删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

重金属污染土壤间作修复的研究进展

本站小编 Free考研考试/2022-01-01

郭思宇,
王海娟,
王宏镔,
昆明理工大学环境科学与工程学院/云南省土壤固碳与污染控制重点实验室 昆明 650500
基金项目: 国家自然科学基金项目31960264

详细信息
作者简介:郭思宇, 主要研究方向为污染环境的植物修复。E-mail: 597791412@qq.com
通讯作者:王宏镔, 主要研究方向为污染环境的生物修复。E-mail: whb1974@126.com
中图分类号:X53

计量

文章访问数:171
HTML全文浏览量:9
PDF下载量:274
被引次数:0
出版历程

收稿日期:2020-08-02
录用日期:2020-10-17
刊出日期:2021-05-01

Advances in the intercropping remediation of heavy metal polluted soil

GUO Siyu,
WANG Haijuan,
WANG Hongbin,
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology/Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
Funds: the National Natural Science Foundation of China31960264

More Information
Corresponding author:WANG Hongbin, E-mail: whb1974@126.com


摘要
HTML全文
(1)(1)
参考文献(59)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:种植单一的超富集植物修复重金属污染土壤,不但中断农业生产导致经济收益降低,而且因生物量较低、修复周期长等诸多弊端导致修复效果不甚理想。间作作为一种传统的农艺管理方式,利用生态位和生物多样性原理等能提高农作物对资源的有效利用,对共植的农作物种类增量提质。在中、轻度污染土壤修复中利用间作体系,通过调控超富集植物与农作物的生长发育,促进超富集植物根系低分子量有机酸(LMWOAs)的分泌,降低其根际土壤pH,增加重金属活性,从而增加超富集植物对重金属的吸收,同时抑制农作物根系LMWOAs的分泌,以减少农作物对重金属的吸收,提高其产量和品质,实现“边生产边修复”,提高土地利用率,并增加经济效益。本文根据近几年来国内外相关文献,综述了间作条件下超富集植物和农作物生物量、生理生化响应、重金属吸收、转运、富集等方面的变化,以及间作对土壤环境质量的影响,并对间作修复重金属污染土壤领域的发展趋势,如超富集植物和农作物间作的信号转导和分子生物学机制、间作体系下两类植物根际微生物类群的差异及其功能机制,以及构建高效间作体系提高重金属污染土壤的修复效率等方面进行了展望。
关键词:超富集植物/
间作/
重金属/
农作物/
土壤修复
Abstract:Phytoextraction is an efficient, novel, economic, green, and low-risk method for metal-polluted soil remediation that harvests metal hyperaccumulators to remove heavy metals from the soil. The cultivation of a single hyperaccumulator for the remediation of heavy metal-polluted soil not only interrupts agricultural production, leading to economic loss, but also results in low remediation efficiency owing to many disadvantages, such as low biomass and long remediation cycle. As a traditional agronomic management method, intercropping can improve the utilization efficiency of resources and increase the quality of co-planted crop species by using the principles of ecological niche and biodiversity. For the remediation of moderately or lightly metal-polluted soil, an intercropping system can be used to increase the concentrations of heavy metals in hyperaccumulators by regulating the growth and development of the hyperaccumulators and crops. Furthermore, the antioxidative ability of the hyperaccumulators and crops is also improved, which decreases the contents of peroxidation products, such as malondialdehyde and reactive oxygen species, in the cell membrane lipids. Intercropping generally enhances low molecular weight organic acid (LMWOA) secretion from the roots of heavy metal hyperaccumulators, decreases the pH value of rhizospheric soil, increases the activity of heavy metals, and consequently promotes heavy metal uptake by hyperaccumulators. However, LMWOA secretion from the crop roots is inhibited, resulting in decreased heavy metal uptake and improved crop yield and quality. Decreased heavy metal uptake by crops reduces the risk to human health, and the increased metal accumulation in hyperaccumulators enhances the removal of heavy metals from the soil. Moreover, the benefits to farmers are not affected or may even increase when using intercropping remediation technology. Therefore, the land utilization rate and economic benefits increase based on the "production while remediated" approach. This study systematically reviewed changes in biomass, physiological and biochemical responses, heavy metal uptake, translocation, and accumulation in hyperaccumulators and crops, as well as the effects of intercropping on soil environmental quality. While many studies examining the effects of intercropping systems on heavy metal hyperaccumulators and crops had focused on growth and development, metal uptake, translocation, accumulation, and physiological and biochemical responses to heavy metal stress, little information was available on the underlying molecular mechanisms of the physiological and biochemical processes. Additionally, the effects of intercropping on the microbial composition of the rhizosphere of heavy metal hyperaccumulators and crops and the related ecological implications and main function mechanisms remained unclear. From these unsolved questions, future perspectives in this field, such as the signal transduction and molecular mechanisms of the intercropping system of hyperaccumulators and crops, the different and functional mechanisms of rhizosphere microorganisms of two plants, and how to construct an efficient intercropping system to improve the remediation efficiency of heavy metal-polluted soil, were also proposed.
Key words:Hyperaccumulator/
Intercropping/
Heavy metals/
Crops/
Soil remediation

