删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

绿肥压青对粉垄稻田土壤微生物量碳和有机碳累积矿化量的影响

本站小编 Free考研考试/2022-01-01

郑佳舜1, 2,,
胡钧铭1,,,
韦翔华2,
韦燕燕2,
苏世鸣3,
李婷婷1,
夏旭3,
俞月凤1,
张俊辉1
1.广西农业科学院农业资源与环境研究所 南宁 530007
2.广西大学农学院 南宁 530004
3.中国农业科学院农业环境与可持续发展研究所 北京 100081
基金项目: 国家自然科学基金项目41661074
广西“新世纪十百千人才工程”专项资金项目2018221
广西创新驱动重大专项Guike AA17204078-2
广西农业科学院创新团队项目Guinongke2018YT08
广西农业科学院创新团队项目Guinongke2021YT040

详细信息
作者简介:郑佳舜, 主要研究方向为土壤环境生态。E-mail: ashunz08@163.com
通讯作者:胡钧铭, 主要研究方向为农业有机资源利用与生境调控及逆境生态。E-mail: jmhu06@126.com
中图分类号:S151.9

计量

文章访问数:195
HTML全文浏览量:6
PDF下载量:496
被引次数:0
出版历程

收稿日期:2020-06-06
录用日期:2020-08-13
刊出日期:2021-04-01

Effects of green manure returning on soil microbial biomass carbon and mineralization of organic carbon in smash ridging paddy field

ZHENG Jiashun1, 2,,
HU Junming1,,,
WEI Xianghua2,
WEI Yanyan2,
SU Shiming3,
LI Tingting1,
XIA Xu3,
YU Yuefeng1,
ZHANG Junhui1
1. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
2. Agricultural College, Guangxi University, Nanning 530004, China
3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Funds: the National Natural Science Foundation of China41661074
the Talent Project of New Century Ten-Hundred-Thousand of Guangxi2018221
the Key Innovation Program of Guangxi Driven ProjectGuike AA17204078-2
the Innovation Team Project of Guangxi Academy of Agricultural SciencesGuinongke2018YT08
the Innovation Team Project of Guangxi Academy of Agricultural SciencesGuinongke2021YT040

