删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长期施氮肥对黄棕壤微生物生物性状的影响及其调控因素

本站小编 Free考研考试/2022-01-01

王静1, 2,,
王磊1,
刘耀斌1, 2,
章欢1, 3,
张辉1,
汪吉东1, 2, 3,
吴建燕4,
张永春1, 2,,
1.江苏省农业科学院农业资源与环境研究所/农业农村部江苏耕地保育科学观测站 南京 210014
2.南京农业大学资源与环境科学学院 南京 210095
3.江苏大学农业工程学院 镇江 212023
4.烟台泓源生物肥料有限公司 烟台 264000
基金项目: 江苏省自然科学基金项目BK20190259
国家甘薯产业技术体系项目CARS-10-B9
江苏省重点研发项目BE2019378
国家重点研发项目2018YFD0200505

详细信息
作者简介:王静, 研究方向为土壤微生物与元素循环。E-mail: 2018103149@njau.edu.cn
通讯作者:张永春, 研究方向为耕地保育等。E-mail: yczhang66@sina.com
中图分类号:S181

计量

文章访问数:133
HTML全文浏览量:65
PDF下载量:363
被引次数:0
出版历程

收稿日期:2020-07-18
录用日期:2020-09-28
刊出日期:2021-05-01

Effects and associated regulatory factors of the microbial characteristics of yellow-brown soils following long-term nitrogen fertilization

WANG Jing1, 2,,
WANG Lei1,
LIU Yaobin1, 2,
ZHANG Huan1, 3,
ZHANG Hui1,
WANG Jidong1, 2, 3,
WU Jianyan4,
ZHANG Yongchun1, 2,,
1. Institute of Agricultural Resources and Environments, Jiangsu Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Arable Land Conservation(Jiangsu), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
3. Institute of Agricultural Engineering, Jiangsu University, Zhenjiang 212023, China
4. Yantai Hongyuan Biological Fertilizer Co., LTD, Yantai 264000, China
Funds: the Natural Science Foundation of Jiangsu ProvinceBK20190259
the National Technology System of SweetPotato Industry of ChinaCARS-10-B9
the Key Research and Development Project of Jiangsu ProvinceBE2019378
the National KeyResearch and Development Project of China2018YFD0200505

