删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有机肥施用模式对环水有机蔬菜种植氮磷径流的影响

本站小编 Free考研考试/2022-01-01

韩笑1,,
席运官1,,,
田伟1,
王超1,
和丽萍2,
李丽娜2
1.生态环境部南京环境科学研究所 南京 210042
2.云南生态环境科学研究院 昆明 650034
基金项目: 中央级公益性科研院所基本科研业务专项GYZX190202
中央级公益性科研院所基本科研业务专项GYZX200104
云南省生态环境厅土壤修复项目YNZDZB[2017]002

详细信息
作者简介:韩笑, 主要研究方向为有机农业与环境生态。E-mail: hxofrcc@126.com
通讯作者:席运官, 主要研究方向为农业农村环境和有机农业。E-mail: xyg@nies.org
中图分类号:S345

计量

文章访问数:614
HTML全文浏览量:13
PDF下载量:230
被引次数:0
出版历程

收稿日期:2020-04-01
录用日期:2020-08-13
刊出日期:2021-03-01

Effects of different organic fertilization patterns on the nitrogen and phosphorus runoff losses in organic agriculture in watershed areas

HAN Xiao1,,
XI Yunguan1,,,
TIAN Wei1,
WANG Chao1,
HE Liping2,
LI Lina2
1. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
2. Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
Funds: the Basal Research Fund of the Central Public Interest Scientific Institution of ChinaGYZX190202
the Basal Research Fund of the Central Public Interest Scientific Institution of ChinaGYZX200104
the Soil Remediation Project of Department of Ecology and Environment of Yunnan ProvinceYNZDZB[2017]002

