曹婧1, 2,
毋俊华1, 2,
陈怡平1,,
1.中国科学院地球环境研究所/黄土与第四纪地质国家重点实验室 西安 710061
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2017YFD0800500
详细信息
作者简介:王洪, 主要研究方向为土壤生态学。E-mail: wanghong@ieecas.cn
通讯作者:陈怡平, 主要研究方向为生态学。E-mail: lifesci@ieecas.cn
中图分类号:S159.9计量
文章访问数:82
HTML全文浏览量:53
PDF下载量:30
被引次数:0
出版历程
收稿日期:2020-09-25
录用日期:2021-03-20
网络出版日期:2021-06-22
刊出日期:2021-06-01
Spatial and temporal variability in soil pH of Shaanxi Province over the last 40 years
WANG Hong1, 2,,CAO Jing1, 2,
WU Junhua1, 2,
CHEN Yiping1,,
1. Institute of Earth Environment, Chinese Academy of Sciences/State Key Laboratory of Loess and Quaternary Geology, Xi'an 710061, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key R & D Program of China2017YFD0800500
More Information
Corresponding author:CHEN Yiping, E-mail: lifesci@ieecas.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:以陕西省耕层土壤为研究对象,利用1980s第2次土壤普查数据和2017年的705个样点分析数据,基于地统计学和ArcGIS分析耕层土壤pH时空变化特征,并采用相关分析和方差分析方法探讨其影响因素,对于陕西农业可持续发展及生态环境保护具有极其重要的意义。结果表明,陕北、关中及陕南地区耕层土壤pH均值依次为8.25、7.91、6.25,分别为弱碱性、弱碱性和弱酸性;各行政区耕层土壤pH排列顺序为延安>榆林>铜川>咸阳>渭南>西安>宝鸡>商洛>安康>汉中。时间上,与1980s相比,陕北和关中耕层土壤呈碱化趋势,陕南耕层土壤呈酸化趋势;各行政区除榆林、安康、汉中和商洛耕层土壤呈酸化趋势,其余各市耕层土壤均呈碱化趋势。空间上,陕北和陕南耕层土壤pH拟合的最优半方差函数模型为线性模型,关中耕层土壤pH拟合的最优半方差函数模型为高斯模型,均表现出较强的空间相关性。陕北耕层土壤pH空间分布呈零星斑状特征,关中和陕南耕层土壤pH空间分布呈东部高于西部特征。坡向、海拔与陕西省耕层土壤pH显著相关,坡度越小,海拔越高,pH越大,不同类型的土壤pH存在差异。建议陕北和关中地区防治土壤盐碱化问题,陕南地区防治土壤酸化问题,以促进农业可持续发展和保障区域粮食安全。
关键词:陕西省/
耕层土壤pH/
空间相关性/
地形/
土壤类型
Abstract:Rapid development of the economy has increased the occurrence of declining cultivated land quality, such as acidification and salinization in China. To provide a scientific basis for adjustment of topsoil pH and to realize the rational use of land resources in Shaanxi Province, this study examined pH of 705 topsoil samples from Shaanxi Province using a soil/water ratio of 2.5/1 in 2017 and incorporated soil pH data from the second national soil survey in 1980s. The spatio-temporal changes and classification characteristics were analyzed via ArcGIS, and the influencing factors were investigated by correlation analysis and analysis of variance methods. General statistical analysis and normality tests were performed in Excel 2016 and SPSS 22.0; and the GS+9.0 software was adopted to obtain the best fitting model. The ordinary Kriging method was used for spatial interpolation analysis and mapping. The study is important for sustainable agriculture development and ecological environment protection in Shaanxi Province. The results showed that pH values of farmland soil in northern Shaanxi, Guanzhong, and southern Shaanxi were 8.25, 7.91, and 6.25, respectively, and the corresponding levels were 5 (alkalescence), 5 (alkalescence), and 3 (weak