More Information
Corresponding author:ZHANG Yongchun, E-mail: yczhang66@sina.com


摘要
HTML全文
(5)(1)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:基于黄棕壤小麦-甘薯轮作的长期定位试验,探究不同施氮处理土壤微生物生物量碳(MBC)、氮(MBN)含量和酶活性的变化及其潜在调控因子,为科学施氮提高土壤质量和改善土壤生态功能提供依据。试验选取始于2011年4个施氮处理:不施肥(CK)、不施氮肥(PK)、施化学氮肥(NPK)和化学氮肥配施有机肥(NPKM),调查两季作物收获后土壤MBC和MBN含量、酶活性及微生物碳氮利用效率的变化,并通过冗余分析(RDA)和结构方程模型(SEM)明确调控弱酸性黄棕壤中MBC和MBN变化的潜在因素。小麦和甘薯两季的结果表明:施氮肥降低了土壤MBC、MBN含量和蔗糖酶(SSC)、脲酶(SUE)活性,与NPK处理相比,NPKM处理增加了MBC、MBN含量和SSC、SUE活性。长期施用氮肥提高了土壤有机碳(SOC)和土壤养分[全氮(TN)和矿质态氮(MN)]含量,但施氮肥显著降低土壤pH以及微生物的碳氮利用效率。与小麦季相比,甘薯季土壤SOC和MN含量有所下降,而MBN含量和SSC活性有所升高。RDA和SEM结果表明,氮肥的施用强化了MBC与MBN、SSC与MBC以及SUE与MBC之间的关联性;不同施氮处理下土壤pH、有机碳、氮含量以及微生物的碳氮利用效率的变化直接或间接地影响土壤MBC、MBN含量和SSC、SUE活性,其中pH是调控土壤MBC变化的直接因素,而土壤SSC和SUE活性与MBC、MBN含量相互影响。长期施用氮肥降低了黄棕壤MBC、MBN含量和酶活性,化学氮肥配施有机肥有利于缓解生物性状的下降,土壤pH是影响MBC变化的主要因素,小麦-甘薯轮作中土壤微生物强烈的碳代谢过程利于增加MBN。
关键词:黄棕壤/
氮肥/
微生物生物量/
酶活性/
潜在调控因子
Abstract:Changes in soil microbial biomass C (MBC) and N (MBN) and their potential regulatory factors were investigated following long-term N fertilizer application since 2011 in a wheat-sweet potato rotation system. In the study, we aimed to provide a theoretical basis for the application of N fertilizers and to improve soil quality and ecological functions. Four N fertilization treatments were used: no fertilizer application (CK), no N-fertilizer application (PK), chemical N-fertilizer application (NPK), and chemical N-fertilizer combined with organic fertilizer application (NPKM). The soil MBC and MBN content, soil potential enzymes activities, and microbial C and N utilization efficiencies were investigated after the harvest of the two crops. Redundancy analysis and structural equation modeling were used to identify the potential biotic and abiotic factors that regulate MBC and MBN in the weakly acidic yellow-brown soils. The results showed that the contents of MBC and MBN and activities of sucrase and urease decreased in the N fertilization treatments. Compared with the NPK treatments, NPKM treatment increased the contents of MBC and MBN and the activities of sucrase and urease. Significantly higher contents of soil organic C (SOC), total N (TN), and mineral N (MN) were detected in the NPK and NPKM treated soils than in the CK and PK treated soils. However, long-term N fertilization significantly decreased the soil pH and efficiencies of microbial C and N utilization. Compared to the wheat season, the sweet potato season showed lower SOC and MN contents and higher MBN content and sucrase activity in the soils under all fertilization treatments. N fertilization strengthened the relationships between MBC and MBN and the sucrase and urease activities. Moreover, variations in the soil MBC and MBN contents and both sucrase and urease activities were regulated by soil pH, SOC and N content, and microbial C and N utilization efficiencies. Soil pH was the key factor driving the soil MBC content. Interactions were found between the activities of soil enzymes and the contents of MBC and MBN. In conclusion, long-term N fertilization decreased the MBC and MBN contents and the invertase and urease activities in yellow-brown soils. However, the combined application of chemical N fertilizers and organic fertilizer alleviated the decline in soil biological properties. The strong microbial C metabolism processes increased the MBN content in the wheat-sweet potato rotation system.
Key words:Yellow brown soil/
N fertilizers/
Microbial biomass/
Enzyme activities/
Potential regulatory factors

HTML全文


图1长期不同施氮处理的土壤微生物生物量碳氮含量及其比例
CK: 不施肥; PK: 不施氮肥; NPK: 施化学氮肥; NPKM: 化学氮肥配施有机肥。S表示作物季, T表示施肥处理。不同字母表示不同作物季不同施肥处理在P < 0.05 (Tukey’s-b test)水平差异显著, 小麦季用小写字母表示, 甘薯季用大写字母表示。*和**分别表示在P < 0.05和P < 0.01水平影响显著。
Figure1.Contents of soil microbial biomass C and N and their ratios under different long-term nitrogen fertilization treatments
CK: no fertilizer, control; PK: no N fertilizer; NPK: chemical N fertilizers; NPKM: chemical N fertilizers combined with organic fertilizers; S indicates crop season, T indicates fertilization treatment. Different lowercase letters and capital letters mean significant differences (Tukey’s-b test, P < 0.05) among different fertilization treatments in wheat and sweet potato seasons, respectively. * and ** indicate significant effects at P < 0.05 and P < 0.01, respectively.


