删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

扁桃-冬小麦间作系统树冠截光程度对小麦产量和灌浆期光合特性的影响

本站小编 Free考研考试/2022-01-01

谢辉1,,
张雯1,,,
韩守安1,
王敏1,
阿力木江·奥布力2,
潘明启1,
艾尔买克·才卡斯木1,
张平3
1.新疆农业科学院园艺作物研究所/农业部新疆地区果树科学观测试验站 乌鲁木齐 830091
2.和田地区林业和草原局 和田 848000
3.新疆农业科学院农产品贮藏加工研究所 乌鲁木齐 830091
基金项目: 国家自然科学基金地区基金项目31560138
新疆维吾尔自治区优秀青年科技人才培养项目qn2016yx0234

详细信息
作者简介:谢辉, 研究方向为果园生态与果品加工。E-mail: xhxjnky@163.com
通讯作者:张雯, 研究方向为果园生态与果实品质调控。E-mail: zwxilin@126.com
中图分类号:S512.1;S311

计量

文章访问数:133
HTML全文浏览量:4
PDF下载量:466
被引次数:0
出版历程

收稿日期:2020-10-22
录用日期:2021-01-19
刊出日期:2021-04-01

Effect of shading degree on the grain yield and photosynthetic characteristics of wheat at the grain filling stage in an almond-winter wheat intercropping system

XIE Hui1,,
ZHANG Wen1,,,
HAN Shou'an1,
WANG Min1,
Alimujiang Aubrey2,
PAN Mingqi1,
Aiermaike Caikasimu1,
ZHANG Ping3
1. Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology(Xinjiang), Urumqi 830091, China
2. Forestry and Grassland Administration of Hetian Prefecture, Hetian 848000, China
3. Institute of Agricultural Product Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Funds: the National Natural Science Foundation of China31560138
the Outstanding Young Science and Technology Talent Training Project of Xinjiang Uygur Autonomous Regionqn2016yx0234

