删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

夜间增温与农田铜污染对小麦吸持铜的影响

本站小编 Free考研考试/2022-01-01

邓祎1,,
寇太记1,,,
赖路宽1, 2,
徐晓锋1,
王旭刚1,
马明3
1.河南科技大学农学院 洛阳 471023
2.霍尔果斯市农业农村局 伊犁 835221
3.洛阳市农业技术推广服务中心 洛阳 471023
基金项目: 国家自然科学基金项目41601309
河南科技大学创新团队项目2015TTD002

详细信息
作者简介:邓祎, 主要研究方向为植物营养与气候环境变化。E-mail: diong123@126.com
通讯作者:寇太记, 主要研究方向为资源利用与气候变化。E-mail: tjkou@haust.edu.cn
中图分类号:S154;X16

计量

文章访问数:117
HTML全文浏览量:15
PDF下载量:100
被引次数:0
出版历程

收稿日期:2020-07-30
录用日期:2021-02-02
刊出日期:2021-05-01

Effects of night warming and soil copper contamination on copper retention in wheat

DENG Yi1,,
KOU Taiji1,,,
LAI Lukuan1, 2,
XU Xiaofeng1,
WANG Xugang1,
MA Ming3
1. College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
2. Agricultural and Rural Bureau of Horgos, Yili 835221, China
3. Luoyang Agro-Tech Extension and Service Center, Luoyang 471023, China
Funds: the National Natural Science Foundation of China41601309
the Science and Technology Innovation Teamof Henan University2015TTD002

More Information
Corresponding author:KOU Taiji, E-mail: tjkou@haust.edu.cn


摘要
HTML全文
(2)(3)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:当前部分农业土壤铜(Cu)富集与非对称气候变暖潜在地影响我国小麦生产,理解夜间增温与土壤Cu污染对小麦吸持利用Cu的影响有助于确保小麦的安全优质生产。本研究利用田间被动式夜间增温系统,设置土壤Cu污染与对照对比盆栽试验,研究小麦地上部物质积累、不同组织Cu含量与积累量、Cu迁移系数对增温的响应。结果表明,夜间增温显著增加小麦茎叶(增幅为25.1%)、穗(增幅为221.3%)、地上部(增幅为22.7%)和全株(增幅为22.3%)的生物量,能缓解土壤Cu污染对小麦生长的抑制。夜间增温使对照处理小麦茎叶、穗、地上部与全株的Cu积累量显著增加14.7%~56.5%;使Cu污染下小麦根、穗和全株的Cu积累量显著增加12.1%~22.8%,却使Cu污染下小麦茎叶Cu含量显著降低13.9%。夜间增温和Cu污染胁迫影响Cu在不同小麦组织间的迁移和利用,夜间增温显著增加了对照处理下Cu由根向茎的迁移系数,但由茎向叶、茎向穗的迁移系数显著降低;Cu污染胁迫下,夜间增温显著降低了由根向茎的转运,且未显著影响Cu由茎向叶的转运,却增加了茎向穗的转运利用。Cu污染胁迫改变了小麦吸收利用Cu对夜间增温的响应规律。夜间增温有利于小麦生物产量、缓解Cu胁迫生长危害,但增加了Cu胁迫农田粮食遭受Cu污染的潜在风险。
关键词:冬小麦/
夜间增温/
铜污染/
生物量/
迁移系数
Abstract:Grain production in China is subject to the stresses of copper (Cu) contamination in agricultural soils and asymmetric climate warming; it is vital to understand the effects of these dual pressures on crop growth and production. Since asymmetric climate warming and soil Cu accumulation potentially affect wheat production in China, it is important to analyze the effects of night warming on the uptake and distribution of Cu in wheat under Cu pollution stress. A pot experiment was conducted during the 2018-2019 wheat growth season on the Experimental Farm of the Henan University of Science and Technology (34°35N, 112°24E), an agricultural area with an annual average temperature of 14.86℃ and annual average precipitation of 600 mm. The experiment had two temperature treatments (a control group and night warming under a passive night warming system) and two levels of Cu pollution (6 mg·kg-1[control] and 155 mg·kg-1[Cu pollution]). The Cu-polluted soils in the pots were collected from a Cu single factor contaminated site at the Kaiyuan Campus Farm of Henan University of Science and Technology. The crop responses (vs. Luohan 11) to night warming and Cu contamination with respect to yield, biomass of different aboveground tissues, and content, accumulation, and translocation coefficients of Cu in the aboveground tissues were investigated. The results showed that night warming significantly increased the crop straw, spike, aboveground, and total biomasses by 25.1%, 21.3%, 22.7%, and 22.3%, respectively, and could alleviate the inhibition of Cu pollution on wheat growth. Night warming significantly increased the straw Cu content by 26.3% in the control group, but significantly decreased the straw Cu content by 13.9% in the Cu pollution groups. In the control group, night warming significantly increased Cu accumulation by 14.7%-56.5% in the straw, spike, aboveground, and whole plant. In the Cu pollution groups, night warming increased Cu accumulation by 12.1%-22.8% in the roots, spikes, and whole plant. Night warming and Cu pollution affected the migration and utilization of Cu in different tissues. Night warming significantly increased the Cu translocation coefficient from root to stem and decreased the stem to leaf and stem to spike Cu translocation coefficients in the control. Night warming significantly decreased Cu transport from root to stem, did not affect Cu transport from stem to leaf, and increased Cu transport from stem to spike in the Cu pollution groups. Cu pollution changed the response law of wheat Cu absorption and utilization as it related to night warming. This study illustrated that night warming improved wheat production and alleviated the harmful growth-related effects of Cu stress, however, if increased potential risk of Cu pollution on grain crop quality.
Key words:Winter wheat/
Night warming/
Cu pollution/
Biomass/
Translocation coefficient

