删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

稻蟹生态种养模式优质食味粳稻的稻米营养品质分析

本站小编 Free考研考试/2022-01-01

马亮1,,
李跃东1,
田春晖2,
张悦1,
张睿1,
董立强1,
孙富余2,,
1.辽宁省水稻研究所 沈阳 110101
2.辽宁省农业科学院植物保护研究所 沈阳 110161
基金项目: 国家重点研发计划项目2018YFD0200200
辽宁省农业科学院院长(青年)基金2020QN2411

详细信息
作者简介:马亮, 主要从事水稻病虫害防控和优质栽培技术研究。E-mail: malhd@126.com
通讯作者:孙富余, 主要从事农作物病虫害绿色防控及食品安全控害生产技术研究。E-mail: laassfy@163.com
中图分类号:S511.4

计量

文章访问数:146
HTML全文浏览量:3
PDF下载量:140
被引次数:0
出版历程

收稿日期:2020-06-11
录用日期:2020-10-30
刊出日期:2021-04-01

Nutritional quality of japonica rice with good taste quality in an ecological rice-crab mode

MA Liang1,,
LI Yuedong1,
TIAN Chunhui2,
ZHANG Yue1,
ZHANG Rui1,
DONG Liqiang1,
SUN Fuyu2,,
1. Liaoning Rice Research Institute, Shenyang 110101, China
2. Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
Funds: the National Key R & D Program of China2018YFD0200200
the Dean Fund of Liaoning Academy of Agricultural Sciences2020QN2411

More Information
Corresponding author:SUN Fuyu, E-mail: laassfy@163.com


摘要
HTML全文
(3)(3)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本研究选用优质食味粳稻品种‘辽粳433’和‘五优稻4号’(稻花香2号)为材料,设置了稻蟹生态种养(ecological rice-crab,ERC)和水稻单植(rice monoculture,RM)2个模式,测定与稻米品质相关的蛋白质含量、直链淀粉含量和矿物质元素含量,采用非靶向代谢组学方法分析两个模式之间与营养相关的差异代谢产物,从多个方面分析稻蟹生态种养的稻米营养品质,为稻蟹生态种养模式的应用推广提供理论依据。结果表明,与RM相比,ERC的‘辽粳433’和‘五优稻4号’糙米蛋白质含量显著降低6.75%和10.11%,Fe含量显著增加,为RM的2.03倍和4.99倍,Se含量显著增加,为RM的3.11倍和5.74倍,Pb含量显著降低35.11%和44.35%。采用GC-MS检测到233种代谢产物,利用偏最小二乘法(PLS-DA)分析发现,ERC和RM糙米的代谢产物差异显著,ERC诱导‘辽粳433’和‘五优稻4号’的4-氨基丁酸显著上调为RM的2.11倍和11.99倍,抗氧化性物质α-生育酚、β-羟肉豆蔻酸以及奎宁酸分别显著上调为RM的1.62倍和2.22倍、12.64倍和20.48倍以及14.25倍和4.67倍,己糖醇显著上调为RM的14.36倍和15.14倍,半乳糖醇显著上调为RM的3.13倍和2.87倍。此外,ERC的‘辽粳433’产量降低286.0 kg·km-2,‘五优稻4号’产量增加344.5 kg·km-2,均与RM差异不显著。综上所述,稻蟹生态种养模式在稳产的基础上可以增加优质食味粳稻稻米的营养价值。
关键词:稻蟹生态种养/
代谢组学/
营养品质/
产量/
矿物质元素/
食味品质
Abstract:In this study, we investigated the effects of an ecological rice-crab mode on the nutritional value of rice using two cropping patterns, ecological rice-crab (ERC) and rice monoculture (RM). Two japonica rice cultivars with good taste quality, 'Liaojing 433' and 'Wuyoudao No.4' (Daohuaxiang No.2), were selected as the study materials, and the rice contents of protein, amylose, and mineral elements, which are related to rice quality, were measured. Differences in the nutrition-related metabolites of ERC and RM were analyzed using non-targeted metabolomics. This study aimed to provide a theoretical basis for the application and popularization of the ecological rice-crab mode. The results showed that compared with RM, the protein content of brown rice of 'Liaojing 433' and 'Wuyoudao No.4' under the ERC mode significantly decreased by 6.75% and 10.11%, respectively, and Pb content decreased by 35.11% and 44.35%, respectively. The Fe content significantly increased by 1.03 and 3.99 times, respectively, and the Se content increased by 2.11 and 4.74 times, respectively. Two hundred and thirty-three metabolites were detected by gas chromatography-mass spectrometry (GC-MS). Significant differences in the metabolites were found between ERC and RM brown rice by partial least-squares discriminant analysis (PLS-DA). Compared with RM, the content of 4-aminobutyric acid in 'Liaojing 433' and 'Wuyoudao No.4' under the ERC mode increased significantly by 1.11 and 10.99 times, respectively; and the contents of antioxidant substances, such as alpha-tocopherol, beta-hydroxamic acid, and quinic acid, significantly increased by 0.62 and 1.22 times, 11.64 and 19.48 times, and 13.25 and 3.67 times, respectively. The hexitol content increased by 13.36 and 14.14 times, respectively, and the galactitol content increased by 2.13 and 1.87 times, respectively. Rice yield of 'Liaojing 433' under the ERC mode decreased by 286.0 kg·km-2, whereas that of 'Wuyoudao No.4' under the ERC mode increased by 344.5 kg·km-2. However, there were no significant differences in rice yield between ERC and RM. In conclusion, the ERC mode can increase the nutritional value of high-quality japonica rice without reducing its production.
Key words:Ecological rice-crab mode/
Metabolomics/
Nutritional quality/
Yield/
Mineral elements/
Taste quality

