温和积雪覆盖对冻融模式的影响以及土壤自身的性质决定着冻融期间养分淋溶损失程度。基于冻融对养分淋溶的影响机制,阐述了增施生物炭、种植覆盖作物、采用免耕秸秆覆盖等耕作方式在减缓养分淋溶方面的研究进展和潜在机制,为今后相关研究工作提供了理论依据。最后简要指出当前研究的不足之处,提出未来相关研究的方向。
关键词:冻融交替/
农田土壤/
氮磷淋溶/
关键过程/
阻控措施
Abstract:Excessive agricultural fertilization has caused nutrient leaching and severe surface and groundwater pollution in recent years. Soil freeze-thaw cycling (FTC) is common at middle and high latitudes, high altitudes, and partial temperate regions. FTC plays an important role in soil biogeochemical processes in cold regions and may be complicated by climate change. Understanding the effects of FTC on soil nitrogen (N) and phosphorus (P) leaching is critical for effective mitigation. This study reviewed the involvement of FTC on soil nutrient leaching based on soil physical, chemical, and biological properties and found that FTC affects soil nutrient concentrations, leachate forms, and nutrient leaching pathways. FTC damages soil aggregates, microbial cells, and plant root residues, leading to the release of organic matter and various N and P forms into the soil, subsequently stimulating soil mineralization and increasing the mineral nutrient concentrations. Soil hydrothermal regime variations and soil structure changes during the FTC period promote preferential flow, thereby increasing the nutrient leaching potential. FTC affects the soil microbial biomass and the microbial community composition and structure, which changes the nutrient cycling processes. Soil chemical properties, including organic matter, pH, and cation exchange capacity, indirectly influencing soil aggregate stability, microbial resistance, and nutrient holding capacity changed during the FTC period. Soil properties (e.g., soil texture, organic matter content, and soil moisture) and climate (e.g., air temperature and snowpack) determine the nutrient leaching degree during the FTC period. The relationships between nutrient leaching and existing agricultural practices were also analyzed. Mineral fertilizer application is the primary source of nutrient leaching on farmlands. Therefore, fertilizing for the efficient use of nutrients by plants is crucial for mitigating nutrient leaching. Other practices, such as biochars, cover crops, no-tillage with straw mulching, may have a role in reducing nutrient leaching. Biochars have a high sorption capacity and may increase the soil water and nutrient holding capacity, cover crop implementation may absorb excess fertilizer nutrients from the soil and reduce leachable N and P, and no-tillage with straw mulching may change FTC by avoiding exposed soil and influencing soil physicochemical and microbial properties, thereby increasing fertilizer efficiency. However, these measures have shortcomings; cover crops and crop residues are the nutrient leaching sources during FTC. Further research is needed to understand the nutrient leaching mechanisms of these practices and to establish a complete evaluation system.
Key words:Freeze-thaw cycles/
Agriculture soils/
Nitrogen and phosphorus leaching/
Key processes/
Mitigation measures

HTML全文


图1冻融交替影响养分淋溶的机制和现有阻控养分淋溶的措施示意图
Figure1.Schematic diagram of mechanisms of nutrient leaching in soil affected by freeze-thaw cycles and existing measures in mitigation nutrient leaching


下载: 全尺寸图片幻灯片


参考文献(141)
[1]BARON J S, HALL E K, NOLAN B T, et al. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States[J]. Biogeochemistry, 2013, 114(1/3):71-92
[2]BOESCH D F, HECKY R, CHAIR C O, et al. Eutrophication of Swedish Seas[M]. Stockholm:Swedish Environmental Protection Agency, 2006:1-19
[3]HUSSAIN M Z, BHARDWAJ A K, BASSO B, et al. Nitrate leaching from continuous corn, perennial grasses, and poplar in the US Midwest[J]. Journal of Environmental Quality, 2019, 48(6):1849-1855
[4]SVANB?CK A. Mitigation of phosphorus leaching from agricultural soils[D]. Uppsala: Swedish University of Agricultural Sciences, 2014: 33-40