HTML全文


图12018—2019年小麦生长期间被动式夜间增温系统的麦田土壤温度变化
NT: 常温; HT: 夜间增温。
Figure1.Variation of soil temperature as affected by the passive night warming system in wheat field during winter wheat growth season in 2018?2019
NT: normal temperature; HT: night warming.


下载: 全尺寸图片幻灯片


图2夜间增温与Cu污染对小麦不同部位生物量的影响
NT: 常温; HT: 夜间增温。CK: 无Cu污染对照, 有效铜含量为6 mg?kg?1; Cu: Cu污染土壤, 有效铜含量为155 mg?kg?1。不同字母表示同一部位不同处理间P < 0.05水平差异显著。
Figure2.Effects of night warming and Cu pollution on biomass of different parts of wheat
NT: normal temperature; HT: night warming. CK: control with 6 mg?kg?1 soil available Cu content; Cu: Cu polluted soil with 155 mg?kg?1 soil available Cu content. Different lowercase letters mean significant differences among different treatments of the same wheat parts at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1夜间增温与Cu污染对小麦生物量、Cu含量和Cu积累量的影响效应
Table1.Influencing effects of temperature and Cu pollution on biomass, copper content and accumulation of wheat
项目Item因素Factor根Root茎叶Straw穗Spike地上部Aboveground总量Total
FPFPFPFPFP
生物量BiomassT0.7640.4076.4690.03523.4590.00124.9490.00124.8200.001
Cu70.9890.000140.0850.0001062.9500.000849.9300.000853.8620.000
T?Cu0.6320.4502.4840.15411.1600.01010.8410.01110.3670.012
Cu含量Cu contentT0.0390.8482.6660.1410.1200.738
Cu937.9470.000546.0840.00014.8540.005
T?Cu0.0020.9655.0140.0550.0200.890
Cu积累量Cu accumulationT4.2850.0722.0000.1953.9890.0819.8890.01410.8910.011
Cu367.9030.000220.6340.000211.5880.0000.3300.582147.4110.000
T?Cu5.2590.0511.5020.2550.9490.3594.1350.0760.0090.927
T: 夜间增温; Cu: Cu污染。T: night warming; Cu: soil Cu pollution.