More Information
Corresponding author:HU Junming, E-mail: jmhu06@126.com


摘要
HTML全文
(6)(4)
参考文献(58)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:绿肥压青还田是调控现代集约化稻田土壤逆境的重要手段,为评估绿肥压青下粉垄耕作对稻田土壤微生物量碳和土壤有机碳累积矿化量的影响,设置早稻粉垄耕作与常规耕作2种耕作模式,不施肥和同等肥力条件下施化肥、单倍绿肥配施化肥和双倍绿肥配施化肥4种施肥处理,晚稻免耕常规施用化肥,开展双季稻周年大田应用试验。结果表明:单倍绿肥压青下,粉垄耕作能提高稻田土壤微生物量碳含量,可达常规耕作的2倍,能有效增加微生物对土壤碳素的利用率。增加绿肥压青量会提高粉垄耕作稻田土壤有机碳累积矿化量和矿化潜力,与施用化肥相比,单倍绿肥压青下早晚稻分别增加1.6%~32.8%和0.6%~16.6%,双倍绿肥压青下分别增加58.6%~70.9%和29.6%~38.4%。粉垄单倍绿肥压青会降低免耕晚稻齐穗期、收获期土壤呼吸强度,较常规耕作分别降低33.4%和38.7%,较粉垄耕作其他处理降低8.5%~31.4%。单倍绿肥压青下粉垄稻田土壤代谢商较常规耕作累积降低65.5%,与常耕相比,粉垄双倍绿肥压青和粉垄单一化肥的土壤代谢商分别累积增加20.3%和159.2%,粉垄双倍绿肥压青可有效缓解土壤代谢商的提升。微生物量碳含量与有机碳矿化激发效应呈负相关,绿肥压青还田下相关系数达0.44;累积矿化量和代谢商呈极显著正相关,粉垄耕作下相关系数达0.59。可见,绿肥粉垄耦合的模式可作为一种增加稻田土壤微生物量碳含量、减少部分生育时期土壤呼吸强度,增强土壤碳库稳定性及碳固持的重要调控技术措施。
关键词:粉垄/
绿肥压青/
稻田土壤/
微生物量碳/
有机碳矿化
Abstract:Returning green manure is an important method for controlling soil adversity in modern intensive paddy fields. To evaluate the influence of smash ridging under green manure returning on soil microbial biomass carbon and carbon mineralization in paddy fields, annual field application tests of double-cropping rice were conducted with two tillage modes in early rice (smash ridging and conventional tillage), four fertilization treatments (no fertilizer, and under the same fertility conditions applying chemical fertilizer, single green manure with chemical fertilizer, and double green manure with chemical fertilizer), and chemical fertilizer application to late rice for no-tillage. The results showed that the content of soil microbial biomass carbon under single green manure returning to paddy fields can be up to two times higher than that of conventional tillage, which can effectively increase the utilization rate of soil carbon by microbes. An increase in the amount of green manure increased the soil organic carbon mineralization and mineralization potential in the smash ridging paddy field. Compared with chemical fertilizer application, the cumulative mineralization of soil organic carbon and mineralization potential of early and late rice increased by 1.6%-32.8% and 0.6%-16.6%, respectively, under single green manure returning, and 58.6%-70.9% and 29.6%-38.4%, respectively, under double green manure returning. Soil respiration intensity of late rice during no-tillage at the full heading and harvest stages was reduced by 33.4% and 38.7%, respectively, compared with conventional tillage; and reduced by 8.5%-31.4% compared with the other smash ridging treatments. The metabolic quotient in rice soil with smash ridging under single green manure returning decreased by 65.5% compared with conventional tillage. Compared with conventional tillage, smash ridging under double green manure returning and under chemical fertilizer increased by 20.3% and 159.2%, respectively; smash ridging under double green manure returning can effectively alleviate the increase in the soil metabolic quotient. There was a negative correlation between the content of microbial biomass carbon and the priming effect of organic carbon mineralization, with a correlation coefficient of 0.44 under green manure returing. There was a significant positive correlation between cumulative mineralization and the metabolic quotient, with a correlation coefficient of 0.59 under smash ridging. In conclusion, a combination of green manure returning and smash ridging can increase the content of soil microbial biomass carbon in paddy soil, reduces soil respiration intensity during the growth stages, and serves as an important technical measure for the regulation and control of soil stability and carbon fixation.
Key words:Smash ridging/
Green manure returning/
Paddy field soil/
Microbial biomass carbon/
Organic carbon mineralization

HTML全文


图1不同处理双季稻各生育期土壤微生物量碳含量
各处理的含义见表 1。不同小写字母表示同一生育期不同处理间差异显著(P < 0.05)。
Figure1.Contents of soil microbial biomass carbon at each growth stage of double cropping rice under different treatments
Meaning of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among different treatments at the same growth stage at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2不同处理双季稻各生育期土壤微生物商
各处理的含义见表 1。不同小写字母表示同一生育期不同处理间差异显著(P < 0.05)。
Figure2.Soil microbial quotients at each growth stage of double cropping rice under different treatments
Meaning of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among different treatments at the same growth stage at P < 0.05 level.


下载: 全尺寸图片幻灯片


图3不同处理双季稻各生育期培养32 d土壤有机碳累积矿化量(CO2)
各处理的含义见表 1
Figure3.Accumulative mineralization of soil organic carbon (CO2) after 32 days incubation at each growth stage of double cropping rice under different treatments
Meaning of each treatment is shown in the table 1.


下载: 全尺寸图片幻灯片


图4不同处理双季稻各生育期土壤呼吸强度
各处理的含义见表 1
Figure4.Soil respiration rates at each growth stage of double cropping rice under different treatments
Meaning of each treatment is shown in the table 1.


下载: 全尺寸图片幻灯片


图5不同处理双季稻各生育期土壤有机碳矿化激发效应
各处理的含义见表 1
Figure5.Priming effect of soil organic carbon mineralization at growth stages of double cropping rice under different treatments
Meaning of each treatment is shown in the table 1.