More Information
Corresponding author:XI Yunguan, E-mail: xyg@nies.org


摘要
HTML全文
(2)(5)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:在水环境敏感区域以有机生产代替常规集约化农业,对保护生态环境、提高水库水质和保障居民饮用水安全具有重要意义。实际生产中,如果为追求产量盲目施用有机肥会增加氮磷径流流失风险。为在保障产量的前提下减少氮磷流失,本研究于昆明松华坝水库集水区,以不施肥(CK)和常规施用化肥(CF)为对照,在有机生产方式下设置不同类型有机肥[牛粪(DMC)、鸡粪(CMC)以及二者与豆饼的混合有机肥(HH)]及用量(与CF处理等氮素投入100%、80%和60%)的有机肥施用模式,共计11个处理(CK、CF、0.6DMC、0.8DMC、DMC、0.6CMC、0.8CMC、CMC、0.6HH、0.8HH、HH),分析其对土壤径流氮磷流失阻控效果和作物产量的影响。研究结果表明,在有机种植方式下,施用有机肥可使施肥初期(0~25 d)总氮径流浓度比常规施化肥降低26.3%~73.9%,生育期总氮累积浓度降低32.8%~67.0%。单施牛粪和鸡粪导致径流水总磷浓度比CF提高49.1%和12.3%,施用混合有机肥或减氮施用牛粪和鸡粪总磷浓度则比CF处理降低15.8%~52.5%。氮素投入水平和施肥类型对径流水氮磷浓度、土壤硝态氮和速效磷含量有显著影响。等氮素投入下不同肥料类型的径流水总氮浓度为化肥>牛粪>混合有机肥>鸡粪,总磷浓度为牛粪>鸡粪>混合有机肥>化肥;土壤硝态氮含量为化肥>牛粪、鸡粪>混合有机肥,速效磷含量为鸡粪>牛粪>混合有机肥>化肥。以60%氮素水平施用有机肥对径流水氮磷累积浓度和土壤硝态氮含量削减效果最佳,但土壤速效磷仍有累积风险。混合有机肥处理的青花菜产量最高,而单施牛粪或鸡粪存在减产风险。综合来看,与常规施用化肥相比,60%氮素投入加牛粪、鸡粪和豆饼混合有机肥的施肥模式可在产量提高16.7%的前提下,使径流水总氮、硝态氮、氨态氮浓度分别降低66.5%(18.94 mg·L-1)、67.2%(11.11 mg·L-1)和66.2%(6.57 mg·L-1),总磷降低52.5%(0.5 mg·L-1),可作为推荐施肥类型和用量在松华坝流域有机蔬菜生产进行推广。
关键词:环水/
有机农业/
施肥管理/
径流/
氮磷流失/
蔬菜产量
Abstract:Runoff of nitrogen and phosphorus from farmland is an critical source of river and lake pollution. Organic farming in watersheds could be beneficial for the environment and water quality compared to conventional farming. However, overuse of organic fertilizer can also lead to an increased risk of phosphorus loss. The aim of this study was to analyze the effects of different organic fertilizer application patterns on vegetable yield and nitrogen and phosphorus runoff losses. A field experiment was conducted by building runoff pounds in a vegetable plot in the Songhua Dam watershed, a representative plateau lake in Yunnan Province. Chemical fertilization was the control treatment (CF), and the effects of different organic fertilizer application patterns of cow manure (DMC), chicken manure (CMC), and mixed fertilization of cow manure, chicken manure, and soybean cake (HH) were compared at fertilization rates of 100%, 80%, and 60% of the N input of CF. The vegetable production and nitrogen and phosphorus runoff losses were compared. The dynamic change in total nitrogen (TN) runoff concentration showed that the initial phase (0-25 d) after fertilization was an important period to take preventive and control measures for nitrogen runoff caused by chemical fertilizer application. The results showed that the cumulative concentration of TN in the runoff with organic fertilizer application was significantly lower (26.3%-73.9%) than in the CF treatment after 25 days of fertilization. During the growth stage, the reduction in cumulative concentrations of TN in the runoff was 32.8%-67.0% under organic fertilizer application compared with CF. The cumulative concentration of total phosphorus (TP) in the runoff increased by 49.1% and 12.3% with the DMC and CMC treatments, respectively, but decreased by 15.8%-52.5% under the other organic fertilization treatments. Variance analysis indicated that the nitrogen input levels and the organic fertilzer types could significantly affected the concentration of TN, ammonium, nitrate, and TP in the runoff, and they also had significant interactions with the ammonium nitrogen and TP concentrations. Under 100% N input, the impact of fertilization patterns on TN in the runoff was as follows: CF > DMC > HH > CMC. TP in the runoff was as follows: DMC > CMC > HH > CF. Soil nitrate and available phosphorus were CF > DMC ≈ CMC > HH and CMC > DMC > HH > CF, respectively. Under 60% N input, the reduction of TN and TP in the runoff was significantly greater than 80% and 100% N inputs. The content of soil available phosphorus increased under the organic fertilization treatments compared with CF. Compared with CF and the other types of organic fertilizer, HH significantly increased the yield and quality of broccoli (Brassica oleracea), while the yield of DMC and CMC tended to decrease. On the presumption that broccoli yield increased by 16.7%, the 0.6 HH combination could significantly reduce TN, nitrate, ammonium, and TP in the runoff by 66.5% (18.94 mg·L-1), 67.2% (11.11 mg·L-1), 66.2% (6.57 mg·L-1), and 52.5% (0.5 mg·L-1), respectively, and could be used as the recommended fertilization system to promote organic vegetable production and to reduce nitrogen and phosphorus runoff losses in the Songhua Dam watershed. The results presented here provide reference and technical support for water quality protection through organic agriculture in China.
Key words:Watershed/
Organic farming/
Fertilization pattern/
Runoff/
Nitrogen and phosphorus loss/
Vegetable yield

HTML全文


图1不同施肥处理下青花菜田径流水氮、磷浓度变化
Figure1.Nitrogen and phosphorus concentrations in runoff water of broccoli field under different fertilization treatments


下载: 全尺寸图片幻灯片


图2不同施肥处理下青花菜产量和品质
Figure2.Broccoli yield and quality under different fertilization treatments


下载: 全尺寸图片幻灯片

表1供试有机肥的养分含量
Table1.Nutrients contents of the tested organic fertilizers?g·kg–1
有机肥种类
Organic fertilizer type
N P K
牛粪Cow manure 11.2 14.5 12.3
鸡粪Chicken manure 14.3 16.2 35.7
豆饼Soybean cake 64.9 8.0 18.7


