删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有机农业能否养活中国?——氮肥供应获得的启示

本站小编 Free考研考试/2022-01-01

孟凡乔1,,,
张珂1,,
王方1,
王坤1,
吴文良1,
王开永2,
胡正江2,
张海霞2
1.有机农业与生物多样性北京市重点实验室/中国农业大学资源与环境学院 北京 100193
2.桓台县农业农村局 桓台 256400
基金项目: 国家重点研发计划项目2016YFD0201204
国家重点研发计划项目2017YFD0800605

详细信息
作者简介:孟凡乔, 主要研究方向为农业生态系统碳氮循环。E-mail: mengfq@cau.edu.cn
中图分类号:S345

计量

文章访问数:759
HTML全文浏览量:9
PDF下载量:348
被引次数:0
出版历程

收稿日期:2020-06-28
录用日期:2020-12-25
刊出日期:2021-03-01

Can organic agriculture feed China? Implications from the nitrogen supply

MENG Fanqiao1,,,
ZHANG Ke1,,
WANG Fang1,
WANG Kun1,
WU Wenliang1,
WANG Kaiyong2,
HU Zhengjiang2,
ZHANG Haixia2
1. Beijing Key Laboratory of Biodiversity and Organic Farming/College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2. Huantai Bureau of Rural Affairs and Agriculture, Huantai 256400, China
Funds: the National Key Research and Development Program of China2016YFD0201204
the National Key Research and Development Program of China2017YFD0800605

More Information
Corresponding author:MENG Fanqiao, E-mail: mengfq@cau.edu.cn


摘要
HTML全文
(0)(7)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:近年来,有机农业在全球得到了较快发展,然而对于其在农业中的定位和作用以及发展策略,尚存在较大争议。本研究从氮素供应角度,评估不施用化学合成氮肥对于中国粮食生产和消费的影响,以期为我国现代农业发展特别是氮素管理提供支撑。研究以中国整体农业生态系统为对象,基于共生固氮数量、农产品贸易对氮素供应影响以及粮食生产,分析在不同粮食消费水平情形下,有机农业能够养活的人口数量。研究发现,如果全部耕地按照有机方式管理,中国每年共生固氮量为15.41×106 t。在不施用化学合成氮肥情形下,1979年和2018年粮食总产量分别为381.96×106 t和420.72×106 t。不考虑蔬菜和水果,分别能养活0.81×109~1.24×109人和0.50×109~0.77×109人,即中国耕地全部转化为有机农业方式,在当前耕地面积和科学技术条件下,难以养活全国人口。将进口农产品考虑在内,2018年实际人均粮食(折纯,不包括蔬菜和水果)消费量达689.35 kg·a-1。减少食物浪费、调整食物结构和增加粮食特别是豆类进口,是解决中国粮食问题的重要举措,进口大豆等农产品对于中国化肥减量起到了重要作用。化学合成氮肥对中国粮食生产做出了巨大贡献,但氮素利用率仍有较大提升空间。有机和生态农业强调整体、协调、循环和再生,是引领中国农业可持续发展的理论基础和技术保障,在全国范围内应通过种养结合等措施促进养分的循环利用,降低资源浪费和环境污染。在政策和法律法规层面,可以通过生态补偿和种养循环等举措,提高氮素利用效率,实现粮食数量和质量安全以及生态安全等农业的多重目标。
关键词:有机农业/
豆科作物/
生物固氮/
种养结合/
生态补偿
Abstract:In recent years, organic agriculture has been rapidly developed in China and throughout the world. However, the position and role of organic agriculture in overall agriculture and the corresponding development strategy of organic agriculture are still debated. From the perspective of nitrogen (N) supply, this study attempted to evaluate the effects of not using synthetic fertilizer N on foodstuff production and consumption and to provide technical support for N management in China. The study selected the whole agroecosystem in China and quantified the symbiotic N fixation, the impact of agricultural product on N supply and grain production, and the population fed under different levels of foodstuff consumption. The annual N fixation capacity of leguminous crops in China was 15.41×106 t·a-1 if organic agriculture was adopted for all agricultural land. If no chemical N fertilizer was applied, the total agricultural product output in 1979 and 2018 was 381.96×106 and 420.72×106 t, respectively. These agricultural products (excluding vegetables and fruits) could feed a population of 0.81×109-1.24×109 and 0.50×109-0.77×109, respectively. Thus, if all agricultural lands were completely operated with organic agriculture principles and under the current acreage of agricultural land and science and technology levels, it would be difficult to feed the entire population of China. With consideration of the imported agricultural products, the actual per capita grain consumption (converted to standard grain, excluding vegetables and fruits) was 689.35 kg·a-1 in 2018. Reductions in food waste, adjusting the food consumption structure, and increasing grain imports are key measures for resolving the food security issues in China. The importation of soybeans and other agricultural products has played an important role in reducing fertilizer usage in recent years in China. Chemical N fertilizer has made a great contribution to grain production in China, but there is still room for improvement in N fertilizer efficiency. Organic and ecological agriculture emphasizes the principles of holistic, coordination, circulation, and regeneration, which is the theoretical basis and technical guarantee to promote sustainable agriculture that will play a dominating role in agricultural development. The integration of cropping with livestock production should be disseminated and implemented throughout China to reduce resource waste and environmental pollution. At the policy and legislative levels, ecological compensation, and crop integration with livestock production may increase N utilization efficiency and achieve multiple goals of agricultural development, including food security, food safety, and ecological soundness.
Key words:Organic agriculture/
Leguminous crops/
Biological nitrogen fixation/
Integration of cropping with livestock production/
Ecological compensation