下载: 导出CSV
表2夜间增温和铜污染对小麦不同部分Cu含量和Cu积累量的影响
Table2.Effects of night warming and Cu pollution on Cu contents and Cu accumulation in different parts of wheat
温度Temperature处理TreatmentCu含量Cu content (mg?kg?1)Cu积累量Cu accumulation (μg?pot?1)
根Root茎叶Straw穗Spike根Root茎叶Straw穗Spike地上部Aboveground总量Total
NTCK17.77±1.31b1.86±0.12d4.83±0.91b35.09±4.43c70.90±5.44c299.33±0.84b370.23±5.35c405.32±2.57d
Cu367.19±16.33a22.41±1.45a6.78±0.26a296.04±17.21b314.82±16.22a97.80±2.11d412.62±17.45b708.65±33.16b
HTCK16.03±1.30b2.35±0.31c4.57±0.33b31.64±2.96c110.95±15.64b343.45±29.39a454.40±14.08a486.03±16.83c
Cu364.42±15.78a19.30±0.59b6.67±0.33a363.45±25.11a317.68±19.58a112.99±3.60c430.67±22.93ab794.13±33.87a
NT: 常温; HT: 夜间增温。CK: 无Cu污染对照, 有效铜含量为6 mg?kg?1; Cu: Cu污染土壤, 有效铜含量为155 mg?kg?1。同列不同字母表示不同处理间在P < 0.05水平差异显著。NT: normal temperature; HT: night warming. CK: control with 6 mg?kg?1 soil available Cu content; Cu: Cu polluted soil with 155 mg?kg?1 soil available Cu content. Different lowercase letters in the same column mean significant differences among treatments at P < 0.05 level.


下载: 导出CSV
表3夜间增温与Cu污染下小麦不同部位间的Cu迁移系数
Table3.Cu translocation factors between different parts of wheat affected by night warming and Cu pollution
温度TemperatureCu含量Cu content迁移系数Translocation factor
茎向叶From stem to leaf茎向穗From stem to spike根向茎From root to stem
NTCK6.621±0.384a5.727±1.259a0.050±0.008c
Cu1.327±0.153c0.336±0.000d0.055±0.004b
HTCK2.995±0.679b2.782±0.668b0.118±0.032a
Cu1.281±0.032c0.367±0.007c0.050±0.002c
NT: 常温; HT: 夜间增温。CK: 无Cu污染对照, 有效铜含量为6 mg?kg?1; Cu: Cu污染土壤, 有效铜含量为155 mg?kg?1。同列不同字母表示不同处理间在P < 0.05水平差异显著。NT: normal temperature; HT: night warming. CK: control with 6 mg?kg?1 soil available Cu content; Cu: Cu polluted soil with 155 mg?kg?1 soil available Cu content. Different lowercase letters in the same column mean significant differences among treatments at P < 0.05 level.