下载: 导出CSV
表2不同施肥处理的肥料类型、用量和养分施用量
Table2.Types and amounts of different fertilizers and nutrients application rates of different fertilization treatments
处理
Treatment
肥料类型
Fertilizer type
肥料用量
fertilizer amount (t·hm–2)
N
(kg·hm–2)
P2O5
(kg·hm–2)
K2O
(kg·hm–2)
N∶P2O5∶K2O
CK 无肥料投入No fertilization 0 0 0
CF 尿素、过磷酸钙和硫酸钾
Urea, superphosphate, potassium sulphate
270 180 90 1.5∶1∶0.5
0.6DMC 牛粪有机肥 12.6 162 420.3 356.5 0.39∶1∶0.85
0.8DMC Cow manure 16.8 216 560.3 475.3
DMC 21.0 270 700.4 594.1
0.6CMC 鸡粪有机肥 8.5 162 314.7 693.4 0.51∶1∶2.20
0.8CMC Chicken manure 11.3 216 419.5 924.5
CMC 14.1 270 524.4 1155.7
0.6HH 牛粪有机肥+鸡粪有机肥+豆饼 4.2+2.8+0.8 162 260.2 385.6 0.65∶1∶1.48
0.8HH Cow manure + chicken manure + soybean cake 5.6+3.8+1.1 216 346.9 514.1
HH 7.0+4.7+1.4 270 433.7 642.7
HH类处理中, 3种有机肥分别提供1/3氮养分。In 0.6HH, 0.8HH and HH treatments, the proportion of N from each organic fertilizer is 1/3.


下载: 导出CSV
表3不同施肥处理对青花菜田径流水氮磷累积浓度的影响
Table3.Runoff losses of nitrogen and phosphorus of broccoli field in different fertilization treatments?mg·L–1
处理
Treatment
总氮
Total nitrogen
硝态氮
Nitrate nitrogen
氨态氮
Ammonia nitrogen
总磷
Total phosphorus
CK 8.61±0.52e 4.73±0.35cd 3.70±0.23dc 0.45±0.03d
CF 28.47±2.04a 16.52±1.27a 9.94±0.32a 0.95±0.20bc
0.6HH 9.53±1.84de 5.42±0.96c 3.36±0.40d 0.45±0.05d
0.8HH 12.80±1.47c 8.04±0.90b 4.00±0.02dc 0.53±0.03d
HH 17.85±2.32b 9.75±1.36b 5.82±0.62b 0.73±0.11c
0.6CMC 9.40±0.17de 4.51±0.22cd 3.97±0.17cd 0.58±0.06d
0.8CMC 11.32±0.99cd 6.12±0.70c 3.86±0.19cd 0.78±0.07c
CMC 15.95±1.30bc 8.99±0.36b 3.86±0.46cd 1.06±0.23b
0.6DMC 10.72±0.86d 4.84±0.14cd 4.49±0.96c 0.52±0.02d
0.8DMC 13.46±0.84c 5.80±0.10c 5.64±0.21b 0.80±0.05c
DMC 19.13±2.91b 9.18±2.35b 6.51±0.68b 1.41±0.17a
氮素水平N application rate (N) *** *** *** ***
有机肥类型Organic fertilizer type (O) *** *** *** ***
N×O NS NS *** *
*、***分别表示P < 0.05、P < 0.001, NS表示不显著; * and *** mean significant levels of P < 0.05 and P < 0.001, while NS means no significant effect.


