邵立威1,
闫宗正1, 2,
李璐1, 2,
陈素英1,
张喜英1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 中国科学院科技服务网络计划项目和河北省重点研发计划项目20326422D
详细信息
作者简介:高聪帅, 主要从事农田节水机理与技术研究。E-mail: gaocongshuai18@mails.ucas.ac.cn
通讯作者:张喜英, 主要从事农田节水机理与技术研究。E-mail: xyzhang@sjziam.ac.cn
中图分类号:S153.4计量
文章访问数:142
HTML全文浏览量:11
PDF下载量:370
被引次数:0
出版历程
收稿日期:2020-08-26
录用日期:2021-01-28
刊出日期:2021-05-01
Annual soil salt balance and crop performance under brackish water irrigation during the winter wheat season
GAO Congshuai1, 2,,SHAO Liwei1,
YAN Zongzheng1, 2,
LI Lu1, 2,
CHEN Suying1,
ZHANG Xiying1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Agricultural Water-saving, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijng 100049, China
Funds: the Science and Technology Service Network Initiative of Chinese Academy of Sciences and Hebei Key R & DInitiative Project20326422D
More Information
Corresponding author:ZHANG Xiying, E-mail: xyzhang@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:冬小麦夏玉米一年两熟是环渤海低平原主要粮食作物种植模式,该区淡水资源匮乏,但浅层微咸水相对丰富,在降水较少的冬小麦生长季,适当利用微咸水代替淡水灌溉对维持冬小麦稳产高产有重要作用。冬小麦季实施微咸水灌溉后土壤盐分累积如何影响下季作物夏玉米生长以及对土壤周年盐分平衡影响,是微咸水能否长期安全利用的关键。为探究上述问题,于2015—2019年连续4年在环渤海低平原中国科学院南皮生态农业试验站进行冬小麦季不同矿化度微咸水灌溉定点试验,共设置含盐量为1 g·L-1淡水(F)、3 g·L-1微咸水(S3)、4 g·L-1微咸水(S4)、5 g·L-1微咸水(S5)4个梯度,在拔节期灌水1次,灌水量均为70 mm;另以生育期不灌水作为对照(旱作,CK)。结果表明,不同矿化度微咸水灌溉处理间冬小麦产量没有显著差异,但平均比CK显著增产31.6%。同时,冬小麦生长季微咸水灌溉均增加了收获时1 m以上土层的含盐量,并随灌溉水含盐量增加而增加;对1 m以下土层含盐量影响不明显。夏玉米播种时灌溉70 mm淡水不仅解决了土壤墒情不足问题,并可使0~20 cm土层盐分控制在1 g·kg-1以下,保证夏玉米出苗和群体建立,对夏玉米产量没有显著影响。经过夏季降雨的淋洗,S3、S4和S5处理0~40 cm土层含盐量降低幅度超过30%,深层土壤含盐量变化不明显,1 m以上土层可以实现周年盐分平衡。本研究表明冬小麦-夏玉米一年两季种植,冬小麦耐盐能力较强的特征使其生育期可以通过不大于5 g·L-1的微咸水灌溉维持稳产,在保证夏玉米出苗水进行灌溉的条件下,夏玉米季通过雨季降水淋盐维持0~1 m主要根层土壤不发生明显积盐过程,可实现长期微咸水灌溉下土壤和作物安全。
关键词:微咸水灌溉/
冬小麦/
夏玉米/
作物产量/
土壤盐分/
盐分平衡
Abstract:The annual double cropping system of winter wheat-summer maize is a stable cropping system in the low plain of the Bohai Sea. Owing to the shortage of fresh water and the relative abundance of shallow saline water in this region, saline water is used to irrigate winter wheat. The accumulated salt in the soil after the winter wheat season affects the following summer maize season, and the annual soil salt balance is affected by saline irrigation. To address these issues, a continuous 4-year field study was conducted at the Nanpi Eco-agriculture Experimental Station of Chinese Academy of Sciences from 2015 to 2019. Four treatments were set up to irrigate winter wheat once using irrigation water (70 mm) with different total salt contents at the jointing stage, i.e., freshwater 1 g·L-1 (F), 3 g·L-1 brackish water (S3), 4 g·L-1 brackish water (S4), and 5 g·L-1 brackish water (S5). There was also a treatment without irrigation (rain-fed, CK). The results showed that there was no significant difference in winter wheat yield among the four irrigation treatments, and the average yield with irrigation was 31.6% greater than that of CK. Irrigation using brackish water increased the soil salt content of the top 1 m soil profile during winter wheat harvesting. The soil salt content increase was proportional to the salt content of irrigation water. There were no significant differences in the soil salt contents below 1 m. The necessary irrigation using 70 mm freshwater for the seedling establishment of summer maize after winter wheat harvest reduced the salt content of the top 20 cm soil layer, which created favorable soil conditions for maize growth. No significant differences in summer maize yield were observed among different treatments. With concentrated rainfall during the summer monsoon season, the salt content in the top soil layer (0-40 cm) for the S3, S4, and S5 treatments decreased by more than 30% due to leaching, but the salt content of deep soil did not change. The results showed that the high salt tolerance of winter wheat maintained a stable yield with saline water irrigation. With irrigation at maize sowing and the subsequent summer rainfall, the accumulated salt is leached out of the major root zone to enable the continued use of saline water irrigation for winter wheat in this region.