[5]BASSO B, DUMONT B, CAMMARANO D, et al. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone[J]. Science of the Total Environment, 2016, 545/546:227-235 http://www.ncbi.nlm.nih.gov/pubmed/26747986
[6]WANG Y C, YING H, YIN Y L, et al. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis[J]. Science of the Total Environment, 2019, 657:96-102 http://www.sciencedirect.com/science/article/pii/S0048969718348691
[7]VITOUSEK P M, NAYLOR R, CREWS T, et al. Nutrient imbalances in agricultural development[J]. Science, 2009, 324(5934):1519-1520 http://www.ncbi.nlm.nih.gov/pubmed/19541981
[8]马林, 柏兆海, 胡春胜.科技部"十三五"农业面源和重金属污染农田综合防治与修复技术研发重点专项"农田氮磷淋溶损失污染与防控机制研究"项目正式启动[J].中国生态农业学报, 2016, 24(11):1575-1576 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161116&flag=1
MA L, BAI Z H, HU C S. Research on mechanisms of nitrogen and phosphorus leaching loss and control of farmland[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11):1575-1576 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161116&flag=1
[9]KIM Y, KIMBALL J S, MCDONALD K C, et al. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3):949-960 http://ieeexplore.ieee.org/document/5599863/
[10]WAGNER-RIDDLE C, CONGREVES K A, ABALOS D, et al. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles[J]. Nature Geoscience, 2017, 10(4):279-283 http://smartsearch.nstl.gov.cn/paper_detail.html?id=41f913adf47283b95d6e358ff6b81e8d
[11]RAMANKUTTY N, EVAN A T, MONFREDA C, et al. Farming the planet:1. Geographic distribution of global agricultural lands in the year 2000[J]. Global Biogeochemical Cycles, 2008, 22(1):GB1003
[12]CAMPBELL J L, SOCCI A M, TEMPLER P H. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest[J]. Global Change Biology, 2014, 20(8):2663-2673 doi: 10.1111/gcb.12532
[13]JOSEPH G, HENRY H A L. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field[J]. Soil Biology and Biochemistry, 2008, 40(7):1947-1953 http://europepmc.org/abstract/AGR/IND44074007
[14]LIU J, MACRAE M L, ELLIOTT J A, et al. Impacts of cover crops and crop residues on phosphorus losses in cold climates:A review[J]. Journal of Environmental Quality, 2019, 48(4):850-868 doi: 10.2134/jeq2019.03.0119
[15]吕欣欣, 孙海岩, 汪景宽, 等.冻融交替对土壤氮素转化及相关微生物学特性的影响[J].土壤通报, 2016, 47(5):1265-1272 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201605037.htm
LYU X X, SUN H Y, WANG J K, et al. Effects of freeze-thaw events on nitrogen transformation and microbiological characteristics in soil[J]. Chinese Journal of Soil Science, 2016, 47(5):1265-1272 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201605037.htm
[16]陈哲, 杨世琦, 张晴雯, 等.冻融对土壤氮素损失及有效性的影响[J].生态学报, 2016, 36(4):1083-1094 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201604021.htm
CHEN Z, YANG S Q, ZHANG Q W, et al. Effects of freeze-thaw cycles on soil nitrogen loss and availability[J]. Acta Ecologica Sinica, 2016, 36(4):1083-1094 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201604021.htm
[17]FITZHUGH R D, DRISCOLL C T, GROFFMAN P M, et al. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem[J]. Biogeochemistry, 2001, 56(2):215-238 http://www.bioone.org/servlet/linkout?suffix=i1195-6860-15-3-366-b14&dbid=16&doi=10.2980%2F15-3-2998&key=10.1023%2FA%3A1013076609950
[18]CALLESEN I, BORKEN W, KALBITZ K, et al. Long-term development of nitrogen fluxes in a coniferous ecosystem:Does soil freezing trigger nitrate leaching?[J]. Journal of Plant Nutrition and Soil Science, 2007, 170(2):189-196 doi: 10.1002/jpln.200622034
[19]LIPSON D A, SCHMIDT S K, MONSON R K. Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32(4):441-448 http://www.sciencedirect.com/science/article/pii/S0038071799000681
[20]ZHANG Z, MA W, FENG W J, et al. Reconstruction of soil particle composition during freeze-thaw cycling:a review[J]. Pedosphere, 2016, 26(2):167-179 http://d.wanfangdata.com.cn/Periodical/trq-e201602003
[21]RIXEN C, HAEBERLI W, STOECKLI V. Ground temperatures under ski pistes with artificial and natural snow[J]. Arctic, Antarctic, and Alpine Research, 2004, 36(4):419-427 doi: 10.1657/1523-0430(2004)036[0419:GTUSPW]2.0.CO;2