HTML全文


图1间作体系下超富集植物、农作物和土壤的关系示意图
间作通过地下部促进超富集植物低分子量有机酸的分泌, 降低超富集植物根际土壤pH, 增加重金属的活性和超富集植物对重金属的吸收; 与此相反, 间作抑制了农作物低分子量有机酸的分泌, 增加根际土壤pH, 降低重金属的活性, 减少农作物对重金属的吸收。间作还增加光能利用效率、土壤养分、微生物种类和数量等促进超富集植物与农作物生长发育。
Figure1.Relationship among hyperaccumulator, crop and soil in intercropping system
Under intercropping condition, the secretion of low molecular weight organic acids (LMWOAs) in roots of heavy metal hyperaccumulators is increased, decreasing the pH of their rhizospheric soil and increasing the activity of heavy metals, so the heavy metal uptake by hyperaccumulators is increased. However, the secretion of LMWOAs in roots of crops is inhibited, and the pH of rhizospheric soil is increased and the activity of heavy metals is decreased, so the heavy metal uptake by crops is decreased. The use efficiency of light, soil nutrition, as well as the species and quantity of soil microorganisms are also increased in intercropping system, which promotes the growth and development of heavy metal hyperaccumulators and crops.


下载: 全尺寸图片幻灯片

表1间作条件下几种重金属超富集植物与农作物的生物量变化
Table1.Changes of plant biomass in several heavy metal hyperaccumulators and crops under intercropping condition
超富集植物Hyperaccumulator农作物Crop生物量Biomass参考文献Reference
名称Name特性Characteristics名称Name特性Characteristics超富集植物Hyperaccumulator农作物Crop
伴矿景天Sedum plumbizincicola X. H. Guo et S. B. Zhou sp. nov.喜日光充足、温暖, 超富集镉、锌It prefers to enough daylight and warm, and hyperaccumulating Cd and Zn玉米Zea mays L.一年生禾本植物, 喜温暖Annual grass, preferring to warm condition显著上升20.3%~73.4%Increased significantly by 20.3%?73.4%显著上升12.2%~52.4%Increased significantly by 12.2%?52.4%[6]
东南景天Sedum alfredii H.喜日光充足、温暖, 超富集镉、锌It prefers to enough daylight and warm condition, and hyperaccumulates Cd and Zn蓖麻Ricinus communis L.一年生或多年生草本, 喜高温, 不耐霜, 酸碱适应性强Annual or perennial grass, preferring to high temperature, not tolerant to frost, but strongly adaptive to acid and alkali conditions生物量变化不显著The variation was not significant/[11]
苜蓿Medicago Sativa L.耐干旱, 耐冷热Tolerant to drought, cold and heat生物量变化不显著The variation of biomass was not significant/[12]
龙葵Solanum nigrum L.一年生草本植物, 喜光、温暖, 超富集镉It is an annual grass, prefers to light and warm condition, and hyperaccumulates Cd番茄Solanum lycopersicum L.一年生或多年生草本植物, 喜温喜光Annual or perennial grass, preferring to warm and light condition根系、茎秆、叶片及地上部分生物量显著提高28.88%、24.11%、11.75%和17.20%The biomasses of roots, stems, leaves and shoots increased significantly by 28.88%, 24.11%, 11.75% and 17.20%, respectively.根系、茎秆、叶片及地上部分生物量显著提高26.93%、23.29%、35.32%和30.27%The biomasses of roots, stems, leaves and shoots increased significantly by 26.93%, 23.29%, 35.32% and 30.27%, respectively.[13]