More Information
Corresponding author:ZHANG Wen, E-mail: zwxilin@126.com


摘要
HTML全文
(6)(5)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探明果粮间作模式下树冠遮阴对间作冬小麦灌浆期光合特性和产量的影响,为新疆南疆果粮间作模式的选择和优化提供理论依据,本研究以扁桃-冬小麦间作模式为研究对象,设置重度遮阴和轻度遮阴2个处理,以单作小麦为对照,对间作区域光合有效辐射(PAR)、小麦产量及灌浆期叶片光合色素和可溶性蛋白含量、光响应曲线、荧光动力学参数、群体光合速率进行测定。结果表明:间作区域遮阴程度受树冠结构和间作区域距树体距离共同影响,主干分层形扁桃(重度遮阴)近冠和远冠间作区域小麦灌浆期PAR日均值为自然光强的18.61%和25.90%,小冠圆头形扁桃(轻度遮阴)对应值为56.00%和64.53%。与扁桃间作导致小麦旗叶Chla+b含量和Chla/b比值降低;PAR日均值≤56.00%自然光时,小麦旗叶可溶性蛋白质含量显著降低;PAR日均值≤25.90%自然光时,旗叶光系统Ⅱ的实际光合效率(ΦSPⅡ)、光化学淬灭系数(qP)、最大净光合速率(Pmax)及群体光合速率日均值均显著降低;PAR日均值≥64.53%自然光时小麦群体光合速率存在明显的补偿现象。综上,扁桃-冬小麦间作模式下,小麦光合能力及产量与遮阴程度密切相关,重度遮阴导致小麦单叶和群体光合能力及产量显著降低;轻度遮阴条件下,小麦旗叶光合能力无显著变化,群体光合速率存在明显的补偿现象,对产量无显著影响。
关键词:扁桃-冬小麦间作/
树形/
遮阴强度/
间作区域/
光合特性/
产量
Abstract:Fruit tree-wheat intercropping is practiced in large parts of southern Xinjiang, a region where agroforestry intercropping is the main type of agricultural production. In the present study, a field experiment was conducted to investigate the effects of the shading degree from fruit tree canopies on the grain yield and photosynthetic characteristics of wheat at the grain filling stage. This study aimed to provide information for the selection of management standards and the optimization of the intercropping system in southern Xinjiang. In the experiment, 'Xindong 20' (Triticum aestivum L. var. Xindong 20), the main winter wheat cultivar in South Xinjiang, was used as the research object, and two treatments (heavy and light shading) were established by cutting the almond (Amygdalus communis L.) canopy of the almond-winter wheat intercropping system; delayed open-central canopy (DC) and a semicircle small-canopy (SC), respectively. Monocultured wheat was used as the control. The yield and yield components, photosynthetic pigments and soluble protein contents, light response curves, chlorophyll fluorescence induction of the flag leaves, and the canopy apparent photosynthetic rate of the intercropped wheat were investigated in three areas: near the canopy west of the almond trees, near the canopy east of the almond trees, and far from the canopy. The results indicated that the shading degree of the tree canopy was closely associated with the canopy size and the distance between the intercropping area and the tree. The daily mean values of photosynthetically active radiation (PAR) in the intercropping areas near and far from the almond canopy were 18.61% and 25.90% with DC, and 56.00% and 64.53% with SC of the natural light intensity during the wheat-filling period, respectively. The content of Chla+b and the Chla/b ratio in the wheat flag leaves were reduced in both shading treatments. When the daily mean strength of PAR was ≤56.00% of the natural light intensity, the soluble protein content in the wheat flag leaves was significantly reduced. When the daily average intensity of PAR was reduced to 25.90% and 18.61% of the natural light, the indices of optical system Ⅱ actual photosynthetic efficiency (ΦSPⅡ), photochemical quenching coefficient (qP), and maximum net photosynthetic rate (Pmax) of the flag leaves, as well as the daily mean canopy photosynthetic rate (CAP) value, were significantly reduced. Under the light shading intercropping condition, when the daily mean intensity of PAR reached ≥ 64.53% of the natural light intensity, the CAP value exhibited an obvious increased (compensation phenomenon). In the almond-winter wheat intercropping system, the influence of a weak light environment caused by the tree canopy on wheat photosynthetic capacity and yield was closely related to the degree of shading. Heavy shading resulted in a significant decrease in single-leaf Pn and CAP and caused a significant decrease in yield. Under light shading conditions, the photosynthetic capacity of wheat flag leaves did not change, while CAP had a significant compensation phenomenon and no significant influence on grain yield.
Key words:Almond-winter wheat crop intercropping/
Tree form/
Shading degree/
Intercropping area/
Photosynthetic characteristics/
Grain yield

HTML全文


图1主干分层形重度遮阴(DC)和小冠形轻度遮阴(SC)扁桃树形结构示意图
Figure1.Sketch maps of delayed open-central canopy (DC, heavy shading) and semicircle small-canopy (SC, light shading) of almond


下载: 全尺寸图片幻灯片


图2扁桃-冬小麦间作模式及测点位置示意图
Figure2.Sketch map of almond-winter wheat intercropping system and positions of measuring points


下载: 全尺寸图片幻灯片


图3扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域小麦灌浆期光合有效辐射(PAR)的日变化
CK为单作; W-Zone1为树行西侧近冠区域, E-Zone1为树行东侧近冠区域, Zone2为西侧远冠区域。
Figure3.Diurnal variation trends of photosynthetic active radiation (PAR) at grain-filling stage of wheat in different intercropping areas under different canopy-shading degrees (different canopy structures of almond) of almond-winter wheat intercropping system
CK is the monoculture wheat. W-Zone1 is the intercropping area near canopy on the west side of tree line, E-Zone1 is the intercropping area near canopy on the east side of tree line, Zone2 is the intercropping area far from tree canopy on the west side of tree line.


下载: 全尺寸图片幻灯片


图4扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域冬小麦灌浆期旗叶光响应曲线
CK为单作小麦, Zone1为近冠区, Zone2为远冠区。
Figure4.Light response curves of net photosynthetic rate (Pn) of flag leaf of winter wheat at filling stage in different intercropping areas under different canopy-shading degrees of almond-winter wheat intercropping system
CK is the monocultured winter wheat. Zone1 is the area near canopy, Zone2 is the area far from canopy.