HTML全文

表12018年中国主要作物种植制度分区[11]
Table1.China's major cropping regions in 2018[11]?×106 hm2
区域
Region
省(市、自治区)
Province (city, autonomous region
耕地面积
Area of agricultural land
区域
Region
省(市、自治区)
Province (city, autonomous region
耕地面积
Area of agricultural land
区域
Region
省(市、自治区)
Province (city, autonomous region
耕地面积
Area of agricultural land
区域
Region
省(市、自治区)
Province (city, autonomous region
耕地面积
Area of agricultural land
长城以北
North of the Great Wall
内蒙古
Inner Mongolia
9.27 长城以南和秦岭淮河以北地区
South of the Great Wall, north of Qinling Mountain and Huai River
山东
Shandong
7.59 华中地区
Central China
湖北
Hubei
5.24 华南地区
South China
云南
Yunnan
6.21
黑龙江
Heilongjiang
15.85 河南
Henan
8.11 湖南
Hunan
4.15 广东
Guangdong
2.60
吉林
Jilin
6.99 江苏
Jiangsu
4.57 浙江
Zhejiang
1.98 广西
Guangxi
4.39
辽宁
Liaoning
4.97 安徽
Anhui
5.87 福建
Fujian
1.34 海南
Hainan
0.72
西藏
Tibet
0.44 北京
Beijing
0.21 贵州
Guizhou
4.52
甘肃
Gansu
5.38 天津
Tianjin
0.44 江西
Jiangxi
3.09
青海
Qinghai
0.59 河北
Hebei
6.52 四川
Sichuan
6.73
宁夏
Ningxia
1.29 山西
Shanxi
4.06 上海
Shanghai
0.19
新疆
Xinjiang
5.24 陕西
Shaanxi
3.98 重庆
Chongqing
2.37
小计
Subtotal
50.02 小计
Subtotal
41.35 小计
Subtotal
29.61 小计
Subtotal
13.92


下载: 导出CSV
表2中国主要豆科作物不施氮肥情况下的固氮水平
Table2.N fixation of main leguminous crops in China under non-N fertilizer application?kg?hm-2
作物
Crop
最高
Highest
最低
Lowest
平均
Average
文献
Literature
大豆Soybean 150 92 121 [13]
紫云英Chinese milk vetch 100 [14]
苜蓿Alfalfa 200 150 175 [15]
三叶草Clover 165 [16]
花生Peanut 152 100 126 [17]