茄子Solanum melongena L.喜高温, 对光照时间、强度要求较高Preferring to high temperature and with a high demand for light duration and intensity根系、茎秆、叶片及地上部分生物量显著减少6.78%、29.77%、43.38%和37.38%The biomasses of roots, stems, leaves and shoots decreased significantly by 6.78%, 29.77%, 43.38% and 37.38%, respectively.根系、茎秆、叶片及地上部分生物量显著减少40.82%、43.33%、41.13%和41.97%The biomasses of roots, stems, leaves and shoots decreased significantly by 40.82%, 43.33%, 41.13% and 41.97%, respectively.[13]
大葱Allium fistulosum L.喜氮、钾肥Preferring to N and K fertilizers不影响生长The growth of was not affected.不影响生长The growth of was not affected.[7]
大白菜Brassica pekinensis L.耐寒, 喜好冷凉Tolerant to cold, and preferring to cool不影响生物量The plant biomass was not affected不影响生物量The plant biomass was not affected[14]
玉米Zea mays L.一年生禾本, 喜温暖Annual grass, preferring to warm condition根、茎、叶、籽粒生物量分别下降39.7%、23.3%、22.8%、36.3%The biomasses of roots, stems, leaves and grains decreased by 39.7%, 23.3%, 22.8% and 36.3%, respectively./[15]
蜈蚣草Pteris vittata L.喜阴, 超富集砷It prefers to sha-ding condition, and hyperaccumulates As玉米Zea mays L.一年生禾本, 喜温暖Annual grass, preferring to warm condition/不影响产量The yield was not affected[16]
桑树Morus alba L.喜温暖湿润, 稍耐荫Preferring to warm and humid climate, and lightly tolerant to shading总生物量显著提高115.42%, 根、根茎和叶生物量分别提高58.2%、94.8%和175.4%The total biomass increased by 115.42%, and the biomasses of roots, rhizomes and leaves increased by 58.2%, 94.8% and 175.4%, respectively.生物量略低于单作处理The intercropping biomass was slightly lower than that of monoculture[17]
蓖麻Ricinus communis L.一年生或多年生草本, 喜高温, 不耐霜, 酸碱适应性强Annual or perennial grass, preferring to high temperature, sensitive to frost, but strongly adaptive to acid and alkali conditions促进根系和枝条生长, 生物量变化不显著The growth of roots and shoots was promoted, but the variation of plant biomass was not significant.产量变化不显著The variation of yield was not significant[18]
构树Broussonetia papyrifera (L.) Vent.喜光, 耐干旱瘠薄, 也能生于水边Preferring to light and tolerant to drought and barren, also growing at waterside生物量未显著提高The biomass did not increase significantly生物量略低于单作处理The intercropping biomass was slightly lower than that of monoculture[17]