Key words:Brackish water irrigation/
Winter wheat/
Summer maize/
Yield of crop/
Salt content of soil/
Soil salt balance
HTML全文
图12015—2019年试验地0~40 cm平均土壤含水量变化
Figure1.Soil moisture dynamics for the top 40 cm soil layer from 2015 to 2019 of the experimental field
下载: 全尺寸图片幻灯片
图22016—2019年冬小麦季不同矿化度微咸水灌溉对冬小麦收获后土壤盐分剖面分布特征的影响
Figure2.Distribution of salinity along soil profile at winter wheat harvest under irrigation of brackish water with different salinities in winter wheat season during 2016?2019
下载: 全尺寸图片幻灯片
图32016—2019年冬小麦季不同矿化度微咸水灌溉对夏玉米播种水灌溉前后0~20 cm土壤含盐量的影响
不同小写字母代表同一调查时间各处理间差异显著(P < 0.05)。
Figure3.Changes in soil salt content in 0?20 cm soil layer before and after irrigation at sowing of summer maize under irrigation of brackish water with different salinities in winter wheat season during 2016?2019
Different lowercase letters mean significant differences among treatments in the same investigation time (P < 0.05).
下载: 全尺寸图片幻灯片
图42015—2019年冬小麦季不同矿化度微咸水灌溉对冬小麦和下季作物夏玉米产量的影响
不同小写字母代表同一年份各处理间差异显著(P < 0.05)。
Figure4.Yields of winter wheat and summer maize under irrigation of brackish water with different salinities in winter wheat season during 2015?2019
Different lowercase letters mean significant differences among treatments in the same year (P < 0.05).
下载: 全尺寸图片幻灯片
图5冬小麦季不同矿化度微咸水灌溉下2017年(a、b、c、d、e)和2018年(f、g、h、i、j)雨季前后土壤盐分剖面分布
Figure5.Distribution of soil salt before and after summer rainfall in 2017 (a, b, c, d, e) and 2018 (f, g, h, i, j) under irrigation of brackish water with different salinities in winter wheat season
下载: 全尺寸图片幻灯片
图62016—2019年冬小麦季不同矿化度微咸水灌溉下不同土层含盐量动态变化趋势
Figure6.Changes in soil salt contents at different soil layers under irrigation of brackish water with different salinities in winter wheat season from 2016 to 2019
下载: 全尺寸图片幻灯片
表1不同矿化度灌溉水离子含量
Table1.Soluble ions concentrations in irrigation water withdifferent salinities used for the experiment?