下载: 导出CSV
表3中国主要作物种植区每年共生固氮量
Table3.Annual N fixation of leguminous crops in major cropping regions of China
地区
Region
耕地面积
Acreage of agricultural land (×106 hm2)
种植制度
Planting system
固氮作物
N-fixing crop
实际固氮量
Actual N fixed (×106 t)
满足该地区粮食生产的固氮量
N fixed for foodstuff production in the area (×106 t)
长城以北
North of the Great Wall
50.02 一年1熟
One crop-season per year
大豆
Soybean
6.05 3.03
长城以南和秦岭淮河以北
South of the Great Wall, north of Qinling Mountain and Huai River
41.35 一年两熟
Twice crop-seasons per year
大豆
Soybean
5.00 5.00
华中地区
Central China
29.61 一年两熟
Two crop-seasons per year
紫云英
Chinese milk vetch
2.96 2.96
华南地区
South China
13.92 一年3熟
Three crop-seasons per year
紫云英
Chinese milk vetch
1.39 0.70
全国总计
National total
134.90 15.41 11.69


下载: 导出CSV
表41979年和2018年实际进入中国农业生态系统的氮素数量
Table4.N input into agricultural ecosystem of China in 1979 and 2018 ?×106 t
项目Item 1979 2018
大豆消费带入的氮
N input from soybean consumed
2.19 30.54
化肥氮
Chemical fertilizer N
8.26 20.65
总计Total 10.45 51.19


下载: 导出CSV
表51979年和2018年中国施用和不施用化学合成氮肥情形下的粮食产量比较
Table5.Foodstuff outputs in China in 1979 and 2018 with and without chemical synthetic N fertilizer?×106 t
粮食类型
Foodstuff type
粮食折算系数1)
Foodstuff conversion factor1)
实际粮食产量
Actual output
不施用化肥情形下粮食产量
Estimated output without chemical N fertilizer
不施用化肥情形下折纯粮食产量
Converted output without chemical N fertilizer
2018 1979 2018 1979 2018 1979
谷类食物Cereals 0.84 610.04 280.27 139.30 313.46 117.43 264.25
薯类Yam 0.20 28.65 28.46 6.54 31.83 1.31 6.37
蔬菜Vegetables 0 703.47 0 160.63 2) 0.00 0.00
水果Fruit 0 256.88 7.01 58.66 7.84 0.00 0.00
鱼虾类Fish and shrimp 1.02 64.58 4.31 14.75 4.82 15.04 4.92
畜禽肉Meat and Poultry 2.14 86.25 10.62 19.69 11.88 42.15 25.42
蛋Eggs 1.70 31.28 2.73 7.14 3.05 12.14 5.19
奶Milk 0.39 31.77 1.14 7.25 1.28 2.83 0.50
大豆Soybean 1.00 15.97 4.51 3.65 5.04 3.65 5.04
油Oil 0.15 13.59 2.47 3.10 2.76 0.47 0.41
总计Total 1842.48 334.51 420.72 381.96 195.01 312.09
1)粮食折算系数是指将各种农副产品折合为标准粮食的比例[21]。2)1979年全国蔬菜产量非常低, 且无统计数据。1) Foodstuff conversion factor refers to the ratio of converting various agricultural and by-products into standard foodstuff[21]. 2) Vegetable production in 1979 was very low and there was no data available.


下载: 导出CSV
表62018年中国实际粮食生产、进出口和总供给量
Table6.China's foodstuff actual output, import, export and total supply in 2018?×106 t
粮食类型
Foodstuff type
粮食折算系数1)
Foodstuff conversion factor1)
实际产量
Actual output
进口量
Imported
出口量
Exported
供给量
Supply
折纯供给量
Converted supply
谷类食物Cereals 0.84 610.04 20.47 2.49 628.02 529.42
薯类Yam 0.20 28.65 0.00 0.00 28.65 5.73
蔬菜Vegetables 0.00 703.47 0.00 9.48 693.99 0.00
水果Fruit 0.00 256.88 5.65 3.14 259.12 0.00
鱼虾类Fish and shrimp 1.02 64.58 0.00 4.25 60.33 61.54
畜禽肉Livestock 2.14 86.25 4.22 0.38 90.09 192.79
蛋Eggs 1.70 31.28 0.00 0.06 31.22 53.07
奶Milk 0.39 31.77 2.74 0.08 34.43 13.43
大豆Soybean 1.00 15.97 88.04 0.13 103.88 103.88
油Oil 0.15 13.59 0.00 0.00 13.59 2.04
总计Total 1842.48 121.12 20.28 1943.32 961.90
1)粮食折算系数是指将各种农副产品折合为标准粮食的比例[21]。1) Foodstuff conversion factor refers to the ratio of converting various agricultural and by-products into standard foodstuff[21].