下载: 全尺寸图片幻灯片


图5扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域小麦灌浆期群体光合速率(CAP)的日变化
CK为单作对照; DC: 主干分层形重度遮阴; SC: 小冠形轻度遮阴; W-Zone1为树行西侧近冠区域, E-Zone1为树行东侧近冠区域, Zone2为西侧远冠区域。不同小写字母表示对照(CK)及不同遮阴强度及间作区域间在P < 0.05水平差异显著。
Figure5.Daily dynamics of canopy apparent photosynthetic rate (CAP) of winter wheat population in different intercropping areas under different canopy-shading degrees of almond-winter wheat intercropping system
CK is the monocultued wheat. DC is the treatment of heavy shading of delayed open-central canopy; SC is the treatment of light shading of semicircle small-canopy. W-Zone1 is the intercropping area near canopy on the west side of tree line, E-Zone1 is the intercropping area near canopy on the east side of tree line, Zone2 is the intercropping area far from tree canopy on the west side of tree line. Different lowercase letters indicate significant difference among control (CK) and different intercropping areas under different shading degrees at P < 0.05.


下载: 全尺寸图片幻灯片


图6扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域小麦灌浆期群体呼吸速率(CRR)的日变化
CK为单作对照; DC: 主干分层形重度遮阴; SC: 小冠形轻度遮阴; W-Zone1为树行西侧近冠区域, E-Zone1为树行东侧近冠区域, Zone2为西侧远冠区域。不同小写字母表示对照(CK)及不同遮阴强度及间作区域间在P < 0.05水平差异显著。
Figure6.Daily dynamics of canopy apparent photosynthetic rate (CRR) of winter wheat population in different intercropping areas under different canopy-shading degrees of almond-winter wheat intercropping system
CK is the monocultued wheat. DC is the treatment of heavy shading of delayed open-central canopy; SC is the treatment of light shading of semicircle small-canopy. W-Zone1 is the intercropping area near canopy on the west side of tree line, E-Zone1 is the intercropping area near canopy on the east side of tree line, Zone2 is the intercropping area far from tree canopy on the west side of tree line. Different lowercase letters indicate significant difference among control (CK) and different intercropping areas under different shading degrees at P < 0.05.


下载: 全尺寸图片幻灯片

表1主干分层形重度遮阴(DC)和小冠形轻度遮阴(SC)扁桃盛果期树形结构指标
Table1.Canopy structure indexes of delayed open-central canopy (DC) and semicircle small-canopy (SC) of almond at full bearing period
树形结构
Canopy structure
单株主枝数
Number of main branch
一年生枝量
Number of annual branch
树冠体积
Crown volume (m3)
单位体积枝量
Number of shoot (shoots·m-3)
一年生枝数量区域分布比例
Annual branch distribution ratio (%)
外围
Outside canopy
中部
Middle canopy
内堂
Inner canopy
DC 8.4 5590.0 55.96 99.89 60 30 10
SC 7.3 1276.8 20.36 62.70 60 40 0


下载: 导出CSV
表2扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域冬小麦灌浆期叶片叶绿素和可溶性蛋白含量
Table2.Contents of chlorophyll and soluble protein in leaves of winter wheat at filling stage in different intercropping areas under different canopy-shading degrees of almond-winter wheat intercropping system
处理
Treatment
间作小麦区域
Area of intercropped wheat
叶绿素含量?Chlorophyll content (mg·g-1) 叶绿素
a/b Chla/b
可溶性蛋白含量
Soluble protein content (mg·g-1)
叶绿素a
Chl. a
叶绿素b
Chl. b
叶绿素a+b ? Chl. a+b
轻度遮阴
Light shading
近冠区?Near canopy 2.25±0.21b 0.96±0.08a 3.21±0.27b 2.39±0.14b 14.04±0.76b
远冠区?Far from canopy 2.42±0.22a 0.85±0.07b 3.27±0.28a 2.90±0.18a 18.44±1.36a
重度遮阴
Heavy shading
近冠区?Near canopy 2.03±0.17c 1.05±0.09a 3.08±0.24c 1.97±0.87c 11.73±0.89c
远冠区?Far from canopy 1.98±0.12d 0.68±0.06c 2.66±0.21d 2.84±0.12d 12.46±1.03d
单作小麦?Monocultured wheat (CK) 2.52±0.23a 0.84±0.06b 3.36±0.28a 3.04±0.13a 17.06±1.14a
表内数据为平均值±标准误, 同列数据后不同小写字母表示P < 0.05水平差异显著。The data in the table are mean ± standard error. Different lowercase letters after data in the same column indicate significant difference at P < 0.05 level.