下载: 全尺寸图片幻灯片


图6不同处理双季稻各生育期土壤代谢商
各处理的含义见表 1。不同小写字母表示同一生育期不同处理间差异显著(P < 0.05)。
Figure6.Soil metabolic quotients at each growth stage of double cropping rice with different treatments
Meaning of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among different treatments at the same growth stage at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1不同处理的早稻施肥方式、肥料类型及用量
Table1.Fertilization modes, fertilizer types and amounts of different treatments of early rice?kg·hm-2
施肥方式
Fertilization mode
处理?Treatment 施肥类型及用量?Fertilizer type and applying rate
常规耕作
Conventional tillage (C)
粉垄耕作
Smash ridging (F)
复合肥
Compound fertilizer
尿素
Urea
氯化钾
Potassium chloride
过磷酸钙
Calcium superphosphate
绿肥
Green
不施肥
No fertilizer (N)
CN FN 0 0 0 0 0
100%化肥
Chemical fertilizer (N0)
CN0 FN0 804.39 260.88 195.66 0 0
单倍绿肥配施化肥
Single green manure amount and chemical fertilizer (N1)
CN1 FN1 608.73 65.22 65.22 0 35 586.56
双倍绿肥配施化肥
Double green manure amount and chemical fertilize (N2)
CN2 FN2 0 0 21.98 414.80 71 173.12


下载: 导出CSV
表2不同处理下早晚稻收获期培养32 d土壤有机碳累积矿化一阶动力学方程参数
Table2.Parameters of first-order kinetic function of cumulative mineralization of soil organic carbon after 32 days incubation of early rice and late rice at harvest stage under different treatments
处理
Treatment
早稻?Early rice 晚稻?Late rice
Ct (g·kg-1) C0 (g·kg-1) k (d-1) R2 Ct (g·kg-1) C0 (g·kg-1) k (d-1) R2
CN 1.42bc 1.87bc 0.044bc 0.984* 2.27a 2.54a 0.071a 0.982*
CN0 1.43bc 1.88bc 0.044bc 0.994** 2.27a 2.53a 0.071a 0.986*
CN1 1.97a 2.29a 0.061a 0.992** 2.37a 2.63a 0.074a 0.985*
CN2 1.93ab 2.26ab 0.060ab 0.992** 2.66a 2.86a 0.083a 0.982*
FN 1.41bc 1.87bc 0.044bc 0.991** 1.24b 1.75b 0.039b 0.993**
FN0 1.16c 1.69c 0.036c 0.991** 1.27b 1.77b 0.040b 0.990*
FN1 1.54abc 1.97abc 0.048abc 0.995** 1.29b 1.78b 0.040b 0.993**
FN2 1.84ab 2.19ab 0.057ab 0.988* 2.17a 2.45a 0.068a 0.974*
各处理的含义见表 1。同列数据后不同小写字母表示处理间差异显著(P < 0.05)。**和*分别表示一阶动力学方程达极显著(P < 0.01)和显著水平(P < 0.05)。Meaning of each treatment is shown in the table 1. Values followed by different lowercase letters in the same column are significantly different at P < 0.05 level. ** and * mean significant of the first-order kinetic function at P < 0.01 level and P < 0.05 level, respectively.