下载: 导出CSV

参考文献(59)
[1]AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 94 doi: 10.3390/ijerph14010094
[2]SUN H, TANG Y, XIE J S. Contour hedgerow intercropping in the mountains of China: A review[J]. Agroforestry Systems, 2008, 73(1): 65-76 doi: 10.1007/s10457-008-9113-x
[3]MA Y H, FU S L, ZHANG X P, et al. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality[J]. Applied Soil Ecology, 2017, 119: 171-178 doi: 10.1016/j.apsoil.2017.06.028
[4]ABAD M K R, FATHI S A A, NOURI-GANBALANI G, et al. Influence of tomato/clover intercropping on the control of Helicoverpa armigera (Hübner)[J]. International Journal of Tropical Insect Science, 2020, 40(1): 39-48 doi: 10.1007/s42690-019-00048-z
[5]秦丽, 湛方栋, 祖艳群, 等. 土荆芥和蚕豆/玉米间作系统中Pb、Cd、Zn的累积特征研究[J]. 云南农业大学学报: 自然科学, 2017, 32(1): 153-160 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX201701023.htm
QIN L, ZHAN F D, ZU Y Q, et al. Accumulation characteristics of Pb, Cd and Zn by Chenopodium ambrosioides L. intercropping with maize and broad bean[J]. Journal of Yunnan Agricultural University: Natural Science, 2017, 32(1): 153-160 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX201701023.htm
[6]陈国皓, 祖艳群, 湛方栋, 等. 钝化剂处理对玉米与伴矿景天间作下植株生长及镉累积特征的影响[J]. 农业环境科学学报, 2019, 38(9): 2103-2110 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909013.htm
CHEN G H, ZU Y Q, ZHAN F D, et al. Effects of passivators on the growth and cadmium accumulation of intercropped maize and Sedum plumbizincicola[J]. Journal of Agro-Environment Science, 2019, 38(9): 2103-2110 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909013.htm
[7]WANG S Q, WEI S H, JI D D, et al. Co-planting Cd contaminated field using hyperaccumulator Solanum nigrum L. through interplant with low accumulation Welsh onion[J]. International Journal of Phytoremediation, 2015, 17(9): 879-884 doi: 10.1080/15226514.2014.981247
[8]YANG J J, YOU S H, ZHENG J L. Review in strengthening technology for phytoremediation of soil contaminated by heavy metals[J]. IOP Conference Series: Earth and Environmental Science, 2019, 242(5): 052003 http://adsabs.harvard.edu/abs/2017E%26ES...78a2015W
[9]WAN X M, LEI M, CHEN T B. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil[J]. Science of the Total Environment, 2016, 563/564: 796-802 doi: 10.1016/j.scitotenv.2015.12.080
[10]秦欢, 何忠俊, 熊俊芬, 等. 间作对不同品种玉米和大叶井口边草吸收积累重金属的影响[J]. 农业环境科学学报, 2012, 31(7): 1281-1288 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207007.htm
QIN H, HE Z J, XIONG J F, et al. Effects of intercropping on the contents and accumulation of heavy metals in maize varieties and Pteris cretica L. [J]. Journal of Agro-Environment Science, 2012, 31(7): 1281-1288 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207007.htm
[11]WANG K, HUANG H G, ZHU Z Q, et al. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis)[J]. International Journal of Phytoremediation, 2013, 15(3): 283-298 doi: 10.1080/15226514.2012.694501
[12]LIU Z F, GE H G, LI C, et al. Enhanced phytoextraction of heavy metals from contaminated soil by plant co-cropping associated with PGPR[J]. Water, Air, & Soil Pollution, 2015, 226(3): 29 doi: 10.1007/s11270-015-2304-y
[13]胡容平, 李欣欣, 林立金, 等. 混种龙葵对番茄和茄子生理生化特性及镉含量的影响[J]. 中国农学通报, 2019, 35(26): 57-63 doi: 10.11924/j.issn.1000-6850.casb20190500152
HU R P, LI X X, LIN L J, et al. Effects of intercropping with Solanum nigrum on physiological and biochemical characteristics and cadmium content of Lycopersicon esculentum and Solanum melongena[J]. Chinese Agricultural Science Bulletin, 2019, 35(26): 57-63 doi: 10.11924/j.issn.1000-6850.casb20190500152