下载: 导出CSV
表3扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域冬小麦灌浆期旗叶光响应曲线参数
Table3.Light response curve parameters of flag leaves of winter wheat at filling stages in different intercropping areas under different canopy-shading degrees of almond-winter wheat intercropping system
处理
Treatment
间作小麦区域
Area of intercropped wheat
最大净光合速率
Pmax
(μmol·m-2·s-1)
光饱和点
LSP
(μmol·m-2·s-1)
暗呼吸速率
Rd
(μmol·m-2·s-1)
光补偿点
LCP
(μmol·m-2·s-1)
表观量子
效率
α
轻度遮阴
Light shading
近冠区?Near canopy 18.26±1.65a 1722.29±153.41a -1.31±0.12c 15.60±1.46b 0.05b
远冠区?Far from canopy 20.25±1.96a 1794.60±124.12a -2.10±0.16a 31.26±2.18a 0.06ab
重度遮阴
Heavy shading
近冠区?Near canopy 10.46±0.77b 1366.30±113.14b -1.73±0.14b 29.26±2.06a 0.07a
远冠区?Far from canopy 11.44±1.01b 1474.88±126.89b -1.73±0.15b 31.98±2.78a 0.06ab
单作小麦?Monocultured wheat (CK) 23.98±2.76a 1755.39±146.21a -2.21±0.19a 37.51±2.14a 0.05b
表内数据为平均值±标准误, 同列数据后不同小写字母表示P < 0.05水平差异显著。Pmax: maximum net photosynthetic rate; LSP: light saturation point; Rd: dark respiration rate; LCP: light compensation point; α: initial quantum efficiency. The data in the table are mean ± standard error. Different lowercase letters after data in the same column indicate significant difference at P < 0.05 level.


下载: 导出CSV
表4扁桃-冬小麦间作系统不同树冠截光程度下不同间作区域的冬小麦灌浆期旗叶荧光参数
Table4.Effects of canopy-shading degrees on fluorescence parameters of flag leaves of winter wheat in different intercropping areas of almond-winter wheat intercropping system
处理
Treatment
间作小麦区域
Area of intercropped wheat
PSⅡ最大光化学效率
Fv/Fm
PSⅡ实际光化学效率
ΦSPⅡ
光化学猝灭系数
qP
非光化学猝灭系数
NPQ
轻度遮阴
Light shading
近冠区?Near canopy 0.853±0.04a 0.299±0.02a 0.368±0.02b 0.499±0.02c
远冠区?Far from canopy 0.836±0.05a 0.307±0.02a 0.384±0.01b 0.482±0.02c
重度遮阴
Sever shading
近冠区?Near canopy 0.848±0.05a 0.245±0.01b 0.295±0.01c 0.633±0.04a
远冠区?Far from canopy 0.831±0.04a 0.248±0.01b 0.314±0.01c 0.527±0.03b
单作小麦?Monocultured wheat (CK) 0.857±0.03a 0.311±0.02a 0.509±0.03a 0.401±0.02d
表内数据为平均值±标准误, 同列数据后不同小写字母表示P < 0.05水平差异显著。Fv/Fm: maximal efficiency of PSⅡ photochemistry; ΦSPⅡ: effective quantum yield of PSⅡ photochemistry; qP: photochemical quenching; NPQ: non-photochemical quenching. The data in the table are mean ± standard error. Different lowercase letters after data in the same column indicate significant difference at P < 0.05 level.


下载: 导出CSV
表5不同树冠截光程度对扁桃-冬小麦间作系统不同间作区域小麦产量及组成成分的影响
Table5.Effect of shading degree on yield and its' components of winter wheat in different intercropping area of almond-winter wheat intercropping
处理
Treatment
间作小麦区域
Area of intercropped wheat
产量
Yield
(t·hm-2)
千粒重
1000-grain weight (g)
穗粒数
Grains number per spike
有效穗数
Effective panicle number
(×104 panicles·hm-2)
轻度遮阴
Light shading
近冠区?Near canopy 5.05±0.41b 37.73±2.67b 25.78±1.43a 610.5±45.21ab
远冠区?Far from canopy 5.63±0.34a 43.04±2.35a 24.27±1.67a 609.0±34.27ab
重度遮阴
Sever shading
近冠区?Near canopy 1.98±0.13c 33.46±3.01c 18.44±1.24b 368.5±32.12c
远冠区?Far from canopy 2.26±0.15c 33.45±3.12c 14.96±1.11c 509.0±35.67b
单作小麦?Monocultured wheat (CK) 5.91±0.24a 39.01±2.97b 25.87±2.45a 663.21±52.34a
表内数据为平均值±标准误, 同列数据后不同小写字母表示P < 0.05水平差异显著。The data in the table are mean ± standard error. Different lowercase letters after the data in the same column indicate significant difference at P < 0.05.