灌溉水Irrigation water | 矿化度Salinity (g?L?1) | ${\rm{HCO}}_3^ - $ | Cl- | ${\rm{SO}}_4^{2 - }$ | Ca2+ | Mg2+ | K++Na+ |
淡水Fresh water | 1 | 0.34 | 0.16 | 0.20 | 0.01 | 0.02 | 0.25 |
微咸水Brackish water | 3 | 0.40 | 1.29 | 0.21 | 0.02 | 0.03 | 1.03 |
4 | 0.43 | 1.83 | 0.28 | 0.02 | 0.05 | 1.38 | |
5 | 0.45 | 2.30 | 0.35 | 0.03 | 0.07 | 1.81 |
下载: 导出CSV
表22015—2019年冬小麦和夏玉米生育期气象因素
Table2.Weather conditions during winter wheat and summer maize growing seasons from 2015?2019
气象要素Meteorological factor | 冬小麦Winter wheat | 夏玉米Summer maize | |||||||||||||
2015—2016 | 2016—2017 | 2017—2018 | 2018—2019 | 多年平均Annual average | 2016 | 2017 | 2018 | 2019 | 多年平均Annual average | ||||||
降水Precipitation (mm) | 115.2 | 62.1 | 163.7 | 56 | 110.5 | 376.4 | 315.4 | 461.6 | 441.3 | 417.2 | |||||
日照时数Sunshine hours (h) | 1422.1 | 1493.5 | 1585.5 | 1623.3 | 1674.5 | 558.5 | 677.1 | 776.0 | 721.2 | 774.9 | |||||
日均温度Daily mean temperature (℃) | 8.3 | 9.4 | 8.5 | 8.9 | 7.5 | 26.0 | 26.4 | 26.5 | 26.3 | 24.9 | |||||
≥10 ℃积温Accumulated temperature ≥10 ℃ (℃) | 1771.7 | 1852.8 | 1886.9 | 1837.8 | 1642.1 | 2805.9 | 2854.3 | 2861.7 | 2838.4 | 2673.1 |
下载: 导出CSV
表32015—2019年不同矿化度微咸水灌溉对冬小麦产量构成及收获指数
Table3.Yield composition and harvest index of winter wheat under irrigation of brackish water with different salinities during 2015?2019
年份Year | 处理Treatment | 穗数Spike number (spikes·m?2) | 穗粒数Kernels per spike | 千粒重1000-seed weight (g) | 收获指数Harvest index |
2015—2016 | 淡水Fresh water | 515.6±44.4a | 29.5±2.0a | 36.4±0.9a | 0.432±0.007a |
3 g?L?1 | 552.2±37.5a | 32.7±0.5a | 37.7±1.1a | 0.441±0.024a | |
4 g?L?1 | 584.5±65.0a | 30.0±1.1a | 39.0±2.1a | 0.423±0.044a | |
5 g?L?1 | 538.9±42.2a | 29.1±0.9a | 38.4±0.7a | 0.440±0.023a | |
旱作Rain-fed | 457.8±61.9a | 29.9±3.7a | 37.5±0.8a | 0.393±0.019a | |
2016—2017 | 淡水Fresh water | 723.4±35.0a | 26.7±0.8a | 36.4±0.9a | 0.402±0.013ab |
3 g?L?1 | 740.6±39.8a | 28.1±1.2a | 37.0±1.8a | 0.411±0.016a | |
4 g?L?1 | 771.7±46.4a | 28.7±0.6a | 38.7±1.6a | 0.412±0.008a | |
5 g?L?1 | 721.7±18.9a | 26.7±1.3a | 35.6±0.7a | 0.383±0.009b | |
旱作Rain-fed | 720.0±46.5a | 26.8±1.1a | 37.6±1.5a | 0.382±0.015b | |
2017—2018 | 淡水Fresh water | 728.1±63.9a | 23.6±0.9a | 34.6±0.4c | 0.390±0.021a |
3 g?L?1 | 705.3±88.9a | 22.5±1.2a | 37.2±1.8b | 0.388±0.022a | |
4 g?L?1 | 638.3±48.2a | 22.2±2.9a | 38.5±0.6ab | 0.379±0.021a | |
5 g?L?1 | 609.3±53.5a | 22.3±5.7a | 40.1±0.4a | 0.372±0.022a | |
旱作Rain-fed | 558.2±102.8a | 20.7±0.4a | 39.4±0.7a | 0.391±0.008a | |
2018—2019 | 淡水Fresh water | 756.7±19.7a | 31.1±3.9a | 34.7±1.9a | 0.417±0.078a |
3 g?L?1 | 792.3±40.7a | 27.3±1.1ab | 36.1±0.3a | 0.393±0.032a | |
4 g?L?1 | 730.6±40.0a | 24.1±1.4bc | 34.7±1.2a | 0.334±0.017a | |
5 g?L?1 | 785.9±19.2a | 20.6±3.7c | 35.0±1.1a | 0.324±0.037a | |
旱作Rain-fed | 641.7±76.0b | 20.7±2.6c | 36.0±1.7a | 0.325±0.079a | |
不同小写字母代表同一年份各处理间差异显著(P < 0.05)。Different lowercase letters mean significant differences among treatments in the same year (P < 0.05). |
下载: 导出CSV
表42016—2019年冬小麦季不同矿化度微咸水灌溉对下茬作物夏玉米产量构成及收获指数的影响
Table4.Yield composition and harvest index of summer maize under irrigation of brackish water with different salinities in winter wheat season during 2016?2019
年份Year | 处理Treatment | 穗数Spike number (spikes?m?2) | 穗粒数Kernels per spike | 百粒重100-seed weight (g) | 收获指数Harvest index |