HTML全文


图1水稻品种‘辽粳433’和‘五优稻4号’稻蟹生态种养(ERC)与单一种植(RM)的稻米之间代谢产物PCA(a)和PLS-DA分析(b, c)
A: ‘辽粳433’的ERC; B: ‘辽粳433’的RM; C: ‘五优稻4号’的ERC; D: ‘五优稻4号’的RM; QC: 质控样品。
Figure1.PCA (a) and PLS-DA (b, c) analysis under ecological rice-crab (ERC) and rice monoculture (RM) modes with metabolites of brown rice of cultivars'Liaojing 433' and 'Wuyoudao No.4'
A: 'Liaojing 433' of ERC; B: 'Liaojing 433' of RM; C: 'Wuyoudao No.4' of ERC; D: 'Wuyudao No.4' of RM; QC: quality control sample.


下载: 全尺寸图片幻灯片


图2水稻品种‘辽粳433’和‘五优稻4号’稻蟹生态种养(ERC)与单一种植(RM)的稻米之间差异代谢产物(红色为代谢产物相对含量高, 绿色为代谢产物相对含量低)
A: ‘辽粳433’的ERC; B: ‘辽粳433’的RM; C: ‘五优稻4号’的ERC; D: ‘五优稻4号’的RM.
Figure2.Rice different metabolites under ecological rice-crab (ERC) and rice monoculture (RM) modes of cultivars 'Liaojing 433' and 'Wuyoudao No.4' (red means the relative high content of metabolites, green means the relative low content of metabolites)
A: 'Liaojing 433' of ERC; B: 'Liaojing 433' of RM; C: 'Wuyoudao No.4' of ERC; D: 'Wuyudao No.4' of RM.


下载: 全尺寸图片幻灯片


图3水稻品种‘辽粳433’和‘五优稻4号’稻蟹生态种养(ERC)与普通种植(RM)之间共有的差异代谢产物
A: ‘辽粳433’的ERC; B: ‘辽粳433’的RM; C: ‘五优稻4号’的ERC; D: ‘五优稻4号’的RM.
Figure3.Common differential metabolites of rice cultivars 'Liaojing 433' and 'Wuyoudao No.4' under ecological rice-crab (ERC) and rice monoculture (RM) modes
A: 'Liaojing 433' of ERC; B: 'Liaojing 433' of RM; C: 'Wuyoudao No.4' of ERC; D: 'Wuyudao No.4' of RM.