下载: 导出CSV

参考文献(34)
[1]郑秋芬. 南疆三地州粮棉果间作经济效益评价[D]. 乌鲁木齐: 新疆农业大学, 2015
ZHENG Q F. The economic benefit evaluation on the planting patterns of grain, cotton and fruit in the three regions of Southern Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2015
[2]李婷. 南疆粮食安全及供需状况分析[J]. 新疆社科论坛, 2014, (4): 51-56 doi: 10.3969/j.issn.1671-4741.2014.04.012
LI T. Analysis of food security and supply and demand in Southern Xinjiang[J]. Tribune of Social Sciences in Xinjiang, 2014, (4): 51-56 doi: 10.3969/j.issn.1671-4741.2014.04.012
[3]新疆维吾尔自治区统计局. 新疆统计年鉴-2017[M]. 北京: 中国统计出版社, 2017: 397-398
Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook 2017[M]. Beijing: China Statistics Press, 2017: 397-398
[4]QIAO X, SAI L H, CHEN X W, et al. Impact of fruit-tree shade intensity on the growth, yield, and quality of intercropped wheat[J]. PLoS One, 2019, 14(4): e0203238 doi: 10.1371/journal.pone.0203238
[5]金善宝. 中国小麦学[M]. 北京: 中国农业出版社, 1996
JIN S B. Wheat in China[M]. Beijing: China Agricultural Press, 1996
[6]于振文. 小麦产量与品质生理及栽培技术[M]. 北京: 中国农业出版社, 2006
YU Z W. Physiology and Cultivation Techniques of Wheat Yield and Quality[M]. Beijing: China Agricultural Press, 2006
[7]王丽芳, 徐宣斌, 王德轩, 等. 大穗型小麦产量形成过程中光合特性的动态变化[J]. 应用生态学报, 2012, 23(7): 1846-1852 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201207018.htm
WANG L F, XU X B, WANG D X, et al. Dynamic changes of photosynthetic characteristics in big-spike wheat yield formation[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1846-1852 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201207018.htm
[8]张雯, 谢辉, 张平, 等. 扁桃||冬小麦间作模式下树冠结构对间作区域光环境的影响[J]. 中国生态农业学报, 2016, 24(6): 753-761 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016607&flag=1
ZHANG W, XIE H, ZHANG P, et al. Effect of tree canopy structure on light condition in almond-winter wheat intercropping systems[J] Chinese Journal of Eco-Agriculture, 2016, 24(6): 753-761 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016607&flag=1
[9]BURKEY K O, WELLS R. Effects of natural shade on soybean thylakoid membrane composition[J]. Photosynthesis Research, 1996, 50(2): 149-158 doi: 10.1007/BF00014885
[10]ZHAO D D, SHEN J Y, LANG K, et al. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain[J]. Agricultural Water Management, 2013, 118: 87-98 doi: 10.1016/j.agwat.2012.11.019
[11]HUANG Q, LIU H, CHEN R. Effects of shade on photosynthetic characteristics in Chieh-qua[J]. Acta Horticulturae, 2004, 659: 799-804
[12]牟会荣, 姜东, 戴廷波, 等. 遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J]. 中国农业科学, 2008, 41(2): 599-606 doi: 10.3864/j.issn.0578-1752.2008.02.040
MU H R, JIANG D, DAI T B, et al. Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves[J]. Scientia Agricultura Sinica, 2008, 41(2): 599-606 doi: 10.3864/j.issn.0578-1752.2008.02.040
[13]XU C L, TAO H B, WANG P, et al. Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L. ) due to the delaying of leaf senescence[J]. Journal of Integrative Agriculture, 2016, 15(1): 63-75 doi: 10.1016/S2095-3119(15)61047-4
[14]张元帅, 冯伟, 张海艳, 等. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响[J]. 中国生态农业学报, 2016, 24(9): 1177-1184 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016904&flag=1
ZHANG Y S, FENG W, ZHANG H Y, et al. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1177-1184 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016904&flag=1