下载: 导出CSV
表3耕作、施肥方式对双季稻田土壤微生物量碳、有机碳累积矿化量及其相关指标影响的双因素方差分析
Table3.Two-Way ANOVA analysis of effects of tillage method and fertilization mode on microbial biomass carbon, cumulative mineralization of organic carbon and related indexes of double cropping rice soil
因素?Factor MBC MC qCO2 MQ RI PE
F Sig. F Sig. F Sig. F Sig. F Sig. F Sig.
耕作方式?Tillage method (TM) 1.835 0.181 9.138** 0.004 0.278 0.600 15.613** < 0.001 0.453 0.503 24.031** < 0.001
施肥方式?Fertilization mode (FM) 8.401** 0.005 2.311 0.134 1.169 0.284 1.148 0.288 0.058 0.810 5.788* 0.019
耕作×施肥?TM×FM 0.152 0.698 0.126 0.724 0.139 0.711 0.212 0.647 0.297 0.588 0.098 0.755
MBC表示微生物量碳, MC表示有机碳累积矿化量, qCO2表示代谢商, MQ表示微生物商, RI表示呼吸强度, PE表示有机碳矿化激发效应。*和**分别表示影响达P < 0.05和P < 0.01水平。MBC is microbial biomass carbon, MC is cumulative mineralization of organic carbon, qCO2 is metabolic quotient, MQ is microbial quotient, RI is respiration rate, PE is priming effect of organic carbon mineralization. * and ** indicate significant effects at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表4绿肥还田和不同耕作方式下双季稻田土壤微生物量碳和有机碳累积矿化量与各指标的相关性
Table4.Correlations of microbial biomass carbon, cumulative mineralization of organic carbon with related indicators of double cropping rice soil under green manure returning and different tillage modes
项目?Item 处理?Treatment qCO2 MQ RI PE
微生物量碳
Microbial biomass carbon
无绿肥?No green manure -0.497** 0.900** 0.190 -0.425*
绿肥?Green manure -0.692** 0.934** -0.025 -0.443*
常规耕作?Conventional tillage -0.619** 0.973** -0.024 -0.318
粉垄耕作?Smash ridging -0.599** 0.920** 0.141 -0.217
有机碳累积矿化量
Accumulative mineralizationof organic carbon
无绿肥?No green manure 0.422* -0.173 0.559** 0.545**
绿肥?Green manure 0.482** -0.284 0.715** 0.479**
常规耕作?Conventional tillage 0.296 -0.039 0.660** 0.249
粉垄耕作?Smash ridging 0.593** -0.051 0.857** 0.599**
qCO2表示代谢商, MQ表示微生物商, RI表示呼吸强度, PE表示有机碳矿化激发效应。*和**分别表示相关性达P < 0.05和P < 0.01水平。qCO2 is metabolic quotient, MQ is microbial quotient, RI is respiration rate, PE is priming effect of organic carbon mineralization. * and ** indicate significant correlations at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(58)
[1]YUAN L, BAO D J, JIN Y, et al. Influence of fertilizers on nitrogen mineralization and utilization in the rhizosphere of wheat[J]. Plant and Soil, 2011, 343(1/2): 187-193
[2]ZHENG J S, HU J M, WEI Y Y, et al. Effects of green manure and smash ridging coupling on topsoil aggregate structure in paddy field[J]. Journal of Southern Agriculture, 2020, 51(11): 2653-2664
[3]宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201801002.htm
SONG D L, HOU S P, WANG X B, et al. Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201801002.htm
[4]胡钧铭, 黄忠华, 罗维钢, 等. 蕉肥间作下微喷灌对蕉园土壤水氮动态及香蕉产量的影响[J]. 广西植物, 2018, 38(6): 710-718 https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW201806005.htm
HU J M, HUANG Z H, LUO W G, et al. Effects of micro-sprinkler irrigation on soil water and nitrogen and yield under banana-mung bean intercropping[J]. Guihaia, 2018, 38(6): 710-718 https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW201806005.htm
[5]白金顺, 曹卫东, 曾闹华, 等. 不同供氮量对二月兰产量、土壤无机氮残留及氮平衡的影响[J]. 应用生态学报, 2018, 29(10): 3206-3212 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201810007.htm
BAI J S, CAO W D, ZENG N H, et al. Effects of different nitrogen supply levels on the yield of Orychophragmus violaceus, soil residual inorganic nitrogen, and nitrogen balance[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3206-3212 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201810007.htm
[6]李福夺, 尹昌斌. 南方稻区绿肥生态服务功能及生态价值评估研究[J]. 中国生态农业学报(中英文), 2019, 27(2): 327-336 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0220&flag=1
LI F D, YIN C B. Assessment of the functions and ecological services values of green manure in paddy fields in South China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 327-336 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0220&flag=1
[7]CHEN Z M, WANG H Y, LIU X W, et al. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system[J]. Soil and Tillage Research, 2017, 165: 121-127 doi: 10.1016/j.still.2016.07.018
[8]王丙文, 迟淑筠, 田慎重, 等. 不同玉米秸秆还田方式对冬小麦田土壤呼吸的影响[J]. 应用生态学报, 2013, 24(5): 1374-1380 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201305028.htm