[14]NIU M F, WEI S H, BAI J Y, et al. Remediation and safe production of Cd contaminated soil via multiple cropping hyperaccumulator Solanum nigrum L. and low accumulation Chinese cabbage[J]. International Journal of Phytoremediation, 2015, 17(7): 657-661 doi: 10.1080/15226514.2014.955168
[15]霍文敏, 赵中秋, 王丽, 等. 不同超富集、富集植物-玉米间作模式对玉米中镉吸收、转运的影响研究[J]. 地学前缘, 2019, 26(6): 118-127 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906019.htm
HUO W M, ZHAO Z Q, WANG L, et al. Study of the effects of intercropping different hyperaccumulator and accumulator plants on Cd uptake and transportation by maize[J]. Earth Science Frontiers, 2019, 26(6): 118-127 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906019.htm
[16]MA J, LEI E, LEI M, et al. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize[J]. Chemosphere, 2018, 194: 737-744 doi: 10.1016/j.chemosphere.2017.11.135
[17]ZENG P, GUO Z H, XIAO X Y, et al. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil[J]. Science of the Total Environment, 2019, 650: 594-603 doi: 10.1016/j.scitotenv.2018.09.055
[18]YANG J X, YANG J, HUANG J. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean — A field case[J]. Ecological Engineering, 2017, 109: 35-40 doi: 10.1016/j.ecoleng.2017.09.001
[19]闫秀秀, 徐应明, 王林, 等. 叶用油菜和孔雀草间作对植物生长和镉累积的影响[J]. 环境科学, 2020, 41(11): 5151-5159 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202011045.htm
YAN X X, XU Y M, WANG L, et al. Effects of intercropping of Brassica chinenesis L. and Tagetes patula L. on the growth and cadmium accumulation of plants[J]. Environmental Science, 2020, 41(11): 5151-5159 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202011045.htm
[20]杨倩, 王方园, 申艳冰. 砷、汞对植物毒性影响及其迁移富集效应探讨[J]. 能源环境保护, 2020, 34(2): 87-91 doi: 10.3969/j.issn.1006-8759.2020.02.018
YANG Q, WANG F Y, SHEN Y B. Study on the effects of arsenic and mercury on phytotoxicity and their migration and enrichment effects[J]. Energy Environmental Protection, 2020, 34(2): 87-91 doi: 10.3969/j.issn.1006-8759.2020.02.018
[21]张春雨, 王海娟, 王宏镔. 赤霉素介导下植物对重金属的耐性机理[J]. 生态与农村环境学报, 2020, 36(2): 137-144 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202002001.htm
ZHANG C Y, WANG H J, WANG H B. Mechanisms of plant tolerance to heavy metals mediated by gibberellic acid[J]. Journal of Ecology and Rural Environment, 2020, 36(2): 137-144 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202002001.htm
[22]黄亚萍, 俎丽红, 沈广爽, 等. 铅胁迫对蜀葵重金属积累及抗氧化酶活性的影响[J]. 农业环境科学学报, 2017, 36(9): 1746-1752 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201709009.htm
HUANG Y P, ZU L H, SHEN G S, et al. Effects of lead stress on accumulation ability and antioxidant enzyme activities of Althaea rosea Cavan[J]. Journal of Agro-Environment Science, 2017, 36(9): 1746-1752 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201709009.htm
[23]王晓维, 黄国勤, 徐健程, 等. 铜胁迫和间作对玉米抗氧化酶活性及丙二醛含量的影响[J]. 农业环境科学学报, 2014, 33(10): 1890-1896 doi: 10.11654/jaes.2014.10.003
WANG X W, HUANG G Q, XU J C, et al. Effects of copper stresses and intercropping on antioxidant enzyme activities and malondialdehyde contents in maize[J]. Journal of Agro-Environment Science, 2014, 33(10): 1890-1896 doi: 10.11654/jaes.2014.10.003
[24]JIANG Q Y, TAN S Y, ZHUO F, et al. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum[J]. Applied Soil Ecology, 2016, 98: 112-120 doi: 10.1016/j.apsoil.2015.10.003