[15]叶子飘, 李进省. 光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J]. 井冈山大学学报: 自然科学版, 2010, 31(3): 38-44 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSS201003010.htm
YE Z P, LI J S. Comparative investigation light response of photosynthesis on non-rectangular hyperbola model and modified model of rectangular hyperbola[J]. Journal of Jinggangshan University: Natural Science, 2010, 31(3): 38-44 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSS201003010.htm
[16]马富裕, 李蒙春, 杨建荣, 等. 花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J]. 中国农业科学, 2002, 35(12): 1467-1472 doi: 10.3321/j.issn:0578-1752.2002.12.006
MA F Y, LI M C, YANG J R, et al. A study of effect of water deficit of three period during cotton anthesis on canopy apparent photosynthesis and WUE[J]. Scientia Agricultura Sinica, 2002, 35(12): 1467-1472 doi: 10.3321/j.issn:0578-1752.2002.12.006
[17]梁鹏, 石玉, 赵俊晔, 等. 不同产量潜力小麦品种冠层光截获特性及产量的差异[J]. 麦类作物学报, 2018, 38(10): 1189-1194 doi: 10.7606/j.issn.1009-1041.2018.10.06
LIANG P, SHI Y, ZHAO J Y, et al. Differences of canopy light interception characteristics and yield in different yield potential wheat varieties[J]. Journal of Triticeae Crops, 2018, 38(10): 1189-1194 doi: 10.7606/j.issn.1009-1041.2018.10.06
[18]WANG D, YU Z W, WHITE P J. The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat[J]. Field Crops Research, 2013, 151: 35-44 doi: 10.1016/j.fcr.2013.07.009
[19]李德全, 赵会杰, 高辉远. 植物生理学[M]. 北京: 中国农业科技出版社, 1999
LI D Q, ZHAO H J, GAO H Y. Plant Physiology[M]. Beijing: China Agricultural Press, 1999
[20]张元燕, 季永华, 贾恒, 等. 遮光处理对不同生育期小麦生物量分配和叶片叶绿素含量的影响[J]. 植物资源与环境学报, 2009, 18(4): 39-45 doi: 10.3969/j.issn.1674-7895.2009.04.007
ZHANG Y Y, JI Y H, JIA H, et al. Effect of shading on biomass allocation and chlorophyll content in leaf of Triticum aestivum at different developmental stages[J]. Journal of Plant Resources and Environment, 2009, 18(4): 39-45 doi: 10.3969/j.issn.1674-7895.2009.04.007
[21]郭峰, 曲妍妍, 信长朋, 等. 弱光下生长的高产小麦品系PH01-35旗叶光合机构对不同光强的响应[J]. 作物学报, 2009, 35(1): 179-184 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901025.htm
GUO F, QU Y Y, XIN C P, et al. Response of photosynthetic apparatus to different irradianee in flag leaves of high-yielding winter wheat PH01-35 grown under low light conditions[J]. Acta Agronomica Sinica, 2009, 35(1): 179-184 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901025.htm
[22]李文阳, 闫素辉, 尹燕枰, 等. 小麦花后弱光引起籽粒淀粉的粒度分布及组分含量的变化[J]. 生态学报, 2009, 29(1): 298-306 doi: 10.3321/j.issn:1000-0933.2009.01.036
LI W Y, YAN S H, YIN Y P, et al. Starch granule size distribution and starch component content in wheat grain in relation to shading stress after anthesis[J]. Acta Ecologica Sinica, 2009, 29(1): 298-306 doi: 10.3321/j.issn:1000-0933.2009.01.036
[23]闫素辉, 李文阳, 杨安中, 等. 弱光对小麦花后旗叶光合及籽粒灌浆的影响[J]. 麦类作物学报, 2011, 31(1): 77-81 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201101016.htm
YAN S H, LI W Y, YANG A Z, et al. Effects of weak light at grain filling stage on photosynthetic characteristics and grain filling of winter wheat[J]. Journal of Triticeae Crops, 2011, 31(1): 77-81 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201101016.htm
[24]ALPI A, PERATA P, BEEVERS H. Physiological responses of cereal seedlings to ethanol[J]. Journal of Plant Physiology, 1985, 119(1): 77-85 doi: 10.1016/S0176-1617(85)80217-0