[22]EDWARDS A C, SCALENGHE R, FREPPAZ M. Changes in the seasonal snow cover of alpine regions and its effect on soil processes:A review[J]. Quaternary international, 2007, 162/163:172-181
[23]STEINWEG J M, FISK M C, MCALEXANDER B, et al. Experimental snowpack reduction alters organic matter and net N mineralization potential of soil macroaggregates in a northern hardwood forest[J]. Biology and Fertility of Soils, 2008, 45(1):1-10 http://europepmc.org/abstract/AGR/IND44113417
[24]TAN B, WU F Z, YANG W Q, et al. Snow removal alters soil microbial biomass and enzyme activity in a Tibetan alpine forest[J]. Applied Soil Ecology, 2014, 76:34-41
[25]HOSOKAWA N, ISOBE K, URAKAWA R, et al. Soil freeze-thaw with root litter alters N transformations during the dormant season in soils under two temperate forests in northern Japan[J]. Soil Biology and Biochemistry, 2017, 114:270-278 http://www.sciencedirect.com/science/article/pii/S0038071717301190
[26]MATZNER E, BORKEN W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review[J]. European Journal of Soil Science, 2008, 59(2):274-284
[27]GROFFMAN P M, DRISCOLL C T, FAHEY T J, et al. Colder soils in a warmer world:A snow manipulation study in a northern hardwood forest ecosystem[J]. Biogeochemistry, 2001, 56(2):135-150
[28]BROOKS P D, WILLIAMS M W, SCHMIDT S K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt[J]. Biogeochemistry, 1998, 43(1):1-15
[29]CAMPBELL J L, REINMANN A B, TEMPLER P H. Soil freezing effects on sources of nitrogen and carbon leached during snowmelt[J]. Soil Science Society of America Journal, 2014, 78(1):297-308
[30]COMERFORD D P, SCHABERG P G, TEMPLER P H, et al. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest[J]. Oecologia, 2013, 171(1):261-269
[31]CHANG D, LIU J K. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil[J]. Sciences in Cold and Arid Regions, 2013, 5(4):457-460
[32]刘绪军, 景国臣, 杨亚娟, 等.冻融交替作用对表层黑土结构的影响[J].中国水土保持科学, 2015, 13(1):42-46 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201501010.htm
LIU X J, JING G C, YANG Y J, et al. Effects of alternate freezing and thawing on the structure of black topsoil[J]. Science of Soil and Water Conservation, 2015, 13(1):42-46 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201501010.htm
[33]WANG E H, CRUSE R M, CHEN X W, et al. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability[J]. Canadian Journal of Soil Science, 2012, 92(3):529-536
[34]姜宇, 刘博, 范昊明, 等.冻融条件下黑土大孔隙结构特征研究[J].土壤学报, 2019, 56(2):340-349 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201902009.htm
JIANG Y, LIU B, FAN H M, et al. Macropore structure characteristics of black soil under freeze-thaw condition[J]. Acta Pedologica Sinica, 2019, 56(2):340-349 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201902009.htm
[35]BENOIT G R. Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of three soil aggregate sizes[J]. Soil Science Society of America Journal, 1973, 37(1):3-5
[36]DELUCA T H, KEENEY D R, MCCARTY G W. Effect of freeze-thaw events on mineralization of soil nitrogen[J]. Biology and Fertility of Soils, 1992, 14(2):116-120
[37]LEHRSCH G A, SOJKA R E, CARTER D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal, 1991, 55(5):1401-1406
[38]ANDERSSON H, BERGSTR?M L, DJODJIC F, et al. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils[J]. Journal of Environmental Quality, 2013, 42(2):455-463
[39]MOHAMMED A A, KURYLYK B L, CEY E E, et al. Snowmelt infiltration and macropore flow in frozen soils:Overview, knowledge gaps, and a conceptual framework[J]. Vadose Zone Journal, 2018, 17(1):1-15
[40]VAN DER KAMP G, HAYASHI M, GALLéN D. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies[J]. Hydrological Processes, 2003, 17(3):559-575
[41]PITTMAN F, MOHAMMED A, CEY E. Effects of antecedent moisture and macroporosity on infiltration and water flow in frozen soil[J]. Hydrological Processes, 2020, 34(3):795-809