WANG B W, CHI S Y, TIAN S Z, et al. Effects of different maize straw-returning modes on the soil respiration in a winter wheat field[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1374-1380 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201305028.htm
[9]薛菁芳, 高艳梅, 汪景宽, 等. 土壤微生物量碳氮作为土壤肥力指标的探讨[J]. 土壤通报, 2007, 38(2): 247-250 doi: 10.3321/j.issn:0564-3945.2007.02.009
XUE J F, GAO Y M, WANG J K, et al. Microbial biomass carbon and nitrogen as an indicator for evaluation of soil fertility[J]. Chinese Journal of Soil Science, 2007, 38(2): 247-250 doi: 10.3321/j.issn:0564-3945.2007.02.009
[10]张英英, 蔡立群, 武均, 等. 不同耕作措施下陇中黄土高原旱作农田土壤活性有机碳组分及其与酶活性间的关系[J]. 干旱地区农业研究, 2017, 35(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201701002.htm
ZHANG Y Y, CAI L Q, WU J, et al. The relationship between soil labile organic carbon fractions and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu Province[J]. Agricultural Research in the Arid Areas, 2017, 35(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201701002.htm
[11]ZIMMERMAN A R, GAO B, AHN M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry, 2011, 43(6): 1169-1179 doi: 10.1016/j.soilbio.2011.02.005
[12]GREGO S, KENNEDY A Y. Effect of ammo-nitrate stabilized farmyard manure on microbial biomass and metabolic quotient of soil under Zea mays[J]. Agriculture in Mediterranea, 1989, 128: 132-137 http://www.researchgate.net/publication/286271485_Effect_of_ammonium_nitrate_and_stabilized_farmyard_manure_on_microbial_biomass_and_metabolic_quotient_of_soil_under_Zea_mays
[13]匡崇婷, 江春玉, 李忠佩, 等. 添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响[J]. 土壤, 2012, 44(4): 570-575 doi: 10.3969/j.issn.0253-9829.2012.04.007
KUANG C T, JIANG C Y, LI Z P, et al. Effects of biochar amendments on soil organic carbon mineralization and microbial biomass in red paddy soils[J]. Soils, 2012, 44(4): 570-575 doi: 10.3969/j.issn.0253-9829.2012.04.007
[14]马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响[J]. 生态学杂志, 2019, 38(1): 129-135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201901021.htm
MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L. ) and nitrogen fertilizer on paddy soil carbon pool[J]. Chinese Journal of Ecology, 2019, 38(1): 129-135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201901021.htm
[15]万水霞, 唐杉, 蒋光月, 等. 紫云英与化肥配施对土壤微生物特征和作物产量的影响[J]. 草业学报, 2016, 25(6): 109-117 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201606013.htm
WAN S X, TANG S, JIANG G Y, et al. Effects of Chinese milk vetch manure and fertilizer on soil microbial characteristics and yield of rice[J]. Acta Prataculturae Sinica, 2016, 25(6): 109-117 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201606013.htm
[16]刘建新. 不同农田土壤酶活性与土壤养分相关关系研究[J]. 土壤通报, 2004, 35(4): 523-525 doi: 10.3321/j.issn:0564-3945.2004.04.027
LIU J X. Correlative research on the activity of enzyme and soil nutrient in the different types of farmland[J]. Chinese Journal of Soil Science, 2004, 35(4): 523-525 doi: 10.3321/j.issn:0564-3945.2004.04.027
[17]高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902-910 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201504019.htm
GAO S J, CAO W D, BAI J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902-910 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201504019.htm
[18]唐美玲, 魏亮, 祝贞科, 等. 稻田土壤有机碳矿化及其激发效应对磷添加的响应[J]. 应用生态学报, 2018, 29(3): 857-864 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201803022.htm
TANG M L, WEI L, ZHU Z K, et al. Responses of organic carbon mineralization and priming effect to phosphorus addition in paddy soils[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 857-864 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201803022.htm
[19]吴迪, 张蕊, 高升华, 等. 模拟氮沉降对长江中下游滩地杨树林土壤呼吸各组分的影响[J]. 生态学报, 2015, 35(3): 717-724 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201503015.htm
WU D, ZHANG R, GAO S H, et al. Effects of simulated nitrogen deposition on the each component of soil respiration in the Populus L. plantations in a riparian zone of the mid-lower Yangtze River[J]. Acta Ecologica Sinica, 2015, 35(3): 717-724 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201503015.htm