[25]TIWARI S, SARANGI B K. Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress[J]. Ecological Engineering, 2017, 100: 211-218 doi: 10.1016/j.ecoleng.2016.12.007
[26]WAN X M, LEI M, CHEN T B, et al. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil[J]. Science of the Total Environment, 2017, 579: 1467-1475 doi: 10.1016/j.scitotenv.2016.11.148
[27]HU R P, ZHANG Z J, LIN L J, et al. Intercropping with hyperaccumulator plants decreases the cadmium accumulation in grape seedlings[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2019, 69(4): 304-310 doi: 10.1080/09064710.2018.1564786
[28]黄科文, 林立金, 石军, 等. 混种牛膝菊嫁接后代对生菜镉积累的影响[J]. 土壤, 2020, 52(1): 127-133 doi: 10.3969/j.issn.1673-3908.2020.01.025
HUANG K W, LIN L J, SHI J, et al. Effect of intercropping with grafting off spring of Galinsoga parviflora on cadmium accumulation of lettuce[J]. Soils, 2020, 52(1): 127-133 doi: 10.3969/j.issn.1673-3908.2020.01.025
[29]秦丽, 祖艳群, 湛方栋, 等. 续断菊与玉米间作对作物吸收积累镉的影响[J]. 农业环境科学学报, 2013, 32(3): 471-477 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303012.htm
QIN L, ZU Y Q, ZHAN F D, et al. Absorption and accumulation of Cd by Sonchus asper L. Hill. and maize in intercropping systems[J]. Journal of Agro-Environment Science, 2013, 32(3): 471-477 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303012.htm
[30]黑亮, 吴启堂, 龙新宪, 等. 东南景天和玉米套种对Zn污染污泥的处理效应[J]. 环境科学, 2007, 28(4): 852-858 doi: 10.3321/j.issn:0250-3301.2007.04.028
HEI L, WU Q T, LONG X X, et al. Effect of Co-planting of Sedum alfredii and Zea mays on Zn-contaminated sewage sludge[J]. Environmental Science, 2007, 28(4): 852-858 doi: 10.3321/j.issn:0250-3301.2007.04.028
[31]谭建波, 陈兴, 郭先华, 等. 续断菊与玉米间作系统不同植物部位Cd、Pb分配特征[J]. 生态环境学报, 2015, 24(4): 700-707 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201504023.htm
TAN J B, CHEN X, GUO X H, et al. Distribution characteristics of Pb and Cd in different parts of Sonchus asper and Zea mays in an intercropping system[J]. Ecology and Environmental Sciences, 2015, 24(4): 700-707 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201504023.htm
[32]秦丽, 何永美, 王吉秀, 等. 续断菊与玉米间作的铅累积及根系低分子量有机酸分泌特征研究[J]. 中国生态农业学报(中英文), 2020, 28(6): 867-875 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0610&flag=1
QIN L, HE Y M, WANG J X, et al. Lead accumulation and low-molecular-weight organic acids secreted by roots in Sonchus asper L. - Zea mays L. intercropping system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 867-875 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0610&flag=1
[33]王吉秀, 湛方栋, 李元, 等. 铅胁迫下小花南芥与玉米间作对根系分泌物有机酸的影响[J]. 中国生态农业学报, 2016, 24(3): 365-372 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201603011.htm
WANG J X, ZHAN F D, LI Y, et al. Effects of Arabis alpina L. var. parviflora Franch and Zea mays L. intercropping system on root-exudated organic acids under lead stress[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3): 365-372 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201603011.htm
[34]JIANG C A, WU Q T, ZENG S C, et al. Dissolution of different zinc salts and Zn uptake by Sedum alfredii and maize in mono-and co-cropping under hydroponic culture[J]. Journal of Environmental Sciences, 2013, 25(9): 1890-1896 doi: 10.1016/S1001-0742(12)60213-7
[35]SASAKI T, YAMAMOTO Y, EZAKI B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. The Plant Journal, 2004, 37(5): 645-653 doi: 10.1111/j.1365-313X.2003.01991.x