下载: 全尺寸图片幻灯片

表1稻蟹生态种养模式对水稻品种‘辽粳433’和‘五优稻4号’碾磨品质和食味品质的影响
Table1.Effect of ecological rice-crab on milling quality and taste quality of rice cultivars 'Liaojing 433' and 'Wuyoudao No. 4'
稻米品质
Rice quality
辽粳?433 Liaojing 433 五优稻4号?Wuyoudao No.4
稻蟹生态种养
Ecological rice-crab
水稻单一种植
Rice monoculture
P 稻蟹生态种养
Ecological rice-crab
水稻单一种植
Rice monoculture
P
糙米率?Brown rice rate (%) 75.34±3.76 73.76±4.16 0.6558 77.68±2.52 76.37±1.09 0.5654
精米率?Milled rice rate (%) 67.47±2.75 64.95±2.94 0.3333 69.16±1.79 67.32±0.58 0.3058
整精米率?Head rice rate (%) 63.94±2.42 61.03±2.65 0.2443 65.74±2.48 61.95±0.45 0.1446
垩白粒率?Chalke grain rate (%) 16.58±2.90 18.52±3.50 0.3120 8.57±1.25 24.36±3.65 0.0227*
蛋白质含量?Protein content (%) 7.68±0.19 8.20±0.14 0.0009** 7.73±0.31 8.56±0.32 0.0198*
直链淀粉含量?Amylose content (%) 15.26±0.18 15.50±0.17 0.1087 16.17±0.40 16.67±0.35 0.3701
食味值?Taste value 84.00±1.22 80.00±1.58 0.0110* 78.00±2.00 74.80±1.92 0.0085**
***分别表示稻蟹生态种养和水稻单一种植间在P < 0.05和P < 0.01水平差异显著。* and ** mean significant difference between ecological rice-crab and rice monoculture at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表2稻蟹生态种养模式对水稻品种‘辽粳433’和‘五优稻4号’矿质元素含量的影响
Table2.Effect of ecological rice-crab on mineral elements contents of rice cultivars 'Liaojing433' and 'Wuyoudao No. 4'?mg·kg–1
矿质元素
Mineral element
辽粳?433 Liaojing 433 五优稻4号?Wuyoudao No.4
稻蟹生态种养
Ecological rice-crab
水稻单一种植
Rice monoculture
P 稻蟹生态种养
Ecological rice-crab
水稻单一种植
Rice monoculture
P
Mg 1493.24±90.95 1204.93±54.34 0.0679 1769.58±149.94 1929.96±64.87 0.2440
P 1995.97±54.25 1840.02±101.65 0.0531 4527.14±84.13 3568.33±120.98 0.0066**
K 2991.38±104.00 2244.30±106.19 0.0036** 3536.70±163.34 2846.59±94.91 0.0111*
Ca 207.31±18.86 162.01±10.41 0.1155 290.76±17.02 264.13±23.91 0.0767*
Fe 19.98±1.16 9.82±0.41 0.0077** 56.31±2.29 11.28±1.00 0.0011**
Zn 11.64±1.12 8.71±1.27 0.1663 16.74±0.55 17.57±0.83 0.0678
Se 0.15±0.01 0.05±0.01 0.0082** 0.20±0.01 0.04±0.01 0.0037**
Cr 0.07±0.01 0.06±0.01 0.2198 0.06±0.01 0.09±0.01 0.0177*
Pb 0.09±0.01 0.13±0.01 0.0089** 0.07±0.01 0.12±0.01 0.0131*
***分别表示稻蟹生态种养和水稻单一种植间在P < 0.05和P < 0.01水平差异显著。* and ** mean significant difference between ecological rice-crab and rice monoculture at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表3稻蟹生态种养对水稻品种‘辽粳433’和‘五优稻4号’产量构成因素影响
Table3.Effect of ecological rice-crab on yield of rice cultivars 'Liaojing 433'and 'Wuyoudao No.4'
辽粳?433 Liaojign 433 五优稻4号?Wuyoudao No.4
稻蟹生态种养
Ecological rice-crab
水稻单一种植
Rice monoculture
P 稻蟹生态种养
Ecological rice-crab
水稻单一种植
Rice monoculture
P
有效穗数
Productive panicles number (×106·hm-2)
3.48±0.24 3.58±0.22 0.1662 2.89±0.39 3.05±0.20 0.6621
一次枝梗数?Spike branches number 9.37±0.08 9.04±0.14 0.0120* 8.33±0.10 7.93±0.22 0.0285*
穗实粒数?Grains number per panicle 85.56±6.88 81.40±6.72 0.3565 90.50±10.01 85.50±14.26 0.7160
结实率?Seed setting rate (%) 93.14±1.17 92.80±2.00 0.7664 93.67±1.58 91.87±3.67 0.5599
千粒重1000-grain weight (g) 22.47±1.08 23.27±0.33 0.1351 25.55±0.16 23.14±0.56 0.0089**
产量?Yield (kg·hm-2) 7265.00±215.42 7551.00±245.04 0.3299 7456.50±235.06 7112.00±350.33 0.1202
***分别表示稻蟹生态种养和水稻单一种植间在P < 0.05和P < 0.01水平差异显著。* and ** mean significant difference between ecological rice-crab and rice monoculture at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(35)
[1]王强盛, 王晓莹, 杭玉浩, 等. 稻田综合种养结合模式及生态效应[J]. 中国农学通报, 2019, 35(8): 46-51 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201908009.htm
WANG Q S, WANG X Y, HANG Y H, et al. Combination modes and ecological effects of planting-breeding ecosystem in rice field[J]. Chinese Agricultural Science Bulletin, 2019, 35(8): 46-51 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201908009.htm