[42]GRANT K N, MACRAE M L, REZANEZHAD F, et al. Nutrient leaching in soil affected by fertilizer application and frozen ground[J]. Vadose Zone Journal, 2019, 18(1):1-13 http://www.researchgate.net/publication/331573260_Nutrient_Leaching_in_Soil_Affected_by_Fertilizer_Application_and_Frozen_Ground
[43]GL?SNER N, KJAERGAARD C, RUB?K G H, et al. Interactions between soil texture and placement of dairy slurry application:Ⅰ. Flow characteristics and leaching of nonreactive components[J]. Journal of Environmental Quality, 2011, 40(2):337-343
[44]YANG K, WANG C H. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J]. Agricultural and Forest Meteorology, 2019, 265:280-294
[45]YANG C S, HE P, CHENG G D, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2):695-692
[46]WALKER V K, PALMER G R, VOORDOUW G. Freeze-thaw tolerance and clues to the winter survival of a soil community[J]. Applied and Environmental Microbiology, 2006, 72(3):1784-1792
[47]田路路, 隽英华, 孙文涛.冻融作用对土壤微生物的影响综述[J].江苏农业科学, 2016, 44(10):438-443 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201610128.htm
TIAN L L, JUAN Y H, SUN W T. Review of the effects of freezing and thawing on soil microorganisms[J]. Jiangsu Agricultural Sciences, 2016, 44(10):438-443 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201610128.htm
[48]JANSSON J K, TA? N. The microbial ecology of permafrost[J]. Nature Reviews Microbiology, 2014, 12(6):414-425
[49]杨思忠, 金会军.冻融作用对冻土区微生物生理和生态的影响[J].生态学报, 2008, 28(10):5065-5074 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200810056.htm
YANG S Z, JIN H J. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost[J]. Acta Ecologica Sinica, 2008, 28(10):5065-5074 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200810056.htm
[50]SCHIMEL J P, CLEIN J S. Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biology and Biochemistry, 1996, 28(8):1061-1066
[51]SONG Y, ZOU Y C, WANG G P, et al. Stimulation of nitrogen turnover due to nutrients release from aggregates affected by freeze-thaw in wetland soils[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2017, 97:3-11
[52]SCHMIDT S K, COSTELLO E K, NEMERGUT D R, et al. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil[J]. Ecology, 2007, 88(6):1379-1385
[53]JEFFERIES R L, WALKER N A, EDWARDS K A, et al. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils?[J]. Soil Biology and Biochemistry, 2010, 42(2):129-135
[54]HENRY H A L. Soil freeze-thaw cycle experiments:Trends, methodological weaknesses and suggested improvements[J]. Soil Biology and Biochemistry, 2007, 39(5):977-986
[55]KOPONEN H T, JAAKKOLA T, KEIN?NEN-TOIVOLA M M, et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biology and Biochemistry, 2006, 38(7):1861-1871
[56]SHARMA S, SZELE Z, SCHILLING R, et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil[J]. Applied and Environmental Microbiology, 2006, 72(3):2148-2154
[57]SORENSEN P O, FINZI A C, GIASSON M A, et al. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology and Biochemistry, 2018, 116:39-47
[58]YERGEAU E, KOWALCHUK G A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency[J]. Environmental Microbiology, 2008, 10(9):2223-2235
[59]SJURSEN H, MICHELSEN A, HOLMSTRUP M. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil[J]. Applied Soil Ecology, 2005, 28(1):79-93
[60]HERAI Y, KOUNO K, HASHIMOTO M, et al. Relationships between microbial biomass nitrogen, nitrate leaching and nitrogen uptake by corn in a compost and chemical fertilizer-amended regosol[J]. Soil Science and Plant Nutrition, 2006, 52(2):186-194
[61]HAN C L, GU Y J, KONG M, et al. Responses of soil microorganisms, carbon and nitrogen to freeze-thaw cycles in diverse land-use types[J]. Applied Soil Ecology, 2018, 124:211-217
[62]YANAI Y, TOYOTA K, OKAZAKI M. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils[J]. Soil Science and Plant Nutrition, 2004, 50(6):821-829
[63]BLACKWELL M S A, BROOKES P C, DE LA FUENTE-MARTINEZ N, et al. Phosphorus solubilization and potential transfer to surface waters from the soil microbial biomass following drying-rewetting and freezing-thawing[J]. Advances in Agronomy, 2010, 106:1-35