下载: 导出CSV

参考文献(30)
[1]KANG S, ELTAHIR E A B. North China Plain threatened by deadly heatwaves due to climate change and irrigation[J]. Nature Communications, 2018, 9(1): 1-9 doi: 10.1038/s41467-017-02088-w
[2]尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10): 4670-4683 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201810035.htm
SHANG E P, XU E Q, ZHANG H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10): 4670-4683 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201810035.htm
[3]KARL T R, JONES P D, KNIGHT R W, et al. A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature[J]. Bulletin of the American Meteorological Society, 1993, 74(6): 1007-1024 doi: 10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2
[4]李崇银, 翁衡毅, 高晓清, 等. 全球增暖的另一可能原因初探[J]. 大气科学, 2003, 27(5): 789-797 doi: 10.3878/j.issn.1006-9895.2003.05.01
LI C Y, WENG H Y, GAO X Q, et al. Initial investigation of another possible reason to cause global warming[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(5): 789-797 doi: 10.3878/j.issn.1006-9895.2003.05.01
[5]IPCC. Climate Change 2007. Synthesis Report: Summary for Policymakers[EB/OL]. (2007-12-01)[2010-08-08]. http://www.ipcc.ch/
[6]闫敏华, 陈泮勤, 邓伟, 等. 三江平原气候变暖的进一步认识: 最高和最低气温的变化[J]. 生态环境, 2005, 14(2): 151-156 doi: 10.3969/j.issn.1674-5906.2005.02.001
YAN M H, CHEN P Q, DENG W, et al. Further understanding of the Sanjiang Plain warming: changes in maximum and minimum air temperature[J]. Ecology and Environment, 2005, 14(2): 151-156 doi: 10.3969/j.issn.1674-5906.2005.02.001
[7]任国玉, 初子莹, 周雅清, 等. 中国气温变化研究最新进展[J]. 气候与环境研究, 2005, 10(4): 701-716 https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200504001.htm
REN G Y, CHU Z Y, ZHOU Y Q, et al. Recent progresses in studies of regional temperature changes in China[J]. Climatic and Environmental Research, 2005, 10(4): 701-716 https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200504001.htm
[8]房世波, 谭凯炎, 任三学. 夜间增温对冬小麦生长和产量影响的实验研究[J]. 中国农业科学, 2010, 43(15): 3251-3258 doi: 10.3864/j.issn.0578-1752.2010.15.025
FANG S B, TAN K Y, REN S X. Winter wheat yields decline with spring higher night temperature by controlled experiments[J]. Scientia Agricultura Sinica, 2010, 43(15): 3251-3258 doi: 10.3864/j.issn.0578-1752.2010.15.025
[9]田思勰, 罗雪顶, 董京铭, 等. 夜间增温及免耕对冬小麦生长及养分吸收利用的影响[J]. 江苏农业科学, 2015, 43(9): 111-114 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201509036.htm
TIAN S X, LUO X D, DONG J M, et al. Effects of night warming and no-tillage on growth and nutrient uptake and utilization of winter wheat[J]. Jiangsu Agricultural Sciences, 2015, 43(9): 111-114 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201509036.htm
[10]田云录, 陈金, 邓艾兴, 等. 开放式增温下非对称性增温对冬小麦生长特征及产量构成的影响[J]. 应用生态学报, 2011, 22(3): 681-686 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201103018.htm
TIAN Y L, CHEN J, DENG A X, et al. Effects of asymmetric warming on the growth characteristics and yield components of winter wheat under free air temperature increased[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 681-686 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201103018.htm
[11]FANG S B, TAN K Y, REN S X, et al. Fields experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0-2.5℃[J]. Science China Earth Sciences, 2012, 55(6): 1021-1027 doi: 10.1007/s11430-012-4404-5
[12]张明乾, 陈金, 郭嘉, 等. 夜间增温对冬小麦根系生长和土壤养分有效性的影响[J]. 应用生态学报, 2013, 24(2): 445-450 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201302021.htm
ZHANG M Q, CHEN J, GUO J, et al. Effects of nighttime warming on winter wheat root growth and soil nutrient availability[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 445-450 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201302021.htm
[13]寇太记, 侯宇朋, 王俪睿, 等. 夜间增温对小麦吸持铅素的影响[J]. 土壤学报, 2018, 55(1): 139-147 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201801013.htm
KOU T J, HOU Y P, WANG L R, et al. Effects of night warming on Pb retention of wheat[J]. Acta Pedologica Sinica, 2018, 55(1): 139-147 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201801013.htm
[14]林义章, 徐磊. 铜污染对高等植物的生理毒害作用研究[J]. 中国生态农业学报, 2007, 15(1): 201-204 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200701052.htm
LIN Y Z, XU L. Physiological toxicity of copper pollution to higher plant[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 201-204 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200701052.htm
[15]FU Q L, WENG N Y, FUJⅡ M, et al. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature[J]. Chemosphere, 2018, 194: 285-296 doi: 10.1016/j.chemosphere.2017.11.183
[16]翁南燕, 周东美, 武敬, 等. 铜镉复合胁迫下温度对小麦幼苗生长及其对铜、镉和矿质营养元素吸收与各元素在亚细胞分布的影响[J]. 生态毒理学报, 2011, 6(6): 607-616 https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201106011.htm