下载: 导出CSV
表4不同施肥处理下青花菜收获后土壤化学性状
Table4.Soil chemical properties after harvest of broccoli under different fertilization treatments
处理
Treatment
全氮
Total nitrogen
(mg·kg–1)
硝态氮
Nitrate nitrogen
(mg·kg–1)
pH 全磷
Total phosphorus
(mg·kg–1)
速效磷
Available phosphorus
(mg·kg–1)
CK 594.97±36.23e 15.09±0.44d 5.13±0.10bc 258.16±41.72d 45.59±2.15d
CF 881.66±53.48bc 24.48±0.24a 4.72±0.06c 427.01±22.38c 42.81±2.96d
0.6HH 611.99±37.79e 16.75±0.44d 5.95±0.12a 358.16±177.25dc 61.55±5.30c
0.8HH 814.45±32.59c 18.10±0.11bc 5.53±0.12b 890.39±59.94b 67.12±5.12c
HH 827.33±37.63bc 17.32±0.40c 5.60±0.01b 974.90±16.28b 69.84±6.36c
0.6CMC 763.06±17.16d 16.61±0.41d 5.89±0.02ab 894.29±48.37b 65.73±1.88c
0.8CMC 1514.75±95.93a 17.38±0.17c 5.93±0.08a 965.43±30.76b 89.41±1.41b
CMC 1553.33±37.79a 19.34±0.18b 5.49±0.04b 1098.41±122.96ab 102.82±2.03a
0.6DMC 762.44±49.74d 18.84±0.17b 6.10±0.02a 484.77±155.54c 53.26±4.48dc
0.8DMC 978.46±94.05b 20.00±0.08b 5.98±0.10a 688.77±68.34bc 64.34±16.54c
DMC 920.56±73.93b 20.99±0.07b 6.26±0.06a 1544.25±79.87a 89.39±5.97b
氮素水平
N application rate (N)
*** * NS *** ***
有机肥类型
Organic fertilizer type (O)
*** NS *** *** ***
N×O NS NS NS NS *
*、***分别表示P < 0.05、P < 0.001, NS表示不显著; * and *** mean significant levels of P < 0.05 and P < 0.001, while NS means no significant effect.


下载: 导出CSV
表5青花菜田径流水总氮(TN)、总磷(TP)累积浓度与氮(N)、磷(P2O5)、钾(K2O)养分投入量和土壤pH的逐步回归分析
Table5.Stepwise regression analyses of runoff nitrogen (TN) and phosphorus (TP) concentrations in relation to N, P2O5, K2O inputs and soil pH of broccoli field
回归方程Regression n R2
TN=4.276+0.050×N 11 0.408*
TN=5.285+0.075×N–0.012×K2O 11 0.729***
TN=31.327+0.072×N–0.008×K2O–4.748×pH 11 0.861***
TP=0.283+0.001×P2O5 11 0.527***