acidity), respectively. The order of soil pH in the administrative regions was Yan'an > Yulin > Tongchua > Xianyang > Weinan > Xi'an > Baoji > Shangluo > Ankang > Hanzhong. The topsoil pH in Hanzhong City showed moderate variation, whereas the other cities in Shaanxi Province showed weak variation. Compared with the 1980s, the farmland soil in northern Shaanxi and Guanzhong showed an alkalization trend, whereas the surface soil in southern Shaanxi showed an acidification trend. In the administrative regions, the topsoil in Yulin, Ankang, Hanzhong, and Shangluo showed an acidification trend, and the soil in other cities showed an alkalization trend. The optimal fitting semi-variance function model of farmland soil pH in northern and southern Shaanxi was a linear model, and the optimal fitting semi-variance function model of farmland soil pH in Guanzhong was a Gaussian model; both showed strong spatial correlation. Furthermore, the topsoil pH in northern Shaanxi was primarily influenced by structural factors, whereas the topsoil pH in Guanzhong and southern Shaanxi was influenced by structural and random factors. The spatial distribution characteristics of topsoil pH were sporadic in northern Shaanxi, and that in Guanzhong and southern Shaanxi was higher in the east than in the west. Changes in soil pH were affected by natural and human factors, such as topography, soil type, climate, and fertilization. Slope and elevation were significantly (P < 0.05) correlated with topsoil pH in Shaanxi Province; lower slopes and higher altitudes had higher soil pH. To promote sustainable agriculture development and regional food security, soil salinization should be prevented in northern Shaanxi and Guanzhong and acidification should be prevented in southern Shaanxi.
Key words:Shaanxi Province/
Topsoil pH/
Spatial correlation/
Topography/
Soil type
HTML全文
图1采样点地理位置
Figure1.Location of sampling points
下载: 全尺寸图片幻灯片
图21980s和2017年陕西省耕层土壤pH分级占比特征
Figure2.Fractional proportion characteristics of topsoil pH in Shaanxi Province in 2017 and 1980s
下载: 全尺寸图片幻灯片
图3陕西省陕北(a)、关中(b)和陕南(c)耕层土壤pH空间分布特征
Figure3.Spatial distribution characteristics of topsoil pH in Shanbei (a), Guanzhong (b) and Shannan (c) areas of Shaanxi Province
下载: 全尺寸图片幻灯片
表1陕西省土壤pH分级标准
Table1.Grading standard of soil pH in Shaanxi Province
强酸性 Strong acidity | 酸性 Acidity | 弱酸性 Weak acidity | 中性 Neutral | 弱碱性 Alkalescence | 碱性 Alkalinity | 强碱性 Strong basicity | |
等级Level | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
pH | < 4.5 | 4.6~5.5 | 5.6~6.5 | 6.6~7.5 | 7.6~8.5 | 8.6~9 | > 9.1 |
下载: 导出CSV
表2陕西省1987—2017年肥料用量
Table2.Fertilizer application rates in Shaanxi Province during 1987?2017 ?