[2]管卫兵, 刘凯, 石伟, 等. 稻渔综合种养的科学范式[J]. 生态学报, 2020, 40(16): 5451-5464 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202016001.htm
GUAN W B, LIU K, SHI W, et al. Scientific paradigm of integrated farming of rice and fish[J]. Acta Ecologica Sinica, 2020, 40(16): 5451-5464 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202016001.htm
[3]王昂, 王武, 马旭洲. 稻蟹共作模式的发展历程和前景展望[J]. 吉林农业科学, 2013, 38(3): 89-92 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK201303022.htm
WANG A, WANG W, MA X Z. Development and prospects on rice-crab model[J]. Journal of Jilin Agricultural Sciences, 2013, 38(3): 89-92 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK201303022.htm
[4]王昂, 戴丹超, 马旭洲, 等. 稻蟹共作模式对土壤微生物量氮和酶活性的影响[J]. 江苏农业学报, 2019, 35(1): 76-84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNB201901011.htm
WANG A, DAI D C, MA X Z, et al. Effects of rice-crab culture system on soil microbial biomass nitrogen and soil enzymes activities[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 76-84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNB201901011.htm
[5]胡宗云, 杨培民, 李文宽, 等. 稻蟹共作模式下稻蟹产出与土壤理化性质的研究[J]. 河北渔业, 2015, (5): 5-7 doi: 10.3969/j.issn.1004-6755.2015.05.002
HU Z Y, YANG P M, LI W K, et al. Study on the output of rice crab and the physical and chemical properties of soil under the mode of crab co cropping[J]. Hebei Fisheries, 2015, (5): 5-7 doi: 10.3969/j.issn.1004-6755.2015.05.002
[6]陈玥, 牛世伟, 邹晓锦, 等. 稻蟹联合种养对稻田生态环境的影响[J]. 辽宁农业科学, 2018, (3): 30-34 doi: 10.3969/j.issn.1002-1728.2018.03.010
CHEN Y, NIU S W, ZOU X J, et al. Effect of rice-crab co-culture on environment of rice field[J]. Liaoning Agricultural Sciences, 2018, (3): 30-34 doi: 10.3969/j.issn.1002-1728.2018.03.010
[7]林利红, 王延平, 王帅. 稻田养蟹对水稻土壤理化性质的影响研究[J]. 辽宁农业科学, 2016, (3): 43-47 doi: 10.3969/j.issn.1002-1728.2016.03.011
LIN L H, WANG Y P, WANG S. Effects of rice-crab model on physical and chemical properties of rice soil[J]. Liaoning Agricultural Sciences, 2016, (3): 43-47 doi: 10.3969/j.issn.1002-1728.2016.03.011
[8]YAN Y, LIU M D, YANG D, et al. Effect of different rice-crab coculture modes on soil carbohydrates[J]. Journal of Integrative Agriculture, 2014, 13(3): 641-647 doi: 10.1016/S2095-3119(13)60722-4
[9]陈灿, 黄璜, 丁姣龙, 等. 稻田综合种养稻米质量特性形成及调优机理探究[J]. 作物研究, 2019, 33(5): 392-397 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201905012.htm
CHEN C, HUANG H, DING J L, et al. Study on the formation and optimization mechanism of rice quality characteristics in comprehensive planting and breeding model of rice field[J]. Crop Research, 2019, 33(5): 392-397 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201905012.htm
[10]马晓慧, 车喜庆, 王井士, 等. 稻蟹共作与常规稻田蜘蛛群落组成及多样性分析[J]. 中国生态农业学报(中英文), 2019, 27(8): 1157-1162 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0802&flag=1
MA X H, CHE X Q, WANF J S, et al. The structure of spider communities in crab paddies and conventional paddies[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1157-1162 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0802&flag=1
[11]汪倩, 胡庚东, 宋超, 等. 基于Ecopath评估蟹-稻复合生态系统营养结构和能量流动[J]. 生态学报, 2020, 40(14): 4852-4862 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202014015.htm
WANG Q, HU G D, SONG C, et al. Evaluation of nutritional structure and energy flow of crab-rice complex ecosystem based on an Ecopath model[J]. Acta Ecologica Sinica, 2020, 40(14): 4852-4862 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202014015.htm
[12]闫志利, 林瑞敏, 牛俊义, 等. 我国稻蟹共作技术研究的现状与前景展望[J]. 北方水稻, 2008, 38(2): 5-8 doi: 10.3969/j.issn.1673-6737.2008.02.003
