删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国北方主要农区农田氮磷淋溶特征与时空规律

本站小编 Free考研考试/2022-01-01

王洪媛1,,
李俊改1,
樊秉乾1,
骆晓声2,
彭畅3,
翟丽梅1,
李虎1,
马林4,
刘宏斌1,,
1.中国农业科学院农业资源与农业区划研究所/农业农村部面源污染控制重点实验室 北京 100081
2.河南省农业科学院植物营养与资源环境研究所 郑州 450002
3.吉林省农业科学院 长春 130033
4.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
基金项目: 国家重点研发计划项目2016YFD0800101
国家自然科学基金项目31972519

详细信息
作者简介:王洪媛, 主要研究方向为农业面源污染控制。E-mail: wanghongyuan@caas.cn
通讯作者:刘宏斌, 主要研究方向为农业面源污染控制。E-mail: liuhongbin@caas.cn
中图分类号:S19

计量

文章访问数:408
HTML全文浏览量:32
PDF下载量:258
被引次数:0
出版历程

收稿日期:2020-07-14
录用日期:2020-09-04
刊出日期:2021-01-01

Nitrogen and phosphorus leaching characteristics and temporal and spatial distribution patterns in northern China farmlands

WANG Hongyuan1,,
LI Jungai1,
FAN Bingqian1,
LUO Xiaosheng2,
PENG Chang3,
ZHAI Limei1,
LI Hu1,
MA Lin4,
LIU Hongbin1,,
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
2. Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
3. Jilin Academy of Agricultural Sciences, Changchun 130033, China
4. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
Funds: the National Key Research and Development Program of China2016YFD0800101
the National Natural Science Foundation of China31972519

More Information
Corresponding author:LIU Hongbin E-mail: cshu@sjziam.ac.cn


摘要
HTML全文
(4)(0)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:中国北方黑土区、潮土区和褐土区是我国农业主产区, 大水大肥问题尤为突出, 氮磷淋溶是全国典型的地下水污染来源。然而, 中国北方主要农区农田氮磷淋溶特征和时空规律尚不清楚。本文利用田间原位监测和文献荟萃分析方法, 系统分析了中国北方主要农区285个监测点年的4种主要种植模式(春玉米、冬小麦-夏玉米、露地蔬菜、保护地蔬菜)农田氮磷淋溶特征与时空规律。研究结果表明, 中国北方4个主要种植模式的平均氮和磷淋溶强度分别为:保护地蔬菜117.5 kg(N)·hm-2和0.74 kg(P)·hm-2, 露地蔬菜51.7 kg(N)·hm-2和0.10 kg(P)·hm-2, 冬小麦-夏玉米轮作49.9 kg(N)·hm-2和0.07 kg(P)·hm-2, 春玉米30.7 kg(N)·hm-2和0.09 kg(N)·hm-2。与粮田相比, 蔬菜田的高水肥投入决定了其较高的氮磷淋溶量。受土壤质地以及区域间水肥管理差异的影响, 同一种植模式下, 总氮淋溶强度为黑土区 < 褐土区 < 潮土区。农田氮磷淋溶年际间变化主要受降雨强度的影响, 总氮淋溶量与降雨强度呈正线性相关关系, 尤其前一年无淋溶事件发生背景下, 下一年的淋溶量会急剧增加。空间尺度上, 潮土区和褐土区是氮素淋溶的主要风险区。值得注意的是一些蔬菜种植面积尤其是保护地蔬菜种植面积占比较大的省份表现出较高的氮磷淋溶风险。综上, 北方主要农区农田氮磷淋溶风险以氮为主, 磷的淋溶风险也不容忽视。潮土区和褐土区是氮素淋溶的主要风险区。区域尺度上, 氮磷淋溶主要来自粮田, 但菜田面积越大, 氮磷淋溶风险越高。
关键词:中国北方/
农田/
氮磷淋溶/
种植模式/
土壤类型
Abstract:The main agricultural production areas in northern China are the black soil area, fluvo-aquic soil area, and cinnamon soil area. In the area N and P leaching is a common cause of groundwater pollution, but the leaching characteristics and distribution patterns (temporal and spatial) are unclear. The in situ monitoring of field leakage ponds and literature data analysis were used to analyze N and P leaching characteristics at 285 monitoring sites using the four main planting patterns (spring maize, winter wheat-summer maize rotation, open-field vegetables, and greenhouse vegetables). The results showed that the average N and P leaching rates were 30.7 kg(N)·hm-2 and 0.09 kg(P)·hm-2 for spring maize, 49.9 kg(N)·hm-2 and 0.07 kg(P)·hm-2 for winter wheat–summer maize rotation, 51.7 kg(N)·hm-2 and 0.10 kg(P)·hm-2 for open-field vegetables, and 117.5 kg(N)·hm-2 and 0.74 kg(P)·hm-2 for greenhouse vegetables. Fertilizer application and irrigation, often determined by the planting pattern, were positively correlated with N leaching. Therefore, high fertilizer and water amounts used in vegetable fields resulted in more N and P leaching than observed in grain fields. In fields using the same planting pattern, the fluvo-aquic soil area had the greatest total N loss intensity, followed by the cinnamon soil area; the black soil area had the least intensity. Different soil textures resulted in different leached N amounts when the same fertilization and irrigation practices were used. Fields using the same planting pattern also had different leaching amounts because of regional differences in fertilization and irrigation practices. Annual N and P leaching was mainly affected by rainfall intensity, and total N leaching was positively correlated with rainfall intensity. If no leaching events occurred in the previous year, a sharp increase in leaching was observed in the following year. Spatially, the cinnamon and fluvo-aquic soil areas were the primary N leaching risk areas, especially, some provinces with large vegetable planting areas (particularly those with large greenhouse areas)showed high N and P leaching risks. Northern Chinese agricultural areas are primarily at risk for N leaching, but also P leaching; cinnamon and fluvo-aquic soils are the highest risk areas. Regionally, N and P leach mainly from grain fields, but as vegetable field size increases, so does the risk of N and P leaching.
Key words:Northern China/
Farmland/
Nitrogen and phosphorus leaching/
Planting pattern/
Soil type