[64]MONTEUX S, WEEDON J T, BLUME-WERRY G, et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration[J]. The ISME Journal, 2018, 12(9):2129-2141
[65]MüLLER O, BANG-ANDREASEN T, WHITE Ⅲ R A, et al. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates[J]. Environmental Microbiology, 2018, 20(12):4328-4342
[66]JUAN Y H, JIANG N, TIAN L L, et al. Effect of freeze-thaw on a midtemperate soil bacterial community and the correlation network of its members[J]. Biomed Research International, 2018, 2018:8412429
[67]SCHOSTAG M, PRIEMé A, JACQUIOD S, et al. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil[J]. The ISME Journal, 2019, 13(5):1345-1359
[68]FENG X J, NIELSEN L L, SIMPSON M J. Responses of soil organic matter and microorganisms to freeze-thaw cycles[J]. Soil Biology and Biochemistry, 2007, 39(8):2027-2037
[69]ROBINSON C H. Cold adaptation in arctic and antarctic fungi[J]. New Phytologist, 2001, 151(2):341-353
[70]LARSEN K S, JONASSON S, MICHELSEN A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3):187-195
[71]SMITH J, WAGNER-RIDDLE C, DUNFIELD K. Season and management related changes in the diversity of nitrifying and denitrifying bacteria over winter and spring[J]. Applied Soil Ecology, 2010, 44(2):138-146
[72]MüLLER C, KAMMANN C, OTTOW J C G, et al. Nitrous oxide emission from frozen grassland soil and during thawing periods[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(1):46-53
[73]NéMETH D D, WAGNER-RIDDLE C, DUNFIELD K E. Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N2O flux event[J]. Soil Biology and Biochemistry, 2014, 73:1-9
[74]SONG Y, ZOU Y C, WANG G P, et al. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect:A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 109:35-49 http://www.sciencedirect.com/science/article/pii/S003807171730127X
[75]WANG A, WU F Z, YANG W Q, et al. Abundance and composition dynamics of soil ammonia-oxidizing archaea in an alpine fir forest on the eastern Tibetan Plateau of China[J]. Canadian Journal of Microbiology, 2012, 58(5):572-580
[76]WESSéN E, S?DERSTR?M M, STENBERG M, et al. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning[J]. The ISME Journal, 2011, 5(7):1213-1225
[77]WESSéN E. Niche differentiation of ammonia oxidizing bacteria and archaea in managed soils[D]. Uppsala: Swedish University of Agricultural Sciences, 2011: 33-35
[78]SHEN J P, ZHANG L M, DI H J, et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J]. Frontiers in Microbiology, 2012, 3:296
[79]BLACKWELL M S A, BROOKES P C, DE LA FUENTE-MARTINEZ N, et al. Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate[J]. Biology and Fertility of Soils, 2009, 45(6):635-643
[80]K?HL L, VAN DER HEIJDEN M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching[J]. Soil Biology and Biochemistry, 2016, 94:191-199
[81]HERRMANN A, WITTER E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34(10):1495-1505
[82]SU M X, KLEINEIDAM K, SCHLOTER M. Influence of different litter quality on the abundance of genes involved in nitrification and denitrification after freezing and thawing of an arable soil[J]. Biology and Fertility of Soils, 2010, 46(5):537-541
[83]CLARK K, CHANTIGNY M H, ANGERS D A, et al. Nitrogen transformations in cold and frozen agricultural soils following organic amendments[J]. Soil Biology and Biochemistry, 2009, 41(2):348-356 http://europepmc.org/abstract/AGR/IND44168168
[84]NIELSEN C B, GROFFMAN P M, HAMBURG S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65(6):1723-1730
[85]BUTTERBACH-BAHL K, WOLF B. Greenhouse gases:Warming from freezing soils[J]. Nature Geoscience, 2017, 10(4):248-249
[86]GAO D C, ZHANG L, LIU J, et al. Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze-thaw cycle:A meta-analysis[J]. Global Change Biology, 2018, 24(6):2377-2389
[87]隽英华, 刘艳, 宫亮, 等.农田土壤氮素转化特征对冻融作用的响应[J].江苏农业科学, 2019, 47(21):282-285 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201921068.htm