[20]王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析——基于中国农业生态系统长期试验资料[J]. 农业环境科学学报, 2009, 28(12): 2464-2475 doi: 10.3321/j.issn:1672-2043.2009.12.005
WANG C J, PAN G X, TIAN Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across mainland China[J]. Journal of Agro-Environment Science, 2009, 28(12): 2464-2475 doi: 10.3321/j.issn:1672-2043.2009.12.005
[21]彭娟, 符卓旺, 朱洁, 等. 耕作制度对紫色水稻土有机碳累积及矿化动态的影响[J]. 水土保持学报, 2011, 25(4): 175-178 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201104036.htm
PENG J, FU Z W, ZHU J, et al. Effects of tillage systems on accumulation and mineralization of organic carbon in purple paddy soil[J]. Journal of Soil and Water Conservation, 2011, 25(4): 175-178 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201104036.htm
[22]路丹, 何明菊, 区惠平, 等. 耕作方式对稻田土壤活性有机碳组分、有机碳矿化以及腐殖质特征的影响[J]. 土壤通报, 2014, 45(5): 1144-1150 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201405020.htm
LU D, HE M J, OU H P, et al. Effects of tillage patterns on the labile organic carbon components, organic carbon mineralization and humus characteristics in paddy soil[J]. Chinese Journal of Soil Science, 2014, 45(5): 1144-1150 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201405020.htm
[23]石思博. 菌渣化肥配施对稻田土壤有机碳组分及水稻产量的影响[D]. 杭州: 浙江农林大学, 2018
SHI S B. Effect of the combined application of fungal residues and chemical fertilizers on the soil organic carbon composition and yield in paddy fields[D]. Hangzhou: Zhejiang A & F University, 2018
[24]魏甲彬, 成小琳, 周玲红, 等. 冬季施用鸡粪和生物炭对南方稻田土壤CO2与CH4排放的影响[J]. 中国生态农业学报, 2017, 25(12): 1742-1751 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171202&flag=1
WEI J B, CHENG X L, ZHOU L H, et al. Effect of chicken manure and biochar on CO2 and CH4 emission in paddy fields in South China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1742-1751 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171202&flag=1
[25]李纯燕, 杨恒山, 萨如拉, 等. 不同耕作措施下秸秆还田对土壤速效养分和微生物量的影响[J]. 水土保持学报, 2017, 31(1): 197-201 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201701033.htm
LI C Y, YANG H S, SA R L, et al. Effect of straw returning on soil available nutrients and microbe biomass under different tillage methods[J]. Journal of Soil and Water Conservation, 2017, 31(1): 197-201 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201701033.htm
[26]周鹏翀, 沈莹, 许姣姣, 等, 长期定位耕作方式下冬小麦田根系呼吸对土壤呼吸的贡献[J]. 农业资源与环境学报, 2019, 36(6): 766-773 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201906010.htm
ZHOU P C, SHEN Y, XU J J, et al. Contribution of root respiration to soil respiration in a winter wheat field under long-term localized tillage[J]. Journal of Agricultural Resources and Environment, 2019, 36(6): 766-773 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201906010.htm
[27]胡钧铭, 陈胜男, 韦翔华, 等. 耕作对健康耕层结构的影响及发展趋势[J]. 农业资源与环境学报, 2018, 35(2): 95-103 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201802001.htm
HU J M, CHEN S N, WEI X H, et al. Effects of tillage model on healthy plough layer structure and its development trends[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 95-103 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201802001.htm
[28]WEI B H, GAN X Q, LI Y Y, et al. Effects of once Fenlong cultivation on soil properties and rice yield and quality for 7 consecutive years[J]. Agricultural Science & Technology, 2017, 18(12): 2365-2371 http://www.zhangqiaokeyan.com/academic-journal-cn_agricultural-science-technology_thesis/020122645779.html
[29]郑佳舜, 胡钧铭, 韦翔华, 等. 绿肥压青粉垄保护性耕作对稻田土壤温室气体排放的影响[J]. 中国农业气象, 2019, 40(1): 15-24 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201901002.htm
ZHENG J S, HU J M, WEI X H, et al. Effect of conservation tillage with smash ridging under green manure condition on the emission of greenhouse gas in the rice field soil[J]. Chinese Journal of Agrometeorology, 2019, 40(1): 15-24 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201901002.htm
[30]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 13-14, 106-110, 272-276
LU R K. Soil Agrochemistry Analysis Protocoes[M]. Beijing: China Agriculture Science Press, 1999: 13-14, 106-110, 272-276
[31]李顺姬. 黄土高原土壤理化性质对活性有机碳库的影响研究[D]. 杨凌: 西北农林科技大学, 2009
LI S J. Research on the effect of physicochemical properties on active organic carbon pool of soil in Loess Plateau[D]. Yangling: Northwest A & F University, 2009