HTML全文


图1田间渗滤池(地下部分)及取水装置(地上部分)
Figure1.Field infiltration tank (underground part) and water intake device (above ground)


下载: 全尺寸图片幻灯片


图2中国北方典型种植模式下不同土区的总氮(a)和总磷(b)淋溶强度
Figure2.Total nitrogen (a) and total phosphorus (b) leaching intensities under typical planting patterns in different soil regions in northern China


下载: 全尺寸图片幻灯片


图3黑土区春玉米的总氮淋溶强度与降雨量(a)和灌溉量(b)的年际变化图
Figure3.Interannual variations of total nitrogen leaching intensity and rainfall (a) and irrigation (b) of spring maize in black soil region


下载: 全尺寸图片幻灯片


图4中国北方主要农区农田氮(a)磷(b)淋溶空间特征
Figure4.Spatial characteristics of farmland nitrogen (a) and phosphorus (b) leaching in main agricultural areas in northern China


下载: 全尺寸图片幻灯片


参考文献(26)
[1]QIU J. China to spend billions cleaning up groundwater[J]. Science, 2011, 334(6507): 745 http://adsabs.harvard.edu/abs/2011Sci...334..745Q
[2]ZHENG C M, LIU J. China's "Love Canal" moment?[J]. Science, 2013, 340(6134): 810 doi: 10.1126/science.340.6134.810-a
[3]MA T, SUN S A, FU G T, et al. Pollution exacerbates China's water scarcity and its regional inequality[J]. Nature Communications, 2020, 11: 650 doi: 10.1038/s41467-020-14532-5
[4]VELTHOF G L, LESSCHEN J P, WEBB J, et al. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008[J]. Science of the Total Environment, 2014, 468/469: 1225–1233 doi: 10.1016/j.scitotenv.2013.04.058
[5]OENEMA O, BLEEKER A, BRAATHEN N A, et al. Nitrogen in current European policies-chapter 4[M]//OENEMA O, BLEEKER A, BRAATHEN N A, et al. The European Nitrogen Assessment. Sources, Effects and Policy Perspectives. Cambridge: Cambridge University Press, 2011
[6]MOSTERT E. The European water framework directive and water management research[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(12/13): 523–527 http://www.sciencedirect.com/science/article/pii/s1474706503000895
[7]GAO S S, XU P, ZHOU F, et al. Quantifying nitrogen leaching response to fertilizer additions in China's cropland[J]. Environmental Pollution, 2016, 211: 241–251 doi: 10.1016/j.envpol.2016.01.010
[8]LOU H Z, YANG S T, ZHAO C S, et al. Phosphorus risk in an intensive agricultural area in a mid-high latitude region of China[J]. CATENA, 2015, 127: 46–55 doi: 10.1016/j.catena.2014.12.013
[9]WANG M R, MA L, STROKAL M, et al. Hotspots for nitrogen and phosphorus losses from food production in China: A county-scale analysis[J]. Environmental Science & Technology, 2018, 52(10): 5782–5791 doi: 10.1021/acs.est.7b06138
[10]马洪斌, 李晓欣, 胡春胜.中国地下水硝态氮污染现状研究[J].土壤通报, 2012, 43(6): 1532–1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm
MA H B, LI X X, HU C S. Status of nitrate nitrogen contamination of groundwater in China[J]. Chinese Journal of Soil Science, 2012, 43(6): 1532–1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm
[11]刘宏斌, 邹国元, 范先鹏, 等.农田面源污染监测方法与实践[M].北京:科学出版社, 2015
LIU H B, ZOU G Y, FAN X P, et al. Establishment and Application of Monitoring Technology on Nonpoint Pollution from Arableland[M]. Beijing: Science Press, 2015
[12]KAKUTURU S, CHOPRA M, HARDIN M, et al. Total nitrogen losses from fertilized turfs on simulated highway slopes in Florida[J]. Journal of Environmental Engineering, 2013, 139(6): 829–837 http://www.researchgate.net/publication/273405405_Total_Nitrogen_Losses_from_Fertilized_Turfs_on_Simulated_Highway_Slopes_in_Florida