[25]BRüGGEMANN W, LINGER P. Long-term chilling of young tomato plants under low light. Ⅳ. Differential responses of chlorophyll fluorescence quenching coefficients in Lycopersicon species of different chilling sensitivity[J]. Plant and Cell Physiology, 1994, 35(4): 585-591 doi: 10.1093/oxfordjournals.pcp.a078633
[26]张玉春, 张敏, 刘希伟, 等. 花后持续弱光对冬小麦光合特性及产量的影响[J]. 麦类作物学报, 2017, 37(8): 1038-1046 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201708007.htm
ZHANG Y C, ZHANG M, LIU X W, et al. Effect of weak light after anthesis on photosynthetic characteristics and yield of winter wheat[J]. Journal of Triticeae Crops, 2017, 37(8): 1038-1046 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201708007.htm
[27]林世青, 许春辉, 张其德, 等. 叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J]. 植物学通报, 1992, 9(1): 1-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT199201000.htm
LIN S Q, XU C H, ZHANG Q D, et al. Some application of chlorophyll fluorescence kinetics to plant stress physiologyphy toecology and agricultural modernization[J]. Chinese Bulletin of Botany, 1992, 9(1): 1-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT199201000.htm
[28]眭晓蕾, 毛胜利, 王立浩, 等. 弱光条件下辣椒幼苗叶片的气体交换和叶绿素荧光特性[J]. 园艺学报, 2007, 34(3): 615-622 doi: 10.3321/j.issn:0513-353x.2007.03.015
SUI X L, MAO S L, WANG L H, et al. Effects of low light intensity on gas exchange and chlorophyll fluorescence characteristics of Capsicum seedlings[J]. Acta Horticulturae Sinica, 2007, 34(3): 615-622 doi: 10.3321/j.issn:0513-353x.2007.03.015
[29]张黎萍, 荆奇, 戴廷波, 等. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响[J]. 应用生态学报, 2008, 19(2): 311-316 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200802014.htm
ZHANG L P, JING Q, DAI T B, et al. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quality[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 311-316 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200802014.htm
[30]MU H R, LAN X Q. Effects of shading on photosynthetic properties of canopy and single leaf of winter wheat[J]. Agricultural Science & Technology, 2012, 13(5): 979-983 http://agris.fao.org/openagris/search.do?recordID=CN2013001633
[31]董树亭. 高产冬小麦群体光合能力与产量关系的研究[J]. 作物学报, 1991, 17(6): 461-469 doi: 10.3321/j.issn:0496-3490.1991.06.009
DONG S T. Studies on the relationship between canopy apparent photosynthesis and grain yield in high-yielding winter wheat[J]. Acta Agronomica Sinica, 1991, 17(6): 461-469 doi: 10.3321/j.issn:0496-3490.1991.06.009
[32]李芳东, 王保平, 傅大立. 桐麦间作系统内光量分布及其对小麦产量的影响[J]. 北京林业大学学报, 1998, 20(3): 101-107 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY803.017.htm
LI F D, WANG B P, FU D L. Light distribution within the inter cropping system of paulownia wheat and its influences on wheat yield[J]. Journal of Beijing Forestry University, 1998, 20(3): 101-107 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY803.017.htm
[33]YANG T, DUAN Z P, ZHU Y, et al. Effects of distance from a tree line on photosynthetic characteristics and yield of wheat in a jujube tree/wheat agroforestry system[J]. Agroforestry Systems, 2019, 93(4): 1545-1555 doi: 10.1007/s10457-018-0267-x
[34]YANG L L, DING X Q, LIU X J, et al. Impacts of long-term jujube tree/winter wheat-summer maize intercropping on soil fertility and economic efficiency-a case study in the lower North China Plain[J]. European Journal of Agronomy, 2016, 75: 105-117 doi: 10.1016/j.eja.2016.01.008

相关话题/系统 数据 新疆 作物 图片