年份 Year | 氮肥 Nitrogen fertilizer | 磷肥 Phosphate fertilizer | 钾肥 Potassium fertilizer | 复合肥 Compound fertilizer | 化肥 Chemical fertilizer |
1987 | 33.00 | 5.50 | 0.70 | 4.40 | 43.60 |
1990 | 48.60 | 10.10 | 2.30 | 6.90 | 67.90 |
2000 | 73.00 | 16.89 | 8.17 | 33.25 | 131.19 |
2010 | 87.67 | 17.98 | 19.99 | 54.63 | 196.79 |
2017 | 90.02 | 18.64 | 24.26 | 99.24 | 232.15 |
下载: 导出CSV
表3陕西省各市耕层土壤pH含量描述统计
Table3.Description of soil pH in cities of Shaanxi Province
区域 Region | 市 City | 数量 Number | 最小值 Minimum value | 最大值 Maximum value | 平均值 Mean | 标准偏差 SD | 变异系数 CV (%) | 等级 Level |
陕北 Shanbei | 延安Yan’an | 101 | 7.90 | 8.72 | 8.32a | 0.19 | 2.30 | 5 |
榆林Yulin | 157 | 7.68 | 8.52 | 8.21b | 0.16 | 1.90 | 5 | |
关中 Guanzhong | 铜川Tongchuan | 20 | 7.68 | 8.37 | 8.12bc | 0.2 | 2.50 | 5 |
渭南Weinan | 66 | 7.09 | 8.81 | 8.00c | 0.35 | 4.30 | 5 | |
西安Xi’an | 22 | 6.85 | 8.65 | 7.91cd | 0.43 | 5.40 | 5 | |
咸阳Xianyang | 46 | 7.77 | 8.29 | 8.03c | 0.13 | 1.60 | 5 | |
宝鸡Baoji | 57 | 6.94 | 8.27 | 7.73d | 0.27 | 3.50 | 5 | |
陕南 Shannan | 安康Ankang | 47 | 5.16 | 7.79 | 6.42f | 0.61 | 9.50 | 3 |
汉中Hanzhong | 127 | 4.30 | 6.98 | 6.00g | 0.69 | 11.50 | 3 | |
商洛Shangluo | 62 | 5.37 | 7.51 | 6.64e | 0.47 | 7.10 | 4 | |
不同小写字母表示不同城市间差异显著(P < 0.05)。Different lowercase letters mean significant differences among cities at P < 0.05 level. |
下载: 导出CSV
表4陕西省耕层土壤pH空间自相关性检验
Table4.Test of soil pH autocorrelation in Shaanxi Province
区域 Area | 莫兰指数 Moran’s I | 预期指数 Expect I | 方差 Variance | Z | P |
陕北Shanbei | 0.073 | ?0.004 | 0.001 | 3.437 | 0.001 |
关中Guanzhong | 0.331 | ?0.005 | 0.002 | 7.817 | 0.000 |
陕南Shannan | 0.230 | ?0.004 | 0.000 | 14.257 | 0.000 |
下载: 导出CSV
表5陕西省耕层土壤pH最优半变异模型及相应参数
Table5.Semivariogram models and relative parameters of soil pH in Shaanxi Province
区域 Area | 模型 Model | 块金值 C0 | 基台值 C0+C | 块金系数 C0/(C0+C) | 变程 Range (km) | 残差 Residual error | 拟合优度 R2 |
陕北Shanbei | 线型Linear | 0.030 | 0.033 | 0.103 | 217.96 | 2.79E-05 | 0.86 |
关中Guanzhong | 高斯Gussian | 0.066 | 0.196 | 0.661 | 428.68 | 2.98E-04 | 0.96 |
陕南Shannan | 线型Linear | 0.339 | 0.535 | 0.365 | 245.55 | 0.0136 | 0.80 |
下载: 导出CSV
表6陕西省不同土壤类型耕地土壤pH含量变化特征
Table6.Statistical characteristics of soil pH in different soil types
坡度分级 Level of slope | 样本数 Number | 最小值 Minimum value | 最大值 Maximum value | 平均数 Mean | 标准偏差 SD | 变异系数 CV (%) | 酸碱度 Acidity-basicity |
Ⅰ级Level 1 | 88 | 3.88 | 8.81 | 7.87a | 0.79 | 10.1 | 弱碱性Alkalescence |
Ⅱ级Level 2 | 146 | 4.53 | 8.67 | 7.48b | 0.97 | 13.0 | 中性Neutral |
Ⅲ级Level 3 | 169 | 4.31 | 8.66 | 7.50b | 1.04 | 13.9 | 中性Neutral |
Ⅳ级Level 4 | 128 | 4.46 | 8.65 | 7.43b | 1.07 | 14.4 | 中性Neutral |
Ⅴ级Level 5 | 173 | 4.07 | 8.72 | 7.13c | 1.01 | 14.2 | 中性Neutral |
不同小写字母表示不同坡度间差异显著(P < 0.05)。Different lowercase letters mean significant differences among different levels of slope at P < 0.05 level. |
下载: 导出CSV