[13]WITHEETRIRONG Y, TRIPATHI N K, TIPDECHO T, et al. Estimation of the effect of soil texture on nitrate-nitrogen content in groundwater using optical remote sensing[J]. International Journal of Environmental Research and Public Health, 2011, 8(8): 3416–3436 doi: 10.3390/ijerph8083416
[14]MANTOVI P, FUMAGALLI L, BERETTA G P, et al. Nitrate leaching through the unsaturated zone following pig slurry applications[J]. Journal of Hydrology, 2006, 316(1/4): 195–212 http://www.sciencedirect.com/science/article/pii/S0022169405001940
[15]YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014)[J]. Field Crops Research, 2017, 206: 1–10 doi: 10.1016/j.fcr.2017.02.016
[16]骆晓声, 寇长林, 王红建, 等.氮磷肥减施对露地蔬菜农田氮磷淋溶及蔬菜产量的影响[J].土壤通报, 2020, 51(2): 436–441 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202002023.htm
LUO X S, KOU C L, WANG H J, et al. Effects of decreasing nitrogen and phosphorus fertilizers on nitrogen and phosphorus leaching and vegetable yield in field[J]. Chinese Journal of Soil Science, 2020, 51(2): 436–441 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202002023.htm
[17]LIU J, BI X Q, MA M T, et al. Precipitation and irrigation dominate soil water leaching in cropland in Northern China[J]. Agricultural Water Management, 2019, 211: 165–171 doi: 10.1016/j.agwat.2018.09.053
[18]LI J G, LIU H B, WANG H Y, et al. Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables[J]. Agricultural Water Management, 2018, 210: 354–363 doi: 10.1016/j.agwat.2018.08.036
[19]ZHENG W B, WANG S Q, TAN K D, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2020, 707: 136168 doi: 10.1016/j.scitotenv.2019.136168
[20]KARCHER S C, VANBRIESEN J M, NIETCH C T. Alternative land-use method for spatially informed watershed management decision making using SWAT[J]. Journal of Environmental Engineering, 2013, 139(12): 1413–1423 doi: 10.1061/(ASCE)EE.1943-7870.0000770
[21]刘宏斌, 李志宏, 张云贵, 等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报, 2006, 43(3): 405–413 doi: 10.3321/j.issn:0564-3929.2006.03.008
LIU H B, LI Z H, ZHANG Y G, et al. Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing Plain[J]. Acta Pedologica Sinica, 2006, 43(3): 405–413 doi: 10.3321/j.issn:0564-3929.2006.03.008
[22]ZHOU J Y, GU B J, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6: 25088 doi: 10.1038/srep25088
[23]GéRARD F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited[J]. Geoderma, 2016, 262: 213–226. doi: 10.1016/j.geoderma.2015.08.036
[24]WITHERS P J A, HODGKINSON R A, ROLLETT A, et al. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis[J]. Environment. Research Letter, 2017, 12: 1–20 http://iopscience.iop.org/1748-9326/12/6/063001
[25]YAN Z, LIU P, LI Y, et al. Phosphorus in China's intensive vegetable production systems: Overfertilization, soil enrichment, and environmental implications[J]. Journal of Environment Quality, 2013, 42: 982–989 doi: 10.2134/jeq2012.0463
[26]XI B, ZHAI L M, LIU J, et al. Long-term phosphorus accumulation and agronomic and environmental critical phosphorus levels in Haplic Luvisol soil, northern China[J]. Journal of Integrative Agriculture, 2016, 15(1): 200–208 http://www.cnki.com.cn/Article/CJFDTotal-ZGNX201601021.htm

相关话题/农田 农业 蔬菜 土壤 污染