下载: 导出CSV
表71979年和2018年中国不同农业生产与贸易情景下养活人口数量
Table7.Population fed in China under different agricultural production and trade scenarios in 1979 and 2018
粮食消费水平
Consumption level
平衡膳食模式下人均粮食消费量
Food consumption per capita in balanced diet mode (×103 kg?a-1)
2018年考虑进出口情形下养活人口
Population fed under consideration of import and export in 2018 (×109)
2018年完全不施化肥氮情形下养活人口
Population fed without chemical N fertilizer in 2018 (×109)
1979年完全不施化肥氮情形下养活人口
Population fed chemical N fertilizer in 1979 (×109)
低Low 252.64 3.80 0.77 1.24
中Medium 322.07 2.99 0.61 0.97
高High 386.60 2.49 0.50 0.81


下载: 导出CSV

参考文献(36)
[1]OELOFSE M, H?GH-JENSEN H, ABREU L S, et al. A comparative study of farm nutrient budgets and nutrient flows of certified organic and non-organic farms in China, Brazil and Egypt[J]. Nutrient Cycling in Agroecosystems, 2010, 87(3): 455-470 doi: 10.1007/s10705-010-9351-y
[2]WILLER H, SAHOTA A. The world of organic agriculture, statistics and emerging trends 2020 at BIOFACH 2020[EB/OL]. (2020-02-12). https://orgprints.org/37557/
[3]国家市场监督管理总局, 中国农业大学. 中国有机产业与有机产品认证发展(2019)[M]. 北京: 中国农业科学技术出版社, 2019
State Administration for Market Regulation, China Agricultural University. China's Organic Industry and Organic Product Certification Development (2019)[M]. Beijing: China Agricultural Science and Technology Press, 2019
[4]国家市场监督管理总局, 国家标准化管理委员会. GB/T 19630-2019国家有机产品标准[S]. 北京: 中国标准出版社, 2020
State Administration for Market Regulation, National Standardization Administration. GB/T 19630-2019 China National Standard for Organic Products[S]. Beijing: China Standards Press, 2020
[5]朱兆良, 文启孝. 中国土壤氮素[M]. 南京: 江苏科学技术出版社, 1992: 1785-1793
ZHU Z L, WEN Q X. Nitrogen in Soils of China[M]. Nanjing: Jiangsu Science and Technology Publishing House, 1992: 1785-1793
[6]卢蒙. 氮输入对生态系统碳、氮循环的影响: 整合分析[D]. 上海: 复旦大学, 2009
LU M. The effects of nitrogen additions on ecosystem carbon and nitrogen cycles: A meta-analysis[D]. Shanghai: Fudan University, 2009
[7]ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(1): 636-639 http://www.nature.com/articles/ngeo325/
[8]CONNOR D J. Organic agriculture cannot feed the world[J]. Field Crops Research, 2008, 106(2): 187-190 doi: 10.1016/j.fcr.2007.11.010
[9]CONNOR D J. Land required for legumes restricts the contribution of organic agriculture to global food security[J]. Outlook on Agriculture, 2018, 47(4): 277-282 doi: 10.1177/0030727018805765
[10]赵胜. 气候变化背景下中国耕地现实熟制与潜在熟制差异的时空格局研究[D]. 武汉: 华中师范大学, 2018: 1-3
ZHAO S. Temporal and spatial patterns of differences between the actual and potential multiple cropping of cultivated land in China under the background of climate change[D]. Wuhan: Central China Normal University, 2018: 1-3
[11]中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2019
[12]王先进. 我国耕地的现状、发展趋势及对策[J]. 科技导报, 1989, (4): 42-45
WANG X J. China's cultivated land: Its present state and future[J]. Science and Technology Review, 1989, (4): 42-45
[13]关大伟, 李力, 岳现录, 等. 我国大豆的生物固氮潜力研究[J]. 植物营养与肥料学报, 2014, 20(6): 1497-1504 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201406021.htm