表7陕西省耕层土壤pH与地形因子的相关分析
Table7.Correlation analysis of soil pH and topographic factors in Shaanxi Province
坡向Aspect | 坡度Slope | 海拔Attitude | |
pH | 0.032 | ?0.231** | 0.453** |
**: 相关性在0.01尾上显著(双尾)。**: significant correlation at P < 0.01 level (double tail). |
下载: 导出CSV
表8陕西省不同海拔梯度耕地土壤pH变化特征
Table8.Statistical characteristics of soil pH in different altitude gradients
海拔梯度 Altitude gradient (m) | 样本数 Number | 最小值 Minimum value | 最大值 Maximum value | 平均数 Mean | 标准偏差 SD | 变异系数 CV (%) | 酸碱度 Acidity-basicity |
< 500 | 110 | 5.39 | 8.81 | 7.32b | 0.90 | 12.2 | 中性Neutral |
500~800 | 212 | 3.88 | 8.40 | 6.68c | 1.02 | 15.2 | 中性Neutral |
800~1000 | 118 | 4.30 | 8.72 | 7.52b | 1.03 | 13.7 | 弱碱性Alkalescence |
1000~1200 | 131 | 4.07 | 8.67 | 8.08a | 0.55 | 6.8 | 弱碱性Alkalescence |
> 1200 | 133 | 6.13 | 8.65 | 8.03a | 0.50 | 6.2 | 弱碱性Alkalescence |
不同小写字母表示不同海拔梯度间差异显著(P < 0.05)。Different lowercase letters mean significant differences among different altitude gradients at P < 0.05 level. |
下载: 导出CSV
表9陕西省不同土壤类型耕地土壤pH含量变化特征
Table9.Statistical characteristics of soil pH in different soil types
土壤类型 Soil type | 样本数 Number | 最小值 Minimum value | 最大值 Maximum value | 平均数 Mean | 标准偏差 SD | 变异系数 CV (%) | 酸碱度 Acidity-basicity |
棕壤Brown earth | 7 | 6.13 | 7.67 | 6.88 | 0.66 | 9.50 | 中性Neutral |
沼泽土Swamp soil | 18 | 3.88 | 7.68 | 5.83 | 0.99 | 16.90 | 弱酸性Weak acid |
黄褐土Yellow cinnamon soil | 42 | 5.14 | 7.79 | 6.36 | 0.59 | 9.40 | 弱酸性Weak acid |
黑垆土Black lossial soil | 23 | 7.71 | 8.48 | 8.09 | 0.18 | 2.20 | 弱碱性Alkalescence |
新积土Newly deposited soil | 69 | 5.67 | 8.67 | 7.94 | 0.59 | 7.40 | 弱碱性Alkalescence |
63 | 5.92 | 8.81 | 7.95 | 0.48 | 6.00 | 弱碱性Alkalescence | |
紫色土Purple soil | 3 | 5.88 | 7.12 | 6.46 | 0.62 | 9.70 | 弱酸性Weak acid |
粗骨土Coarse bone soil | 30 | 4.07 | 8.44 | 7.01 | 1.05 | 15.00 | 中性Neutral |
石质土Stony soil | 3 | 6.15 | 8.39 | 7.47 | 1.17 | 15.70 | 中性Neutral |
水稻土Paddy soil | 5 | 5.96 | 6.84 | 6.50 | 0.33 | 5.10 | 中性Neutral |
珊瑚砂土Coral soil | 39 | 5.44 | 8.65 | 7.66 | 0.83 | 10.80 | 弱碱性Alkalescence |
黄棕壤Yellow brown soil | 112 | 4.30 | 7.51 | 6.14 | 0.73 | 12.00 | 弱酸性Weak acid |
黄绵土Loessial soil | 206 | 6.01 | 8.72 | 8.13 | 0.33 | 4.00 | 弱碱性Alkalescence |
褐土Cinnamon soil | 23 | 5.37 | 8.31 | 6.91 | 0.89 | 12.90 | 中性Neutral |
潮土Fluvo soil | 10 | 6.10 | 8.47 | 7.87 | 0.75 | 9.60 | 弱碱性Alkalescencee |
风沙土Aeolian soil | 18 | 7.92 | 8.52 | 8.26 | 0.15 | 1.80 | 弱碱性Alkalescence |
下载: 导出CSV
参考文献
[1] | 林英. 我国耕地面积人均不足1.4亩[J]. 经济研究参考, 2007, (36): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JJCK200736023.htm LIN Y. The arable land per capita in China is less than 1.4 mu[J]. Review of Economic Research, 2007, (36): 27 https://www.cnki.com.cn/Article/CJFDTOTAL-JJCK200736023.htm |