[32]李顺姬, 邱莉萍, 张兴昌. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J]. 生态学报, 2010, 30(5): 1217-1226 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201005014.htm
LI S J, QIU L P, ZHANG X C. Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau[J]. Acta Ecologica Sinica, 2010, 30(5): 1217-1226 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201005014.htm
[33]WANG Q K, WANG Y P, WANG S L, et al. Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers[J]. Soil Biology and Biochemistry, 2014, 72: 145-151 doi: 10.1016/j.soilbio.2014.01.020
[34]吴立鹏, 张士荣, 娄金华, 等. 秸秆还田与优化施氮对稻田土壤碳氮含量及产量的影响[J]. 华北农学报, 2019, 34(4): 158-166 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201904021.htm
WU L P, ZHANG S R, LOU J H, et al. Effects of straw returning and nitrogen fertilizer on soil c and n content and yield of rice[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 158-166 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201904021.htm
[35]孔凡磊, 张明园, 范士超, 等. 耕作方式对长期免耕农田土壤微生物生物量碳的影响[J]. 中国生态农业学报, 2011, 19(2): 240-245 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110202&flag=1
KONG F L, ZHANG M Y, FAN S C, et al. Effect of tillage practices on soil microbial biomass carbon in the field with long-term non-tillage[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 240-245 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110202&flag=1
[36]叶协锋, 李志鹏, 于晓娜, 等. 生物炭用量对植烟土壤碳库及烤后烟叶质量的影响[J]. 中国烟草学报, 2015, 21(5): 33-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYB201505008.htm
YE X F, LI Z P, YU X N, et al. Effect of biochar application rate on quality of flue-cured tobacco leaves and carbon pool in tobacco growing soil[J]. Acta Tabacaria Sinica, 2015, 21(5): 33-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYB201505008.htm
[37]SPARLING G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Australian Journal of Soil Research, 1992, 30(2): 195-207 doi: 10.1071/SR9920195
[38]杨曾平, 高菊生, 郑圣先, 等. 长期冬种绿肥对红壤性水稻土微生物特性及酶活性的影响[J]. 土壤, 2011, 43(4): 576-583 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201104012.htm
YANG Z P, GAO J S, ZHENG S X, et al. Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil[J]. Soils, 2011, 43(4): 576-583 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201104012.htm
[39]吕真真, 刘秀梅, 仲金凤, 等. 长期施肥对红壤性水稻土有机碳矿化的影响[J]. 中国农业科学, 2019, 52(15): 2636-2645 doi: 10.3864/j.issn.0578-1752.2019.15.008
Lü Z Z, LIU X M, ZHONG J F, et al. Effects of long-term fertilization on mineralization of soil organic carbon in red paddy soil[J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645 doi: 10.3864/j.issn.0578-1752.2019.15.008
[40]李勇, 沈家禾, 白洁瑞, 等. 有机无机复混肥优化运筹对稻田肥力的影响[J]. 土壤通报, 2017, 48(4): 860-867 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201704013.htm
LI Y, SHEN J H, BAI J R, et al. Effects of optimized management of organic-inorganic mixed fertilizers on rice soil fertility[J]. Chinese Journal of Soil Science, 2017, 48(4): 860-867 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201704013.htm
[41]WU Y P, LI Y F, ZHANG Y, et al. Responses of saline soil properties and cotton growth to different organic amendments[J]. Pedosphere, 2018, 28(3): 521-529 doi: 10.1016/S1002-0160(17)60464-8
[42]庞飞, 李志刚, 李健. 有机物料和氮添加对宁夏沙化土壤碳矿化的影响[J]. 水土保持研究, 2018, 25(3): 75-80 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201803014.htm
PANG F, LI Z G, LI J. Effects of incorporated organic materials with N fertilizer on soil carbon mineralization of desertified soil in Ningxia[J]. Research of Soil and Water Conservation, 2018, 25(3): 75-80 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201803014.htm
[43]马力, 杨林章, 肖和艾, 等. 施肥和秸秆还田对红壤水稻土有机碳分布变异及其矿化特性的影响[J]. 土壤, 2011, 43(6): 883-890 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201106006.htm
MA L, YANG L Z, XIAO H A, et al. Effects of fertilization and straw returning on distribution and mineralization of organic carbon in paddy soils in subtropical China[J]. Soils, 2011, 43(6): 883-890 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201106006.htm
[44]王义祥, 叶菁, 王成己, 等. 不同经营年限柑橘果园土壤稳定性有机碳比较[J]. 农业资源与环境学报, 2015, 32(4): 332-337 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201504004.htm