[36]TANG Y, LIAO J C, YU X N, et al. Effects of intercropping hyperaccumulators on growth and cadmium accumulation of water spinach (Ipomoea aquatica Forsk)[J]. International Journal of Environmental Analytical Chemistry, 2020, 100(5): 567-575 doi: 10.1080/03067319.2019.1637430
[37]闫仁俊, 韩磊, 赵亚萍, 等. 玉米与龙葵间作模式对植物生长及Cd富集特征的影响[J]. 农业环境科学学报, 2020, 39(10): 2162-2171 doi: 10.11654/jaes.2020-0639
YAN R J, HAN L, ZHAO Y P, et al. Effects of intercropping modes of Zea mays L. and Solanum nigrum L. on plant growth and Cd enrichment characteristics[J]. Journal of Agro-Environment Science, 2020, 39(10): 2162-2171 doi: 10.11654/jaes.2020-0639
[38]赵雅洁, 李周, 宋海燕, 等. 喀斯特地区土壤厚度降低和水分减少对两种草本植物混种后光合的影响[J]. 草业科学, 2017, 34(7): 1475-1486 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201707016.htm
ZHAO Y J, LI Z, SONG H Y, et al. Effect of decline in soil depth and water resource on the photosynthesis of two grasses under mixed plantation in Karst regions[J]. Pratacultural Science, 2017, 34(7): 1475-1486 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201707016.htm
[39]LI Y J, MA L S, WU P T, et al. Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L. )/maize (Zea mays L. ) strip intercropping[J]. Field Crops Research, 2020, 248: 107656 doi: 10.1016/j.fcr.2019.107656
[40]SINGH S, EAPEN S, D'SOUZA S F. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. [J]. Chemosphere, 2006, 62(2): 233-246 doi: 10.1016/j.chemosphere.2005.05.017
[41]FEIL B, MOSER S B, JAMPATONG S, et al. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization[J]. Crop Science, 2005, 45(2): 516-523 doi: 10.2135/cropsci2005.0516
[42]夏海勇, 赵建华, 孙建好, 等. 油菜、蚕豆、鹰嘴豆和大豆对间作玉米籽粒Fe, Mn, Cu和Zn浓度及地上部累积量的影响[J]. 中国科学: 生命科学, 2013, 43(7): 557-568 https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201307006.htm
XIA H Y, ZHAO J H, SUN J H, et al. Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean[J]. Science China Life Sciences, 2013, 43(7): 557-568 https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201307006.htm
[43]YANG J, MOSBY D E, CASTEEL S W, et al. In vitro lead bioaccessibility and phosphate leaching as affected by surface application of phosphoric acid in lead-contaminated soil[J]. Archives of Environmental Contamination and Toxicology, 2002, 43(4): 399-405 doi: 10.1007/s00244-002-1197-0
[44]赵宁宁, 杜芮萍, 邱丹, 等. 蜈蚣草-玉米套作模式对玉米砷胁迫的缓解效应[J]. 生态环境学报, 2019, 28(5): 1021-1028 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201905020.htm
ZHAO N N, DU R P, QIU D, et al. Alleviating effects of Pteris vittata L. -maize intercropping system on arsenic stress in maize[J]. Ecology and Environmental Sciences, 2019, 28(5): 1021-1028 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201905020.htm
[45]王兴伟, 刘子芳, 赵兵, 等. 铅锌胁迫下混种黑麦草和三叶草对假繁缕生理生态的影响[J]. 陕西农业科学, 2017, 63(1): 30-34 doi: 10.3969/j.issn.0488-5368.2017.01.010
WANG X W, LIU Z F, ZHAO B, et al. Effects of mixed ryegrass and clover on physiology and ecology of Theligonum macranthum Franch under Al and Zn stress[J]. Shaanxi Journal of Agricultural Sciences, 2017, 63(1): 30-34 doi: 10.3969/j.issn.0488-5368.2017.01.010
[46]PEINADO-GUEVARA L I, LóPEZ-MEYER M, LóPEZ- VALENZUELA J A, et al. Comparative proteomic analysis of leaf tissue from tomato plants colonized with Rhizophagus irregularis[J]. Symbiosis, 2017, 73(2): 93-106 doi: 10.1007/s13199-016-0470-3
[47]WANG J X, LU X N, ZHANG J E, et al. Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil[J]. Journal of Hazardous Materials, 2020, 394: 122505 doi: 10.1016/j.jhazmat.2020.122505