JUAN Y H, LIU Y, GONG L, et al. Response of nitrogen transformation properties to freezing-thawing cycles in farmland soils[J]. Jiangsu Agricultural Sciences, 2019, 47(21):282-285 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201921068.htm
[88]宋阳, 于晓菲, 邹元春, 等.冻融作用对土壤碳、氮、磷循环的影响[J].土壤与作物, 2016, 5(2):78-90 https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW201602003.htm
SONG Y, YU X F, ZOU Y C, et al. Progress of freeze-thaw effects on carbon, nitrogen and phosphorus cyclings in soils[J]. Soils and Crops, 2016, 5(2):78-90 https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW201602003.htm
[89]李垒, 孟庆义.冻融作用对土壤磷素迁移转化影响研究进展[J].生态环境学报, 2013, 22(6):1074-1078 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201306026.htm
LI L, MENG Q Y. Reviews of phosphorus transport and transformation in soil under freezing and thawing actions[J]. Ecology and Environmental Sciences, 2013, 22(6):1074-1078 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201306026.htm
[90]YEVDOKIMOV I, LARIONOVA A, BLAGODATSKAYA E. Microbial immobilisation of phosphorus in soils exposed to drying-rewetting and freeze-thawing cycles[J]. Biology and Fertility of Soils, 2016, 52(5):685-696 doi: 10.1007/s00374-016-1112-x
[91]FREPPAZ M, WILLIAMS B L, EDWARDS A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions:Implications for N and P availability[J]. Applied Soil Ecology, 2007, 35(1):247-255
[92]LIU J, ULéN B, BERGKVIST G, et al. Freezing-thawing effects on phosphorus leaching from catch crops[J]. Nutrient Cycling in Agroecosystems, 2014, 99(1/3):17-30
[93]VAZ M D R, EDWARDS A C, SHAND C A, et al. Changes in the chemistry of soil solution and acetic-acid extractable P following different types of freeze/thaw episodes[J]. European Journal of Soil Science, 1994, 45(3):353-359
[94]胡钰, 香宝, 刘玉萍, 等.交替冻融对东北地区典型土壤氮磷浓度的影响[J].环境工程技术学报, 2012, 2(4):333-338 https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201204017.htm
HU Y, XIANG B, LIU Y P, et al. Freeze-thaw cycle effects on nitrogen and phosphorus content in typical soils of Northeast China[J]. Journal of Environmental Engineering Technology, 2012, 2(4):333-338 https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201204017.htm
[95]张迪龙, 张海涛, 韩旭, 等.冻融循环作用对不同深度土壤各形态氮磷释放的影响[J].节水灌溉, 2015, (1):36-42 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201501010.htm
ZHANG D L, ZHANG H T, HAN X, et al. Effects of freeze-thaw cycles on the release of nitrogen and phosphorus in various depth of soil[J]. Water Saving Irrigation, 2015, (1):36-42 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201501010.htm
[96]SCHMITT A, GLASER B, BORKEN W, et al. Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(5):707-718
[97]LEHMANN J, SCHROTH G. Nutrient leaching[M]//SCHROCH G, SINCLAIR F L. Trees, Crops and Soil Fertility: Concepts and Research Methods. Wallingford: CABI Publishing, 2003: 151-166
[98]JU X T, LIU X J, ZHANG F S, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China[J]. Ambio:A Journal of the Human Environment, 2004, 33(6):300-305
[99]ROY R N, FINCK A, BLAIR G J, et al. Plant Nutrition for Food Security. A Guideline for Integrated Nutrient Management. Nutrient Management Guidelines for Some Major Field Crops[R]. Rome: FAO, 2006
[100]KISSEL D E, SONON L. Fertilizer recommendations by crops, categorized[M]//KISSEL D E, SONON L. Soil Test Handbook for Georgia. Athens: The University of Georgia, College of Agricultural & Environmental Sciences, 2008: 90-616
[101]HEPPERLY P, LOTTER D, ULSH C Z, et al. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content[J]. Compost Science & Utilization, 2009, 17(2):117-126
[102]TIMMONS D R, DYLLA A S. Nitrogen leaching as influenced by nitrogen management and supplemental irrigation level[J]. Journal of Environmental Quality, 1981, 10(3):421-426
[103]GAO S, DELUCA T H. Influence of biochar on soil nutrient transformations, nutrient leaching, and crop yield[J]. Advances in Plants & Agriculture Research, 2016, 4(5):348-362
[104]李美璇, 王观竹, 郭平.生物炭对冻融黑土中铵态氮和硝态氮淋失的影响[J].农业环境科学学报, 2016, 35(7):1360-1367 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607019.htm