GUAN D W, LI L, YUE X L, et al. Study on potential of biological nitrogen fixation of soybean in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1497-1504 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201406021.htm
[14]林新坚, 曹卫东, 吴一群, 等. 紫云英研究进展[J]. 草业科学, 2011, 28(1): 135-140 doi: 10.3969/j.issn.1001-0629.2011.01.028
LIN X J, CAO W D, WU Y Q, et al. Advance in Astragalus sinicus research[J]. Pratacultural Science, 2011, 28(1): 135-140 doi: 10.3969/j.issn.1001-0629.2011.01.028
[15]张婉娴, 栾双. 紫花苜蓿培肥土壤及年固氮量的测定[J]. 东北农学院学报, 1987, (1): 85-88 http://www.cnki.com.cn/Article/CJFDTotal-DBDN198701016.htm
ZHANG W X, LUAN S. Determination of soil fertility and annual nitrogen fixation of Alfalfa[J]. Journal of Northeast Agricultural University, 1987, (1): 85-88 http://www.cnki.com.cn/Article/CJFDTotal-DBDN198701016.htm
[16]曹景勤, 姚惠琴, 陈碧云. 红壤地区绛三叶草接种根瘤菌剂的效果[J]. 江西农业科学, 1988, (9): 19-24 http://www.cnki.com.cn/Article/CJFDTotal-JXNK198809016.htm
CAO J Q, YAO H Q, CHEN B Y. Effects of incubation of legume bacteria with Trifolium Incarnatum L. in red soils region[J]. Jiangxi Agricultural Science, 1988, (9): 19-24 http://www.cnki.com.cn/Article/CJFDTotal-JXNK198809016.htm
[17]陈殿绪, 张礼凤, 孙秀山, 等. 花生根瘤菌固氮机理研究进展[J]. 沈阳农业大学学报, 1998, 29(4): 350-355 http://www.cnki.com.cn/Article/CJFDTotal-SYNY804.017.htm
CHEN D X, ZHANG L F, SUN X S, et al. Advances in biological nitrogen fixation in peanuts[J]. Journal of Shenyang Agricultural University, 1998, 29(4): 350-355 http://www.cnki.com.cn/Article/CJFDTotal-SYNY804.017.htm
[18]石慧, 梁运祥. 差量法测定发酵豆粕类饲料中肽氮含量的研究[J]. 粮食与饲料工业, 2015, (2): 58-60 http://www.cnki.com.cn/Article/CJFDTotal-LSYS201502022.htm
SHI H, LIANG Y X. Determination of peptide nitrogen content in fermented soybean meals by difference method[J]. Cereal & Feed Industry, 2015, (2): 58-60 http://www.cnki.com.cn/Article/CJFDTotal-LSYS201502022.htm
[19]秦润梅. 凯氏定氮法测定蛋白质的氮含量[J]. 内蒙古石油化工, 2011, 37(17): 12 doi: 10.3969/j.issn.1006-7981.2011.17.007
QIN R M. Kjeldahl method for the determination of protein nitrogen content[J]. Inner Mongolia Petrochemical Industry, 2011, 37(17): 12 doi: 10.3969/j.issn.1006-7981.2011.17.007
[20]梅娜. 花生粕化学成分的研究[D]. 杨凌: 西北农林科技大学, 2007: 10-11
MEI N. Studies on the chemical constituents of peanut meals[D]. Yangling: Northwest A & F University, 2007: 10-11
[21]唐华俊, 李哲敏. 基于中国居民平衡膳食模式的人均粮食需求量研究[J]. 中国农业科学, 2012, 45(11): 2315-2327 doi: 10.3864/j.issn.0578-1752.2012.11.022
TANG H J, LI Z M. Study on per capita grain demand based on Chinese reasonable dietary pattern[J]. Scientia Agricultura Sinica, 2012, 45(11): 2315-2327 doi: 10.3864/j.issn.0578-1752.2012.11.022
[22]武良, 张卫峰, 陈新平, 等. 中国农田氮肥投入和生产效率[J]. 中国土壤与肥料, 2016, (4): 76-83
WU L, ZHANG W F, CHEN X P, et al. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland[J]. Soil and Fertilizer Sciences in China, 2016, (4): 76-83
[23]韩俊. 多少粮食才安全[J]. 瞭望新闻周刊, 2005, (27): 56 http://www.cnki.com.cn/Article/CJFDTotal-LWZZ200527042.htm
HAN J. How much food is safe[J]. Outlook Newsweek, 2005, (27): 56 http://www.cnki.com.cn/Article/CJFDTotal-LWZZ200527042.htm
[24]巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783-795 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201404001.htm