YAN Z L, LIN R M, NIU J Y, et al. Current status and prospectives of rice-crab production technique research in China[J]. North Rice, 2008, 38(2): 5-8 doi: 10.3969/j.issn.1673-6737.2008.02.003
[13]陈飞星, 张增杰. 稻田养蟹模式的生态经济分析[J]. 应用生态学报, 2002, 13(3): 323-326 doi: 10.3321/j.issn:1001-9332.2002.03.016
CHEN F X, ZHANG Z J. Ecological economic analysis of a rice-crab model[J]. Chinese Journal of Applied Ecology, 2002, 13(3): 323-326 doi: 10.3321/j.issn:1001-9332.2002.03.016
[14]安辉, 刘鸣达, 王厚鑫, 等. 不同稻蟹生产模式对稻蟹产量和稻米品质的影响[J]. 核农学报, 2012, 26(3): 581-586 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201203030.htm
AN H, LIU M D, WANG H X, et al. Effects of different rice-crab production models on rice-crab yield and quality[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(3): 581-586 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201203030.htm
[15]陈灿, 黄璜, 郑华斌, 等. 稻田不同生态种养模式对稻米品质的影响[J]. 中国稻米, 2015, 21(2): 17-19 doi: 10.3969/j.issn.1006-8082.2015.02.005
CHEN C, HUANG H, ZHENG H B, et al. Effects of different mode of ecological planting and raising on rice quality[J]. China Rice, 2015, 21(2): 17-19 doi: 10.3969/j.issn.1006-8082.2015.02.005
[16]沈枫, 蒋洪波, 刘博, 等. 优质食味粳稻辽粳433和越光糙米代谢产物差异分析[J]. 中国水稻科学, 2020, 34(4): 359-367 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK202004009.htm
SHEN F, JIANG H B, LIU B, et al. Difference of metabolites in brown rice between Liaojing 433 and Koshihikari with good eating quality[J]. Chinese Journal of Rice Science, 2020, 34(4): 359-367 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK202004009.htm
[17]HEUBERGER A L, LEWIS M R, CHEN M H, et al. Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice[J]. PLoS One, 2010, 5(9): e12915 doi: 10.1371/journal.pone.0012915
[18]张杰, 郑蕾娜, 蔡跃, 等. 稻米淀粉RVA谱特征值与直链淀粉、蛋白含量的相关性及QTL定位分析[J]. 中国水稻科学, 2017, 31(1): 31-39 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201701004.htm
ZHANG J, ZHENG L N, CAI Y, et al. Correlation analysis and QTL mapping for starch RVA profile properties and amylose and protein contents in rice[J]. Chinese Journal of Rice Science, 2017, 31(1): 31-39 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201701004.htm
[19]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 15683-2008大米直链淀粉含量的测定[S]. 北京: 中国标准出版社, 2009
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 15683-2008 Rice-Determination of Amylose Content[S]. Beijing: China Standard Press, 2009
[20]张标金, 罗林广, 魏益华, 等. 镉锰互作对水稻幼苗镉和矿物质积累的影响[J]. 江西农业学报, 2015, 27(4): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201504003.htm
ZHANG B J, LUO L G, WEI Y H, et al. Effects of cadmium and manganese interaction on cadmium and mineral elements accumulation in rice seedlings[J]. Acta Agriculturae Jiangxi, 2015, 27(4): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201504003.htm
[21]雷刚, 黄英金. 代谢组学在水稻研究中的应用进展[J]. 中国农业科技导报, 2017, 19(7): 27-35 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201707004.htm
LEI G, HUANG Y J. Application progress of metabolomics in rice research[J]. Journal of Agricultural Science and Technology, 2017, 19(7): 27-35 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201707004.htm
[22]CALINGACION M N, BOUALAPHANH C, DAYGON V D, et al. A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties[J]. Metabolomics, 2012, 8(5): 771-783 doi: 10.1007/s11306-011-0374-4
[23]ALONSO A, MARSAL S, JULIà A. Analytical methods in untargeted metabolomics: State of the art in 2015[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 23 http://europepmc.org/articles/pmc4350445/