2016 | 淡水Fresh water | 6.3±0.11a | 487.1±11.7a | 33.6±0.66a | 0.495±0.026a |
3 g?L?1 | 6.0±0.08a | 493.3±36.1a | 33.4±0.40a | 0.494±0.022a | |
4 g?L?1 | 6.3±0.29a | 491.3±32.0a | 32.5±1.51a | 0.497±0.021a | |
5 g?L?1 | 6.6±0.57a | 476.1±27.5a | 32.0±0.74a | 0.495±0.022a | |
旱作Rain-fed | 6.1±0.28a | 497.1±35.7a | 32.7±0.41a | 0.502±0.026a | |
2017 | 淡水Fresh water | 6.8±0.44a | 522.0±45.2a | 32.9±1.42a | 0.497±0.006a |
3 g?L?1 | 7.2±0.28a | 520.7±49.7a | 32.8±0.85a | 0.500±0.020a | |
4 g?L?1 | 7.0±0.07a | 523.3±7.3a | 32.9±0.72a | 0.513±0.006a | |
5 g?L?1 | 6.7±0.57a | 489.7±25.3a | 32.7±0.80a | 0.515±0.005a | |
旱作Rain-fed | 7.4±0.19a | 513.6±11.2a | 32.7±1.72a | 0.520±0.010a | |
2018 | 淡水Fresh water | 6.4±0.47a | 557.2±34.7a | 31.8±0.62a | 0.520±0.325a |
3 g?L?1 | 6.4±0.42a | 501.0±35.9a | 32.3±.65a | 0.512±0.439a | |
4 g?L?1 | 7.0±0.43a | 514.7±5.6a | 31.2±.56a | 0.505±0.076a | |
5 g?L?1 | 6.4±0.30a | 544.3±20.7a | 32.3± 0.52a | 0.498±0.035a | |
旱作Rain-fed | 6.4±0.48a | 502.6±41.2a | 32.2±0.72a | 0.515±0.008a | |
2019 | 淡水Fresh water | 5.9±0.39a | 563.2±29.3a | 30.5±1.74a | 0.469±0.002a |
3 g?L?1 | 5.1±0.20a | 543.8±28.8a | 31.4±1.23a | 0.470±0.001a | |
4 g?L?1 | 5.8±0.96a | 546.0±11.5a | 30.3±1.36a | 0.473±0.003a | |
5 g?L?1 | 5.7±0.57a | 569.0±11.5a | 30.2±0.71a | 0.471±0.002a | |
旱作Rain-fed | 5.5±0.58a | 523.5±39.4a | 30.2±0.87a | 0.472±0.002a | |
不同小写字母代表同一年份各处理间差异显著(P < 0.05)。Different lowercase letters mean significant differences among treatments in the same year (P < 0.05). |
下载: 导出CSV
参考文献
[1] | DE FRAITURE C, WICHELNS D. Satisfying future water demands for agriculture[J]. Agricultural Water Management, 2010, 97(4): 502-511 doi: 10.1016/j.agwat.2009.08.008 |
[2] | ZHOU Z M, ZHANG G H, YAN M J, et al. Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai Sea, North China[J]. Environmental Monitoring and Assessment, 2012, 184(6): 3697-3710 doi: 10.1007/s10661-011-2217-1 |
[3] | 张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995-1004 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201608001.htm ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995-1004 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201608001.htm |
[4] | 刘小京, 张喜英. 农田多水源高效利用理论与实践[M]. 石家庄: 河北科学技术出版社, 2018 LIU X J, ZHANG X Y. Theory and Practice of Efficient Utilization of Various Water Sources in Farmland[M]. Shijiazhuang: Hebei Science & Technology Press, 2018 |
[5] | LIU B X, WANG S Q, KONG X L, et al. Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain[J]. Agricultural Water Management, 2019, 211: 98-110 doi: 10.1016/j.agwat.2018.09.030 |
[6] | LIU X W, FEIKE T, CHEN S Y, et al. Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China[J]. Journal of Integrative Agriculture, 2016, 15(12): 2886-2898 doi: 10.1016/S2095-3119(15)61328-4 |
[7] | SINGH A, PANDA S N. Effect of saline irrigation water on mustard (Brassica juncea) crop yield and soil salinity in a semi-arid area of north India[J]. Experimental Agriculture, 2012, 48(1): 99-110 doi: 10.1017/S0014479711000780 |
[8] | WANG Q M, HUO Z L, ZHANG L D, et al. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China[J]. Agricultural Water Management, 2016, 163: 125-138 doi: 10.1016/j.agwat.2015.09.012 |