LI M X, WANG G Z, GUO P. Effects of biochar on ammonium nitrogen and nitrate nitrogen leaching from black soil under freeze-thaw cycle[J]. Journal of Agro-Environment Science, 2016, 35(7):1360-1367 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607019.htm
[105]周丽丽, 李婧楠, 米彩红, 等.秸秆生物炭输入对冻融期棕壤磷有效性的影响[J].土壤学报, 2017, 54(1):171-179 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201701016.htm
ZHOU L L, LI J N, MI C H, et al. Effect of straw biochar on availability of phosphorus in brown soil during the freezing and thawing period[J]. Acta Pedologica Sinica, 2017, 54(1):171-179 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201701016.htm
[106]师澜峰, 米彩红, 郭成久, 等.秸秆生物炭输入对冻融期黑土表层无机氮磷垂直迁移的影响[J].水土保持学报, 2018, 32(6):278-285 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201806040.htm
SHI L F, MI C H, GUO C J, et al. Effect of straw biochar on vertical migration of inorganic nitrogen and phosphate in surface layer of black soil during freezing and thawing period[J]. Journal of Soil and Water Conservation, 2018, 32(6):278-285 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201806040.htm
[107]SUN F F, LU S G. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):26-33
[108]BLANCO-CANQUI H. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 2017, 81(4):687-711
[109]SOINNE H, HOVI J, TAMMEORG P, et al. Effect of biochar on phosphorus sorption and clay soil aggregate stability[J]. Geoderma, 2014, 219/220:162-167
[110]PITUELLO C, DAL FERRO N, FRANCIOSO O, et al. Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils[J]. European Journal of Soil Science, 2018, 69(5):827-842
[111]FU Q, YAN J W, LI H, et al. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles[J]. Geoderma, 2019, 353:459-467
[112]LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730
[113]CLOUGH T J, CONDRON L M, KAMMANN C, et al. A review of biochar and soil nitrogen dynamics[J]. Agronomy, 2013, 3(2):275-293
[114]MAJOR J, STEINER C, DOWNIE A, et al. Biochar effects on nutrient leaching[M]//LEHMANN J, JOSEPH S. Biochar for Environmental Management: Science and Technology. London: Earthscan, 2012: 271-287
[115]GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils:Mechanisms and future directions[J]. Agriculture, Ecosystems & Environment, 2015, 206:46-59
[116]NELISSEN V, RüTTING T, HUYGENS D, et al. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil[J]. Soil Biology and Biochemistry, 2012, 55:20-27
[117]曲晶晶, 郑金伟, 郑聚锋, 等.小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J].生态与农村环境学报, 2012, 28(3):288-293 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201203012.htm
QU J J, ZHENG J W, ZHENG J F, et al. Effects of wheat-straw-based biochar on yield of rice and nitrogen use efficiency of late rice[J]. Journal of Ecology and Rural Environment, 2012, 28(3):288-293 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201203012.htm
[118]封保根, 李美璇, 李悦铭, 等.冻融作用对含有黑炭土壤中硝态氮淋失的影响[J].林产工业, 2017, 44(8):34-38 https://www.cnki.com.cn/Article/CJFDTOTAL-LCGY201708013.htm
FENG B G, LI M X, LI Y M, et al. Effect of freezing and thawing on the nitrate nitrogen leaching of soil contained black carbon[J]. China Forest Products Industry, 2017, 44(8):34-38 https://www.cnki.com.cn/Article/CJFDTOTAL-LCGY201708013.htm
[119]CARLSON S, STOCKWELL R. Research priorities for advancing adoption of cover crops in agriculture-intensive regions[J]. Journal of Agriculture, Food Systems, and Community Development, 2013, 3(4):125-129
[120]ABDALLA M, HASTINGS A, CHENG K, et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity[J]. Global Change Biology, 2019, 25(8):2530-2543
[121]FRASER P M, CURTIN D, HARRISON-KIRK T, et al. Winter nitrate leaching under different tillage and winter cover crop management practices[J]. Soil Science Society of America Journal, 2013, 77(4):1391-1401
[122]HARUNA S I, NKONGOLO N V. Cover crop management effects on soil physical and biological properties[J]. Procedia Environmental Sciences, 2015, 29:13-14