[2] | 邹晓锦, 仇荣亮, 黄穗虹, 等. 广东大宝山复合污染土壤的改良及植物复垦[J]. 中国环境科学, 2008, 28(9): 775-780 doi: 10.3321/j.issn:1000-6923.2008.09.002 ZOU X J, QIU R L, HUANG S H, et al. Immobilization and re-vegetation of heavy metal polluted soils in Dabao Mountain, Guangdong Province by amendments[J]. China Environmental Science, 2008, 28(9): 775-780 doi: 10.3321/j.issn:1000-6923.2008.09.002 |
[3] | ESPA?A J S, PAMO E L, PASTOR E S, et al. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian pyrite belt[J]. Aquatic Geochemistry, 2006, 12(3): 269-298 doi: 10.1007/s10498-005-6246-7 |
[4] | 唐琨, 朱伟文, 周文新, 等. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究, 2013, 27(2): 207-212 doi: 10.3969/j.issn.1001-5280.2013.02.25 TANG K, ZHU W W, ZHOU W X, et al. Research progress on effects of soil pH on plant growth and development[J]. Crop Research, 2013, 27(2): 207-212 doi: 10.3969/j.issn.1001-5280.2013.02.25 |
[5] | JIANG Y H. Investigation on the status of cultivated land: The quality of cultivated land in China is worrying[EB/OL]. China Social Sciences Network. [2020-9-21]. http://www.cssn.cn/dybg/201409/t20140927_1345037.shtml |
[6] | 周和平, 张立新, 禹锋, 等. 我国盐碱地改良技术综述及展望[J]. 现代农业科技, 2007, (11): 159-161 doi: 10.3969/j.issn.1007-5739.2007.11.120 ZHOU H P, ZHANG L X, YU F, et al. Review and prospect of saline-alkali land improvement technology in China[J]. Anhui Agriculture, 2007, (11): 159-161 doi: 10.3969/j.issn.1007-5739.2007.11.120 |
[7] | LIU Y, GAO P, ZHANG L Y, et al. Spatial heterogeneity distribution of soil total nitrogen and total phosphorus in the Yaoxiang watershed in a hilly area of Northern China based on geographic information system and geostatistics[J]. Ecology and Evolution, 2016, 6(19): 6807-6816 doi: 10.1002/ece3.2410 |
[8] | HU C, LI F, XIE Y H, et al. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China[J]. European Journal of Soil Science, 2019: ejss. 12821 DOI: 10.1111/ejss.12821 |
[9] | 胡敏, 向永生, 张智, 等. 恩施州耕地土壤pH近30年变化特征[J]. 应用生态学报, 2017, 28(4): 1289-1297 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201704028.htm HU M, XIANG Y S, ZHANG Z, et al. Variation characteristics of farmland soil pH in the past 30 years of Enshi Autonomous Prefecture, Hubei, China[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1289-1297 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201704028.htm |
[10] | 张维, 李启权, 王昌全, 等. 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例[J]. 长江流域资源与环境, 2015, 24(7): 1192-1199 doi: 10.11870/cjlyzyyhj201507016 ZHANG W, LI Q Q, WANG C Q, et al. Spatial variability of soil pH and its influence factors at a county scale in hilly area of mid-Sichuan basin-A case study from Renshou in Sichuan[J]. Resources and Environment in the Yangtze Basin, 2015, 24(7): 1192-1199 doi: 10.11870/cjlyzyyhj201507016 |