[24]JUNG Y, AHN Y G, KIM H K, et al. Characterization of dandelion species using 1H NMR- and GC-MS-based metabolite profiling[J]. Analyst, 2011, 136(20): 4222-4231 http://www.ncbi.nlm.nih.gov/pubmed/21874166
[25]丁俊胄, 杨特武, 周强, 等. 厌氧胁迫对发芽糙米中γ-氨基丁酸含量变化的影响[J]. 中国粮油学报, 2015, 30(2): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201502004.htm
DING J Z, YANG T W, ZHOU Q, et al. γ-Aminobutyric acid content of brown rice induced by hypoxia stress during germination[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(2): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201502004.htm
[26]SZETO Y T, KWOK T C Y, BENZIE I F F. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk[J]. Nutrition, 2004, 20(10): 863-866 http://www.ncbi.nlm.nih.gov/pubmed/15474873
[27]SADIQ M, AKRAM N A, ASHRAF M, et al. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions[J]. Journal of Plant Growth Regulation, 2019, 38(4): 1325-1340 doi: 10.1007/s00344-019-09936-7
[28]TIGU F, ZHANG J L, LIU G X, et al. A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of D-pantothenic acid with high productivity[J]. Applied Microbiology and Biotechnology, 2018, 102(14): 6039-6046 http://www.ncbi.nlm.nih.gov/pubmed/29737393
[29]刘巧泉, 姚泉洪, 王红梅, 等. 转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量[J]. 遗传学报, 2004, 31(5): 518-524 https://www.cnki.com.cn/Article/CJFDTOTAL-YCXB200405016.htm
LIU Q Q, YAO Q H, WANG H M, et al. Endosperm-specific expression of the ferritin gene in transgenic rice (Oryza sativa L. ) results in increased iron content of milling rice[J]. Acta Genetica Sinica, 2004, 31(5): 518-524 https://www.cnki.com.cn/Article/CJFDTOTAL-YCXB200405016.htm
[30]姜超强, 沈嘉, 祖朝龙. 水稻对天然富硒土壤硒的吸收及转运[J]. 应用生态学报, 2015, 26(3): 809-816 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201503023.htm
JIANG C Q, SHEN J, ZU C L. Selenium uptake and transport of rice under different se-enriched natural soils[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 809-816 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201503023.htm
[31]RABOY V, GERBASI P. Genetics of myo-inositol phosphate synthesis and accumulation[J]. Subcellular Biochemistry, 1996, 26: 257-285 http://www.ncbi.nlm.nih.gov/pubmed/8744268
[32]国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2762-2017食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2017
National Health and Family Planning Commission of the People's Republic of China, National Medical Products Administration. GB 2762-2017 National Food Safety Standard of the People's Republic of China[S]. Beijing: China Standard Press, 2017
[33]张欣, 施利利, 刘晓宇, 等. 不同施肥处理对水稻产量、食味品质及蛋白质组分的影响[J]. 中国农学通报, 2010, 26(4): 104-108 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201004024.htm
ZHANG X, SHI L L, LIU X Y, et al. Effect of different fertilizer treatments on rice yield, grain quality and protein fraction content[J]. Chinese Agricultural Science Bulletin, 2010, 26(4): 104-108 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201004024.htm
[34]陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制[J]. 应用生态学报, 2020, 31(3): 1033-1042 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003040.htm
CHEN X B, HU Y J, QIN H L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 1033-1042 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003040.htm
[35]徐敏, 马旭洲, 王武. 稻蟹共生系统水稻栽培模式对水稻和河蟹的影响[J]. 中国农业科学, 2014, 47(9): 1828-1835 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201409018.htm
XU M, MA X Z, WANG W. Effects of different cultivation patterns on rice yield and crab in rice-crab culture system[J]. Scientia Agricultura Sinica, 2014, 47(9): 1828-1835 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201409018.htm

相关话题/生态 营养 土壤 科学 农业