下载: 导出CSV

参考文献(34)
[1]中华人民共和国中央人民政府. 关于发布《第二次全国污染源普查公报》的公告[EB/OL]. (2020-06-10)[2020-07-12] http://www.gov.cn/xinwen/2020-06/10/content_5518391.htm
Central People's Government of the People's Republic of China. Announcement on the Promulgation of the Communique of the Second National Census of Pollution Sources[EB/OL]. (2020-06-10)[2020-07-12] http://www.gov.cn/xinwen/2020-06/10/content_5518391.htm
[2]杨林章, 薛利红, 施卫明, 等. 农村面源污染治理的"4R"理论与工程实践——案例分析[J]. 农业环境科学学报, 2013, 32(12): 2309-2315 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201312002.htm
YANG L Z, XUE L H, SHI W M, et al. Reduce-Retain-Reuse-Restore technology for the controlling the agricultural non-point source pollution in countryside in China: A case study[J]. Journal of Agro-Environment Science, 2013, 32(12): 2309-2315 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201312002.htm
[3]许成娟, 梁川. 昆明市松华坝水源保护区水资源安全综合评价[J]. 安全与环境学报, 2012, 12(1): 161-165 doi: 10.3969/j.issn.1009-6094.2012.01.036
XU C J, LIANG C. Comprehensive water-quality security evaluation of Songhuaba water-resource protection zone in Kunming[J]. Journal of Safety and Environment, 2012, 12(1): 161-165 doi: 10.3969/j.issn.1009-6094.2012.01.036
[4]IFOAM. The IFOAM Norms for Organic Production and Processing[R]. Germany: FAO, 2014
[5]高吉喜, 肖兴基, 席运官, 等. 发展环水有机农业保护大江大湖水质[J]. 环境保护, 2016, 44(3): 48-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU2016Z1013.htm
GAO J X, XIAO X J, XI Y G, et al. Developing organic agriculture and protecting the quality of great river and lakes[J]. Environmental Protection, 2016, 44(3): 48-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU2016Z1013.htm
[6]HANSEN B, KRISTENSEN E S, GRANT R, et al. Nitrogen leaching from conventional versus organic farming systems-A systems modelling approach[J]. European Journal of Agronomy, 2000, 13(1): 65-82 doi: 10.1016/S1161-0301(00)00060-5
[7]孟凡乔. 中国有机农业发展: 贡献与启示[J]. 中国生态农业学报(中英文), 2019, 27(2): 198-205 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0206&flag=1
MENG F Q. Organic agriculture development in China: Challenges and implications[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 198-205 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0206&flag=1
[8]TUOMISTO H L, HODGE I D, RIORDAN P, et al. Does organic farming reduce environmental impacts?-A meta-analysis of European research[J]. Journal of Environmental Management, 2012, 112: 309-320 doi: 10.1016/j.jenvman.2012.08.018
[9]SEUFERT V, RAMANKUTTY N, FOLEY J A. Comparing the yields of organic and conventional agriculture[J]. Nature, 2012, 485(7397): 229-232 doi: 10.1038/nature11069
[10]安思羽, 李艳霞, 张雪莲, 等. 我国果菜茶中畜禽粪便有机肥替代化肥潜力[J]. 农业环境科学学报, 2019, 38(8): 1712-1722 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201908008.htm
AN S Y, Li Y X, ZHANG X L, et al. Potential of animal manure in replacing chemical fertilizers for fruit, vegetable, and tea production in China[J]. Journal of Agro-Environment Science, 2019, 38(8): 1712-1722 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201908008.htm
[11]HANSEN S, BERLAND FR?SETH R, STENBERG M, et al. Reviews and syntheses: Review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations[J]. Biogeosciences, 2019, 16(14): 2795-2819 doi: 10.5194/bg-16-2795-2019
[12]LWIN C M, NOGI A, HASHIMOTO S. Eco-efficiency assessment of material use: The case of phosphorus fertilizer usage in Japan's Rice Sector[J]. Sustainability, 2017, 9(9): 1562 doi: 10.3390/su9091562
[13]LI H, HUANG G, MENG Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil, 2011, 349(1/2): 157-167
[14]黄东风, 王果, 李卫华, 等. 不同施肥模式对小白菜生长、营养累积及菜地氮、磷流失的影响[J]. 中国生态农业学报, 2009, 17(4): 619-624 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200904002.htm
HUANG D F, WANG G, LI W H, et al. Effect of fertilization mode on growth and nutrition accumulation in vegetables, and loss of nitrogen and phosphorus in vegetable fields[J]. Chinese Journal of Eco-Agriculture, 2009, 17(4): 619-624 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200904002.htm
[15]郭智, 刘红江, 陈留根, 等. 有机肥施用对菜地磷素径流流失及磷素表观利用率的影响[J]. 水土保持学报, 2016, 30(2): 181-187 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201602032.htm
GUO Z, LIU H J, CHEN L G, et al. Effects of organic manure application on phosphorus (P) losses by surface runoff and apparent P use efficiency in the vegetable field of Chinese waxgourd (Benincasa hispida Cogn. )[J]. Journal of Soil and Water Conservation, 2016, 30(2): 181-187 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201602032.htm
[16]夏天翔, 李文朝. 抚仙湖北岸有机与常规种植菜地土壤氮、磷流失及累积特征[J]. 中国生态农业学报, 2008, 16(3): 560-564 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200803006.htm