[11] | 刘付程, 史学正, 于东升. 近20年来太湖流域典型地区土壤酸度的时空变异特征[J]. 长江流域资源与环境, 2006, 15(6): 740-744 doi: 10.3969/j.issn.1004-8227.2006.06.012 LIU F C, SHI X Z, YU D S. Spatial and temporal variability of soil acidity in typical areas of Taihu Lake Region in the last 20 years[J]. Resources and Environment in the Yangtze Basin, 2006, 15(6): 740-744 doi: 10.3969/j.issn.1004-8227.2006.06.012 |
[12] | 李婷, 张世熔, 干文芝. 成都平原土壤pH的时空分布特征及影响因素研究[J]. 四川农业大学学报, 2006, 24(3): 313-318 doi: 10.3969/j.issn.1000-2650.2006.03.016 LI T, ZHANG S R, GAN W Z. Temporal-spatial distribution characteristics and influence factors of soil pH in the Chengdu Plain[J]. Journal of Sichuan Agricultural University, 2006, 24(3): 313-318 doi: 10.3969/j.issn.1000-2650.2006.03.016 |
[13] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 12-14 LU R K. Analitical Methods of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science Press, 1999: 12-14 |
[14] | 郭兆元. 陕西土壤[M]. 第1版. 北京: 科学出版社, 1992: 13-18 GUO Z Y. Soil in Shaanxi Province[M]. 1sted. Beijing: Science Press, 1992: 13-18 |
[15] | 雷宝佳. 农耕区土壤养分空间变异及其影响因素分析——以陕西周至县为例[D]. 西安: 西北大学, 2014 LEI B J. Analysis of spatial variation of soil nutrient and its influencing factors in farming area[D]. Xi'an: Northwest University, 2014 |
[16] | 梁涛, 高兴仁, 徐毅丹, 等. 重庆2个区土壤养分状况与海拔高度关系分析[J]. 南方农业, 2015, 9(1): 28-30 doi: 10.3969/j.issn.1673-890X.2015.01.016 LIANG T, GAO X R, XU Y D, et al. Relationship between soil nutrient status and altitude in two regions of Chongqing[J]. South China Agriculture, 2015, 9(1): 28-30 doi: 10.3969/j.issn.1673-890X.2015.01.016 |
[17] | 王艳艳, 赵伟明, 赵科理, 等. 海拔高度对山核桃林地土壤pH值和有效养分的影响[J]. 现代农业科技, 2012, (17): 224-225, 231 doi: 10.3969/j.issn.1007-5739.2012.17.140 WANG Y Y, ZHAO W M, ZHAO K L, et al. Effects of altitude on pH value and available nutrients in Chinese hickory orchards[J]. Modern Agricultural Sciences and Technology, 2012, (17): 224-225, 231 doi: 10.3969/j.issn.1007-5739.2012.17.140 |
[18] | 史利江, 郑丽波, 柳云龙, 等. 长三角地区农田土壤养分空间变异及养分综合评价[J]. 长江流域资源与环境, 2008, 17(6): 839-846 doi: 10.3969/j.issn.1004-8227.2008.06.004 SHI L J, ZHENG L B, LIU Y L, et al. Research on the characteristics of spatial variability of soil nutrients and general assessment in farm and in the Yangtze River Delta[J]. Resources and Environment in the Yangtze Basin, 2008, 17(6): 839-846 doi: 10.3969/j.issn.1004-8227.2008.06.004 |
[19] | 刘欣, 王红梅, 廖丽君. 黑龙江省巴彦县土壤养分空间变异规律与格局分析[J]. 土壤通报, 2011, 42(1): 86-90 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201101019.htm LIU X, WANG H M, LIAO L J. Spatial variability and pattern analysis of soil nutrients in Bayan of Heilongjiang Province[J]. Chinese Journal of Soil Science, 2011, 42(1): 86-90 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201101019.htm |
[20] | 徐仁扣, Coventry D R. 某些农业措施对土壤酸化的影响[J]. 农业环境保护, 2002, 21(5): 385-388 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200205000.htm XU R K, COVENTRY D R. Soil acidification as influenced by some agricultural practices[J]. Agro-Environmental Protection, 2002, 21(5): 385-388 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200205000.htm |