[9] | WANG, T Y, XU Z H, PANG G B. Effects of irrigating with brackish water on soil moisture, soil salinity, and the agronomic response of winter wheat in the Yellow River Delta[J]. Sustainability, 2019, 11(20): 5801 doi: 10.3390/su11205801 |
[10] | TIAN F, HOU M J, QIU Y, et al. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique[J]. Geoderma, 2020, 357: 113961 doi: 10.1016/j.geoderma.2019.113961 |
[11] | OZTURK O F, SHUKLA M K, STRINGAM B, et al. Irrigation with brackish water changes evapotranspiration, growth and ion uptake of halophytes[J]. Agricultural Water Management, 2018, 195: 142-153 doi: 10.1016/j.agwat.2017.10.012 |
[12] | YANG G, LI F D, TIAN L J, et al. Soil physicochemical properties and cotton (Gossypium hirsutum L. ) yield under brackish water mulched drip irrigation[J]. Soil and Tillage Research, 2020, 199: 104592 doi: 10.1016/j.still.2020.104592 |
[13] | HUANG M Y, ZHANG Z Y, SHENG Z P, et al. Soil salinity and maize growth under cycle irrigation in coastal soils[J]. Agronomy Journal, 2019, 111(5): 2276-2286 doi: 10.2134/agronj2018.10.0684 |
[14] | KANG Y H, CHEN M, WAN S Q. Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. Ceratina Kulesh) in North China Plain[J]. Agricultural Water Management, 2010, 97(9): 1303-1309 doi: 10.1016/j.agwat.2010.03.006 |
[15] | 陈素英, 张喜英, 邵立威, 等. 微咸水非充分灌溉对冬小麦生长发育及夏玉米产量的影响[J]. 中国生态农业学报, 2011, 19(3): 579-585 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201103019.htm CHEN S Y, ZHANG X Y, SHAO L W, et al. Effect of deficit irrigation with brackish water on growth and yield of winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 579-585 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201103019.htm |
[16] | SUN H Y, SHAO L W, LIU X W, et al. Determination of water consumption and the water-saving potential of three mulching methods in a jujube orchard[J]. European Journal of Agronomy, 2012, 43: 87-95 doi: 10.1016/j.eja.2012.05.007 |
[17] | 陈素英, 邵立威, 孙宏勇, 等. 微咸水灌溉对土壤盐分平衡与作物产量的影响[J]. 中国生态农业学报, 2016, 24(8): 1049-1058 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201608006.htm CHEN S Y, SHAO L W, SUN H Y, et al. Effect of brackish water irrigation on soil salt balance and yield of both winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1049-1058 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201608006.htm |
[18] | OULD AHMED B A, INOUE M, MORITANI S. Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat[J]. Agricultural Water Management, 2010, 97(1): 165-170 doi: 10.1016/j.agwat.2009.09.001 |
[19] | ROMIC D, ONDRASEK G, ROMIC M, et al. Salinity and irrigation method affect crop yield and soil quality in watermelon (Citrullus lanatusL. ) growing[J]. Irrigation and Drainage, 2008, 57(4): 463-469 doi: 10.1002/ird.358 |
[20] | CHOUDHARY O P, GHUMAN B S, BIJAY-SINGH, et al. Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice-wheat cropping system in a calcareous soil[J]. Field Crops Research, 2011, 121(3): 363-372 doi: 10.1016/j.fcr.2011.01.004 |
[21] | HU Y X, LI X W, JIN M G, et al. Reduced co-occurrence and ion-specific preferences of soil microbial hub species after ten years of irrigation with brackish water[J]. Soil and Tillage Research, 2020, 199: 104599 doi: 10.1016/j.still.2020.104599 |