[48]张亚丽, 沈其荣, 谢学俭, 等. 猪粪和稻草对镉污染黄泥土生物活性的影响[J]. 应用生态学报, 2003, 14(11): 1997-2000 doi: 10.3321/j.issn:1001-9332.2003.11.043
ZHANG Y L, SHEN Q R, XIE X J, et al. Effect of pig manure and rice straw on biological activity of Cd-contaminated soil[J]. Chinese Journal of Applied Ecology, 2003, 14(11): 1997-2000 doi: 10.3321/j.issn:1001-9332.2003.11.043
[49]谭建波, 湛方栋, 刘宁宁, 等. 续断菊与蚕豆间作下土壤部分化学特征与Cd形态分布状况研究[J]. 农业环境科学学报, 2016, 35(1): 53-60 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201601007.htm
TAN J B, ZHAN F D, LIU N N, et al. Soil chemical properties and Cd form distribution in Vicia faba and Sonchus asper intercropping system[J]. Journal of Agro-Environment Science, 2016, 35(1): 53-60 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201601007.htm
[50]季李伟, 蒲麟陇, 湛方栋, 等. 根系互作对玉米与续断菊铅镉累积的影响及其效应分析[J]. 环境科学与技术, 2017, 40(12): 6-13 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201712002.htm
JI L W, PU L L, ZHAN F D, et al. Analysis of the effect of root interaction on Sonchus asper L. Hill. and maize for Pb/Cd accumulation[J]. Environmental Science & Technology, 2017, 40(12): 6-13 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201712002.htm
[51]曹顺利, 马雪泷, 房江育. 柠檬酸和草酸对茶园土壤铅生物有效形态的影响[J]. 黄山学院学报, 2013, 15(5): 54-58 doi: 10.3969/j.issn.1672-447X.2013.05.016
CAO S L, MA X L, FANG J Y. The effect of citric acid and oxalic acid on bioavailability of lead in soils of tea garden[J]. Journal of Huangshan University, 2013, 15(5): 54-58 doi: 10.3969/j.issn.1672-447X.2013.05.016
[52]WANG X L, FENG Y J, YU L L, et al. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China[J]. Science of the Total Environment, 2020, 719: 137517 doi: 10.1016/j.scitotenv.2020.137517
[53]ZHANG X Y, WU K X, FULLEN M A, et al. Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province, China[J]. Journal of Mountain Science, 2020, 17(2): 423-434 doi: 10.1007/s11629-019-5392-0
[54]LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192-11196 doi: 10.1073/pnas.0704591104
[55]KUTMAN U B, YILDIZ B, CAKMAK I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat[J]. Plant and Soil, 2011, 342(1/2): 149-164 doi: 10.1007/s11104-010-0679-5
[56]张向前, 黄国勤, 卞新民, 等. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响[J]. 生态学报, 2012, 32(22): 7082-7090 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201222020.htm
ZHANG X Q, HUANG G Q, BIAN X M, et al. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils[J]. Acta Ecologica Sinica, 2012, 32(22): 7082-7090 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201222020.htm
[57]CHEN B, MA X X, LIU G Q, et al. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape[J]. Environmental Science and Pollution Research, 2015, 22(22): 17625-17635 doi: 10.1007/s11356-015-4933-5
[58]沙银花, 胡南, 陈思羽, 等. 雀稗-博落回间作强化修复铀污染土壤的研究[J]. 南华大学学报: 自然科学版, 2019, 33(2): 22-26 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGB201902004.htm
SHA Y H, HU N, CHEN S Y, et al. Enhanced phytoremediation of uranium contaminated soils with Paspalum scrobiculatum-Macleaya cordata intercrop[J]. Journal of University of South China: Science and Technology, 2019, 33(2): 22-26 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGB201902004.htm
[59]FAHAD S, HUSSAIN S, MATLOOB A, et al. Phytohormones and plant responses to salinity stress: A review[J]. Plant Growth Regulation, 2015, 75(2): 391-404 doi: 10.1007/s10725-014-0013-y

相关话题/植物 土壤 环境科学 污染 农业