WENG N Y, ZHOU D M, WU J, et al. Uptake, subcellular distributions of Cu, Cd and mineral elements, and plant growth for wheat seedlings under stress of Cu and Cd as affected by temperature[J]. Asian Journal of Ecotoxicology, 2011, 6(6): 607-616 https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201106011.htm
[17]陈金, 杨飞, 张彬, 等. 被动式夜间增温设施设计及其增温效果[J]. 应用生态学报, 2010, 21(9): 2288-2294 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201009017.htm
CHEN J, YANG F, ZHANG B, et al. Passive nighttime warming (PNW) system, its design and warming effect[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2288-2294 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201009017.htm
[18]REZVANI M, ZAEFARIAN F. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis[J]. Australian Journal of Agricultural Engineering, 2011, 2(4): 114-119 http://www.researchgate.net/publication/266597582_Bioaccumulation_and_translocation_factors_of_cadmium_and_lead_in_Aeluropus_littoralis
[19]LI Y, ZHANG Q, WANG R Y, et al. Temperature changes the dynamics of trace element accumulation in Solanum tuberosum L. [J]. Climatic Change, 2012, 112(3/4): 655-672 doi: 10.1007/s10584-011-0251-1
[20]郭仰东, 张磊, 李双桃, 等. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展[J]. 中国农业科学, 2018, 51(6): 1167-1181 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201806015.htm
GUO Y D, ZHANG L, LI S T, et al. Progresses in research on molecular biology of abiotic stress responses in vegetable crops[J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201806015.htm
[21]侯金丽. 铜离子的生物学特性及其吸收转运调控机制研究进展[J]. 现代农业科技, 2015, (14): 158 doi: 10.3969/j.issn.1007-5739.2015.14.100
HOU J L. Advances in studies on the biological characteristics and mechanisms of absorption and transport regulation of copper ions[J]. Modern Agricultural Science and Technology, 2015, (14): 158 doi: 10.3969/j.issn.1007-5739.2015.14.100
[22]陈金. 冬小麦生产力对气候变暖的响应与适应及其区域差异[D]. 南京: 南京农业大学, 2013
CHEN J. Responses and adaptations and their regional differences of winter wheat productivity to climatic warming[D]. Nanjing: Nanjing Agricultural University, 2013
[23]孔瑞, 胡正华, 陈书涛, 等. 增温和降水量减少对冬小麦和大豆生物量和酶活性的影响[J]. 江苏农业科学, 2019, 47(23): 110-115 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201923026.htm
KONG R, HU Z H, CHEN S T, et al. Impacts of warming and decreasing precipitation on biomass and enzyme activity of winter wheat and soybean[J]. Jiangsu Agricultural Sciences, 2019, 47(23): 110-115 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201923026.htm
[24]TIAN Y L, CHEN J, CHEN C Q, et al. Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China[J]. Field Crops Research, 2012, 134: 193-199 doi: 10.1016/j.fcr.2012.05.013
[25]胡正华, 周迎平, 崔海羚, 等. 昼夜增温对大豆田土壤N2O排放的影响[J]. 环境科学, 2013, 34(8): 2961-2967 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201308005.htm
HU Z H, ZHOU Y P, CUI H L, et al. Effects of diurnal warming on soil N2O emission in soybean field[J]. Environmental Science, 2013, 34(8): 2961-2967 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201308005.htm
[26]LIU Y, WANG E L, YANG X G, et al. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s[J]. Global Change Biology, 2009, 16(8): 2287-2299 doi: 10.1111/j.1365-2486.2009.02077.x
[27]申志强, 亓琳, 李梦鸽, 等. 夜间增温对小麦耐铜特性的影响[J]. 现代农业科技, 2019, (13): 6-8 doi: 10.3969/j.issn.1007-5739.2019.13.003
SHEN Z Q, QI L, LI M G, et al. Effect of nighttime warming on copper tolerance of wheat[J]. Modern Agricultural Science and Technology, 2019, (13): 6-8 doi: 10.3969/j.issn.1007-5739.2019.13.003
[28]田生科, 李廷轩, 杨肖娥, 等. 植物对铜的吸收运输及毒害机理研究进展[J]. 土壤通报, 2006, 37(2): 2387-2394 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200602039.htm
TIAN S K, LI T X, YANG X E, et al. Mechanisms of copper uptake, transportation and detoxification in plants[J]. Chinese Journal of Soil Science, 2006, 37(2): 2387-2394 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200602039.htm
[29]党红凯, 李瑞奇, 张馨文, 等. 超高产冬小麦铜素的吸收、积累和分配[J]. 中国农业科学, 2010, 43(24): 5019-5027 doi: 10.3864/j.issn.0578-1752.2010.24.005
DANG H K, LI R Q, ZHANG X W, et al. Study on the absorption, accumulation and distribution of copper in super-high-yielding winter wheat[J]. Scientia Agricultura Sinica, 2010, 43(24): 5019-5027 doi: 10.3864/j.issn.0578-1752.2010.24.005
[30]李垄清, 吴正云, 张强, 等. 气候变化对作物矿质元素利用率影响研究进展[J]. 生态学报, 2014, 34(5): 1053-1060 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201405002.htm
LI L Q, WU Z Y, ZHANG Q, et al. State-of-the-art review of the impact of climatic change on bioavailability of mineral elements in crops[J]. Acta Ecologica Sinica, 2014, 34(5): 1053-1060 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201405002.htm

相关话题/污染 土壤 生态 科学 系统