[22] | SCUDIERO E, SKAGGS T H, CORWIN D L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance[J]. Ecological Indicators, 2016, 70: 276-284 doi: 10.1016/j.ecolind.2016.06.015 |
[23] | LAMSAL K, PAUDYAL G N, SAEED M. Model for assessing impact of salinity on soil water availability and crop yield[J]. Agricultural Water Management, 1999, 41(1): 57-70 doi: 10.1016/S0378-3774(98)00116-4 |
[24] | 王全九, 徐益敏, 王金栋, 等. 咸水与微咸水在农业灌溉中的应用[J]. 灌溉排水, 2002, 21(4): 73-77 doi: 10.3969/j.issn.1672-3317.2002.04.020 WANG Q J, XU Y M, WANG J D, et al. Application of saline and slight saline water for farmland irrigation[J]. Irrigation and Drainage, 2002, 21(4): 73-77 doi: 10.3969/j.issn.1672-3317.2002.04.020 |
[25] | 王诗景, 黄冠华, 杨建国, 等. 微咸水灌溉对土壤水盐动态与春小麦产量的影响[J]. 农业工程学报, 2010, 26(5): 27-33 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201005006.htm WANG S J, HUANG G H, YANG J G, et al. Effect of irrigation with saline water on water-salt dynamic and spring wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(5): 27-33 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201005006.htm |
[26] | 杨培岭, 王瑜, 任树梅, 等. 咸淡水交替灌溉下土壤水盐分布与玉米吸水规律研究[J]. 农业机械学报, 2020, 51(6): 273-281 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202006029.htm YANG P L, WANG Y, REN S M, et al. Soil moisture and saline distribution characteristics and maize stem water uptake under alternate irrigation between saline water and groundwater[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 273-281 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202006029.htm |
[27] | 吴忠东, 王全九. 微咸水非充分灌溉对土壤水盐分布与冬小麦产量的影响[J]. 农业工程学报, 2009, 25(9): 36-42 doi: 10.3969/j.issn.1002-6819.2009.09.007 WU Z D, WANG Q J. Effects of deficit irrigation with brackish water on soil water-salt distribution and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 36-42 doi: 10.3969/j.issn.1002-6819.2009.09.007 |
[28] | WANG X P, YANG J S, LIU G M, et al. Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution[J]. Agricultural Water Management, 2015, 149: 44-54 doi: 10.1016/j.agwat.2014.10.027 |
[29] | FRANCOIS L E, GRIEVE C M, MAAS E V, et al. Time of salt stress affects growth and yield components of irrigated wheat[J]. Agronomy Journal, 1994, 86(1): 100-107 doi: 10.2134/agronj1994.00021962008600010019x |
[30] | 龚雨田, 孙书洪, 闫宏伟. 微咸水灌溉对冬小麦产量及农艺性状的影响[J]. 节水灌溉, 2017(9): 33-37, 42 doi: 10.3969/j.issn.1007-4929.2017.09.008 GONG Y T, SUN S H, YAN H W. Study on the impact of saline water with different materialization degree on growth characteristics and yield of winter wheat[J]. Water Saving Irrigation, 2017(9): 33-37, 42 doi: 10.3969/j.issn.1007-4929.2017.09.008 |
[31] | 梁硕硕, 房琴, 闫宗正, 等. 水分调控降低盐分对夏玉米的影响[J]. 中国生态农业学报, 2018, 26(9): 1388-1397 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201809019.htm LIANG S S, FANG Q, YAN Z Z, et al. Moisture control reduces soil salt effect on summer maize[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1388-1397 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201809019.htm |
[32] | 张妙仙, 杨劲松, 李冬顺. 特大暴雨作用下土壤盐分运移特征研究[J]. 中国生态农业学报, 2004, 12(2): 47-49 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200402013.htm ZHANG M X, YANG J S, LI D S. Salt migration characteristics of silt loam soil by rainstorm[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2): 47-49 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200402013.htm |