XIA T X, LI W C. Nitrogen and phosphorus loss and accumulation in organic and conventional vegetable fields in Northern Bank of Fuxian Lake[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 560-564 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200803006.htm
[17]陈秋会, 席运官, 王磊, 等. 太湖地区稻麦轮作农田有机和常规种植模式下氮磷径流流失特征研究[J]. 农业环境科学学报, 2016, 35(8): 1550-1558 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201608016.htm
CHEN Q H, XI Y G, WANG L, et al. Characteristics of nitrogen and phosphorus runoff losses in organic and conventional rice-wheat rotation farmland in Taihu Lake Region[J]. Journal of Agro-Environment Science, 2016, 35(8): 1550-1558 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201608016.htm
[18]国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002
State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods[M]. Beijing: China Environmental Science Press, 2002
[19]鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000
[20]国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5-2016食品安全国家标准食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2017
National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.5-2016 National Food Safety Standard: Determination of Protein in Food[S]. Beijing: China Standards Press, 2017
[21]中华人民共和国农业部. NY/T 1278-2007蔬菜及其制品中可溶性糖的测定铜还原碘量法[M]. 北京: 中国标准出版社, 2007
The Ministry of Agriculture of the People's Republic of China. NY/T 1278-2007 Determination of Soluble Sugar in Vegetables and Products Shaffer-somogyi[S]. Beijing: China Standards Press, 2007
[22]ZHAO X, ZHOU Y, MIN J, et al. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China[J]. Agriculture, Ecosystems & Environment, 2012, 156: 1-11
[23]李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析[J]. 植物营养与肥料学报, 2017, 23(6): 1416-1432 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201706004.htm
LI S T, LIU X Y, HE P. Analyses on nutrient requirements in current agriculture production in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1416-1432 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201706004.htm
[24]VELTHOF G. Nitrogen as a threat to european soil quality[M]//SUTTON M A, HOWARD C M, ERISMAN J W, et al. European Nitrogen Assessment. Cambridge: Cambridge University Press, 2011
[25]MENG F Q, OLESEN J E, SUN X P, et al. Inorganic nitrogen leaching from organic and conventional rice production on a newly claimed calciustoll in Central Asia[J]. PLoS One, 2014, 9(5): e98138 doi: 10.1371/journal.pone.0098138
[26]PAGLIARI P H, LABOSKI C A M. Investigation of the inorganic and organic phosphorus forms in animal manure[J]. Journal of Environmental Quality, 2012, 41(3): 901-910 doi: 10.2134/jeq2011.0451
[27]武雪萍, 刘国顺, 郭平毅, 等. 饼肥中的有机营养物质及其在发酵过程中的变化[J]. 植物营养与肥料学报, 2003, (3): 303-307 doi: 10.3321/j.issn:1008-505X.2003.03.010
WU X P, LIU G S, GUO P Y, et al. Changes of organic substances during fermentation of plant oil cakes[J]. Journal of Plant Nutrition and Fertilizer, 2003, (3): 303-307 doi: 10.3321/j.issn:1008-505X.2003.03.010
[28]刘会玲, 王艳群, 梁硕, 等. 养分合理调控对西兰花生长、品质及土壤特性的影响[J]. 水土保持学报, 2015, 29(4): 153-157 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201504029.htm
LIU H L, WANG Y Q, LIANG S, et al. Influence of reasonable nutrient regulation on growth and quality of broccoli and soil properties[J]. Journal of Soil and Water Conservation, 2015, 29(4): 153-157 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201504029.htm
[29]QIU X K, WANG Y H, HU G Q, et al. Effect of different fertilization modes on physiological characteristics, yield and quality of chinese cabbage[J]. Journal of Plant Nutrition, 2013, 36(6): 948-962 doi: 10.1080/01904167.2012.759972
[30]HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853): 297-299 doi: 10.1038/35095041
[31]CAVAGNARO T R, BENDER S F, ASGHARI H R, et al. The role of arbuscular mycorrhizas in reducing soil nutrient loss[J]. Trends in Plant Science, 2015, 20(5): 283-290 doi: 10.1016/j.tplants.2015.03.004
[32]HAWKINS H J, JOHANSEN A, GEORGE E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226(2): 275-285 doi: 10.1023/A:1026500810385
[33]BAI L, YU Y L, HUA M W, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 1-6 http://www.ncbi.nlm.nih.gov/pubmed/27217575
[34]王磊, 席运官, 肖兴基, 等. 发展环水有机农业控制农业面源污染的政策与建议[J]. 农业环境科学学报, 2017, 36(8): 1590-1594 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201708018.htm
WANG L, XI Y G, XIAO X J, et al. Development of organic agriculture in watershed areas to control agricultural nonpoint source pollution[J]. Journal of Agro-Environment Science, 2017, 36(8): 1590-1594 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201708018.htm

相关话题/土壤 农业 环境科学 北京 营养