[21] | HUANG B, SHI X Z, YU D S, et al. Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China[J]. Agriculture, Ecosystems & Environment, 2006, 112(4): 391-402 http://europepmc.org/abstract/AGR/IND43795799 |
[22] | 廖柏寒, 蒋青. 我国酸雨中盐基离子的重要性[J]. 农业环境保护, 2001, 20(4): 254-256 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104019.htm LIAO B H, JIANG Q. Importance of base cations of acid precipitation in China[J]. Agro-Environmental Protection, 2001, 20(4): 254-256 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104019.htm |
[23] | 牛东玲, 王启基. 盐碱地治理研究进展[J]. 土壤通报, 2002, 33(6): 449-455 doi: 10.3321/j.issn:0564-3945.2002.06.014 NIU D L, WANG Q J. Research progress on saline-alkali field control[J]. Chinese Journal of Soil Science, 2002, 33(6): 449-455 doi: 10.3321/j.issn:0564-3945.2002.06.014 |
[24] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010 doi: 10.1126/science.1182570 |
[25] | 王延平, 程波, 于明, 等. 长期施用氯磷铵钾复混肥对土壤性质和作物产量品质的影响[J]. 辽宁农业科学, 2008, (5): 10-14 https://www.cnki.com.cn/Article/CJFDTOTAL-LNNY200805002.htm WANG Y P, CHENG B, YU M, et al. Effect of long-term application of cholo-ammoniopotassium phosphate compound fertilizer on soil property, crop yield and quality[J]. Liaoning Agricultural Sciences, 2008, (5): 10-14 https://www.cnki.com.cn/Article/CJFDTOTAL-LNNY200805002.htm |
[26] | 农业农村部耕地质量监测保护中心. 30年耕地质量演变规律[M]. 北京: 中国农业出版社, 2019 Center of Arable Land Quality Monitoring and Protection, Ministry of Agricultural and Rural Affairs. The Evolution of Cultivated Land Quality in Past 30 Years[M]. Beijing: China Agricultural Press, 2019 |
[27] | NOBLE A D, ZENNECK I, RANDALL P J. Leaf litter ash alkalinity and neutralisation of soil acidity[J]. Plant and Soil, 1996, 179(2): 293-302 doi: 10.1007/BF00009340 |
[28] | POCKNEE S, SUMNER M E. Cation and nitrogen contents of organic matter determine its soil liming potential[J]. Soil Science Society of America Journal, 1997, 61(1): 86-92 doi: 10.2136/sssaj1997.03615995006100010014x |
[29] | TANG C, YU Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation[J]. Plant and Soil, 1999, 215(1): 29-38 doi: 10.1023/A:1004704018912 |
[30] | YAN F, SCHUBERT S. Soil pH changes after application of plant shoot materials of Faba bean and wheat[J]. Plant and Soil, 2000, 220(1/2): 279-287 doi: 10.1023/A:1004712518406 |
[31] | 孟红旗, 吕家珑, 徐明岗, 等. 有机肥的碱度及其减缓土壤酸化的机制[J]. 植物营养与肥料学报, 2012, 18(5): 1153-1160 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201205015.htm MENG H Q, Lü J L, XU M G, et al. Alkalinity of organic manure and its mechanism for mitigating soil acidification[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1153-1160 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201205015.htm |