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201404001.htm
[25]BAI Z H, MA W Q, MA L, et al. China's livestock transition: Driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): eaar8534 doi: 10.1126/sciadv.aar8534
[26]王敬国, 林杉, 李保国. 氮循环与中国农业氮管理[J]. 中国农业科学, 2016, 49(3): 503-517 doi: 10.3864/j.issn.0578-1752.2016.03.009
WANG J G, LIN S, LI B G. Nitrogen cycling and management strategies in Chinese agriculture[J]. Scientia Agricultura Sinica, 2016, 49(3): 503-517 doi: 10.3864/j.issn.0578-1752.2016.03.009
[27]JOSEPH S, PETERS I, FRIEDRICH H. Can regional organic agriculture feed the regional community? a case study for Hamburg and North Germany[J]. Ecological Economics, 2019, 164: 106342 doi: 10.1016/j.ecolecon.2019.05.022
[28]贺一梅, 杨子生. 基于粮食安全的区域人均粮食需求量分析[J]. 全国商情(经济理论研究), 2008, (7): 6-8
HE Y M, YANG Z S. Regional per capita grain demand analysis based on food security[J]. National Business (Economic Theory Research), 2008, (7): 6-8
[29]胡小平, 郭晓慧. 2020年中国粮食需求结构分析及预测——基于营养标准的视角[J]. 中国农村经济, 2010, (6): 4-15 http://www.cnki.com.cn/Article/CJFDTotal-ZNJJ201006004.htm
HU X P, GUO X H. An analysis and forecast of China's demand for grain and the structure in 2020-with the perspective of nutrition criteria[J]. Chinese Rural Economy, 2010, (6): 4-15 http://www.cnki.com.cn/Article/CJFDTotal-ZNJJ201006004.htm
[30]李胜贤, 曹敏建. 区域粮食消费水平与预测模型研究——以辽宁省为例[J]. 农机化研究, 2015, 37(4): 12-17 doi: 10.3969/j.issn.1003-188X.2015.04.003
LI S X, CAO M J. Forecasting on regional food security and consumption level by model-study on Liaoning Province[J]. Journal of Agricultural Mechanization Research, 2015, 37(4): 12-17 doi: 10.3969/j.issn.1003-188X.2015.04.003
[31]孙鸿良, 齐晔. 从生态农业到生态文明建设——纪念马世骏先生诞辰100周年暨生态工程理念发表 36周年[J]. 中国生态农业学报, 2017, 25(1): 8-12 http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201701002.htm
SUN H L, QI Y. From eco-agriculture to eco-civilization construction: In memory of Prof. Ma Shijun's 100 years birthday and the 36th anniversary of eco-engineering theory publication[J]. Chinese Journal of Ecological Agriculture, 2017, 25(1): 8-12 http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201701002.htm
[32]IFOAM. Organic basics[EB/OL].[2018-06-20]. https://www.ifoam.bio/en/our-library/organic-basics
[33]European Commission. The new organic regulation[EB/OL]. (2017-11-20)[2018-06-22]. http://europa.eu/rapid/press-release_MEMO-17-4686_en.htm
[34]LIAO Y, WU W L, MENG F Q, et al. Increase in soil organic carbon by agricultural intensification in northern China[J]. Biogeosciences, 2015, 12(5): 1403-1413 doi: 10.5194/bg-12-1403-2015
[35]MENG F Q, QIAO Y H, WU W L, et al. Environmental impacts and production performances of organic agriculture in China: A monetary valuation[J]. Journal of Environmental Management, 2017, 188: 49-57 doi: 10.1016/j.jenvman.2016.11.080
[36]SEUFERT V, RAMANKUTTY N. Many shades of gray-the context-dependent performance of organic agriculture[J]. Sciences Advances, 2017, 3(3): e1602638 http://pubmedcentralcanada.ca/pmcc/articles/PMC5362009/

相关话题/作物 农业 生态 北京 蔬菜