WANG Y X, YE J, WANG C J, et al. Effect of different cultivation periods on soil stable organic carbon pool in citrus orchard[J]. Journal of Agricultural Resources and Environment, 2015, 32(4): 332-337 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201504004.htm
[45]NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112 doi: 10.1097/SS.0b013e3181981d9a
[46]刘浩宇, 巩晟萱, 王兵, 等. 阿尔泰山冷杉林下土壤有机碳矿化特征[J]. 水土保持通报, 2016, 36(1): 327-331 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201601058.htm
LIU H Y, GONG S X, WANG B, et al. Mineralization characteristics of soil organic carbon under Abies Nephrolepis forest in Altai Mountains[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 327-331 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201601058.htm
[47]康成芳, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸不同海拔土壤有机碳矿化的季节动态[J]. 生态学报, 2020, 40(4): 1367-1375 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202004022.htm
KANG C F, GONG Y B, CHE M X, et al. Seasonal dynamics of soil organic carbon mineralization for alpine shrub meadow at different elevations, western Sichuan[J]. Acta Ecologica Sinica, 2020, 40(4): 1367-1375 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202004022.htm
[48]BLAGODATSKAYA Е, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115-131 doi: 10.1007/s00374-008-0334-y
[49]陈仕奇, 吕盛, 高明, 等. 缙云山不同林分下土壤有机碳及矿化特征[J]. 环境科学, 2019, 40(2): 953-960 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902056.htm
CHEN S Q, Lü S, GAO M, et al. Characteristics of soil organic carbon and mineralization with different stands in Jinyun Mountain[J]. Environmental Science, 2019, 40(2): 953-960 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902056.htm
[50]张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202002007.htm
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica, 2020, 53(2): 317-331 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202002007.htm
[51]毛霞丽, 邱志腾, 张爽, 等. 不同母质发育土壤团聚体分布对外源输入秸秆的响应及其与有机碳矿化的关系[J]. 环境科学, 2020, 41(6): 2842-2851 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006043.htm
MAO X L, QIU Z T, ZHANG S, et al. Response of aggregate distribution to input straw and their linkages to organic carbon mineralization in soils developed from five different parent materials[J]. Environmental Science, 2020, 41(6): 2842-2851 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006043.htm
[52]LIU X J A, SUN J R, MAU R L, et al. Labile carbon input determines the direction and magnitude of the priming effect[J]. Applied Soil Ecology, 2017, 109: 7-13 doi: 10.1016/j.apsoil.2016.10.002
[53]XIAO C W, GUENET B, ZHOU Y, et al. Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation[J]. Oikos, 2015, 124: 649-657 doi: 10.1111/oik.01728
[54]LUO Z K, WANG E L, SMITH C. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems[J]. Ecology, 2015, 96(10): 2806-2813 doi: 10.1890/14-2228.1
[55]GINTING D, KESSAVALOU A, EGHBALL B, et al. Greenhouse gas emissions and soil indicators four years after manure and compost applications[J]. Journal of Environmental Quality, 2003, 32(1): 23-32 doi: 10.2134/jeq2003.0023
[56]陈利军, 孙波, 金辰, 等. 等碳投入的有机肥和生物炭对红壤微生物多样性和土壤呼吸的影响[J]. 土壤, 2015, 47(2): 340-348 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201502023.htm
CHEN L J, SUN B, JIN C, et al. Effect of organic manure and biochar with equal amount of carbon input on microbial Diversity and respiration of red soil[J]. Soils, 2015, 47(2): 340-348 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201502023.htm
[57]张志毅, 熊桂云, 吴茂前, 等. 有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 405-412 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0310&flag=1
ZHANG Z Y, XIONG G Y, WU M Q, et al. Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 405-412 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0310&flag=1
[58]魏宇轩, 蔡红光, 张秀芝, 等. 不同种类有机肥施用对黑土团聚体有机碳及腐殖质组成的影响[J]. 水土保持学报, 2018, 32(3): 258-263 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201803039.htm
WEI Y X, CAI H G, ZHANG X Z, et al. Effects of different organic manures application on organic carbon and humus composition of aggregate fractions in a black soil[J]. Journal of Soil and Water Conservation, 2018, 32(3): 258-263 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201803039.htm

相关话题/土壤 微生物 生育 农业 生态