[123]ARONSSON H, HANSEN E M, THOMSEN I K, et al. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland[J]. Journal of Soil and Water Conservation, 2016, 71(1):41-55
[124]LIU J, KHALAF R, ULéN B, et al. Potential phosphorus release from catch crop shoots and roots after freezing-thawing[J]. Plant and Soil, 2013, 371(1/2):543-557
[125]RIDDLE M U, BERGSTR?M L. Phosphorus leaching from two soils with catch crops exposed to freeze-thaw cycles[J]. Agronomy Journal, 2013, 105(3):803-811
[126]LESLIE A W, WANG K H, MEYER S L F, et al. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop[J]. Applied Soil Ecology, 2017, 117/118:21-31
[127]YANG H K, WU G, MO P, et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.)[J]. Soil and Tillage Research, 2020, 197:104485
[128]SU W, LU J W, WANG W N, et al. Influence of rice straw mulching on seed yield and nitrogen use efficiency of winter oilseed rape (Brassica napus L.) in intensive rice-oilseed rape cropping system[J]. Field Crops Research, 2014, 159:53-61
[129]ZHANG J, LI Z H, LI K, et al. Nitrogen use efficiency under different field treatments on maize fields in central China:A lysimeter and 15N study[J]. Journal of Water Resource and Protection, 2012, 4(8):590-596
[130]TRUONG T H H, KRISTIANSEN P, MARSCHNER P. Influence of mulch C/N ratio and decomposition stage on plant N uptake and N availability in soil with or without wheat straw[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(6):879-887
[131]DONG Q, DANG T H, GUO S L, et al. Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau[J]. Agricultural Water Management, 2019, 213:803-808
[132]郑秀清, 陈军锋, 邢述彦, 等.季节性冻融期耕作层土壤温度及土壤冻融特性的试验研究[J].灌溉排水学报, 2009, 28(3):65-68 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200903018.htm
ZHENG X Q, CHEN J F, XING S Y, et al. Soil temperature variation in plough layer and soil freeze-thaw characteristics during seasonal freezing and thawing period[J]. Journal of Irrigation and Drainage, 2009, 28(3):65-68 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200903018.htm
[133]FU Q, YAN P R, LI T X, et al. Effects of straw mulching on soil evaporation during the soil thawing period in a cold region in northeastern China[J]. Journal of Earth System Science, 2018, 127(3):33
[134]陈军锋, 郑秀清, 秦作栋, 等.冻融期秸秆覆盖量对土壤剖面水热时空变化的影响[J].农业工程学报, 2013, 29(20):102-110 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201320015.htm
CHEN J F, ZHENG X Q, QIN Z D, et al. Effects of maize straw mulch on spatiotemporal variation of soil profile moisture and temperature during freeze-thaw period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20):102-110 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201320015.htm
[135]PELSTER D E, CHANTIGNY M H, ROCHETTE P, et al. Crop residue incorporation alters soil nitrous oxide emissions during freeze-thaw cycles[J]. Canadian Journal of Soil Science, 2013, 93(4):415-425
[136]解宏图, 刘华, 张旭东, 等.辽宁省推广保护性耕作的思考[J].农业机械, 2019, (6):66-68 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJI201906024.htm
XIE H T, LIU H, ZHANG X D, et al. Thoughts on promoting conservation tillage in Liaoning Province[J]. Farm Machinery, 2019, (6):66-68 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJI201906024.htm
[137]SCHMIDT R, GRAVUER K, BOSSANGE A V, et al. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil[J]. PLoS One, 2018, 13(2):e0192953
[138]HARTMANN M, FREY B, MAYER J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The ISME Journal, 2015, 9(5):1177-1194
[139]TIMMONS D R, HOLT R F, LATTERELL J J. Leaching of crop residues as a source of nutrients in surface runoff water[J]. Water Resources Research, 1970, 6(5):1367-1375
[140]JARVIS N. A review of non-equilibrium water flow and solute transport in soil macropores:Principles, controlling factors and consequences for water quality[J]. European Journal of Soil Science, 2007, 58(3):523-546
[141]AMBERGER A. Research on dicyandiamide as a nitrification inhibitor and future outlook[J]. Communications in Soil Science and Plant Analysis, 1989, 20(19/20):1933-1955

相关话题/土壤 农田 生物 微生物 结构