下载: 全尺寸图片幻灯片


图2长期不同施氮处理的土壤蔗糖酶和脲酶活性及其比例
CK: 不施肥; PK: 不施氮肥; NPK: 施化学氮肥; NPKM: 化学氮肥配施有机肥。S表示作物季, T表示施肥处理。不同字母表示不同作物季不同施肥处理在P < 0.05(Tukey’s-b test)水平上差异显著, 小麦季用小写字母表示, 甘薯季用大写字母表示。*和**分别表示在P < 0.05和P < 0.01水平影响显著。
Figure2.Activities of soil invertase and soil urease and their ratios under different nitrogen fertilization treatments
CK: no fertilizer, control; PK: no N fertilizer; NPK: chemical N fertilizers; NPKM: chemical N fertilizers combined with organic fertilizers; S indicates crop season, T indicates fertilization treatment. Different lowercase letters and capital letters mean significant differences (Tukey’s-b test, P < 0.05) among different fertilization treatments in wheat and sweet potato seasons, respectively. * and ** indicate significant effects at P < 0.05 and P < 0.01, respectively.


下载: 全尺寸图片幻灯片


图3施氮和不施氮处理的土壤微生物生物量碳、氮含量与蔗糖酶、脲酶活性的关系
Figure3.Relationships of soil microbial biomass carbon (MBC) and nitrogen (MBN) contents, invertase and urease activities under treatments with and without N fertilizers


下载: 全尺寸图片幻灯片


图4土壤微生物生物量碳氮(MBC、MBN)含量与酶活性变化的潜在影响因素
CK: 不施肥; PK: 不施氮肥; NPK: 施化学氮肥; NPKM: 化学氮肥配施有机肥。SOC: 土壤有机碳含量; TN: 土壤全氮含量;
Figure4.Potential impact factors of soil microbial biomass carbon (MBC) and nitrogen (MBN) contents, invertase (SUE) and urease (SSC) activities
CK: no fertilizer, control; PK: no N fertilizer; NPK: chemical N fertilizers; NPKM: chemical N fertilizers combined with organic fertilizers. SOC: soil organic carbon content; TN: total nitrogen content.


下载: 全尺寸图片幻灯片


图5土壤微生物生物量碳氮含量和酶活性与土壤理化性质的关系
图中MN为土壤矿质态氮, SOC为土壤有机碳, TN为土壤全氮, SUE为土壤脲酶, SSC为土壤蔗糖酶, MBC为土壤微生物生物量碳, MBN为土壤微生物生物量氮, R2为标准化回归权重, CMIN/DF、P值以及RMSEA为评价模型配适度的参数。左图中实线表示正效应, 虚线表示负效应, 灰色表示相关性在0 < P < 0.05水平显著相关, 黑色表示不显著, 线型粗细表示路径系数大小。*、**和***分别表示相关性在P < 0.05、P < 0.01和P < 0.001水平显著。
Figure5.SEM (structural equation model) showing the relationships between soil microbial biomass carbon and nitrogen contents, enzyme activities and physicochemical properties
In figure, MN is soil mineral nitrogen, SOC is soil organic carbon, TN is soil total nitrogen, SUE is soil urease, SSC is soil invertase, MBC is soil microbial biomass carbon, MBN is soil microbial biomass nitrogen. R2 is standardized regression weights, CMIN/DF, P and RMSEA are critical parameters of model fit summary. In left figure, the solid line indicates a positive correlation, the dashed line indicates a negative correlation, grey indicates that the correlation is significant at 0 < P < 0.05 level, black indicates that the correlation is not significant, and the line thickness indicates the path coefficient size. *, ** and *** indicate significant correlation at P < 0.05, P < 0.01 and P < 0.001, respectively.


下载: 全尺寸图片幻灯片

表1长期不同施氮处理的土壤化学性质及微生物的碳、氮利用效率
Table1.Chemical properties, microbial biomass carbon and nitrogen utilization efficiencies under different long-term nitrogen fertilization treatments
作物季Crop season(S)处理Treatment(T)pH全氮Totalnitrogen(g?kg?1)有机碳Organiccarbon(g?kg?1)易氧化有机碳Readily oxidized organic carbon(g?kg?1)矿质态氮Mineralnitrogen(mg?kg?1)微生物利用碳效率Microbial carbon utilization efficiency(%)微生物利用氮效率Microbial nitrogen utilization efficiency(%)
小麦季Wheat seasonCK6.33±0.10a0.73±0.02b7.41±0.36c2.75± 0.10b38.19±1.11b2.11±0.07a2.35±0.30a
PK6.34±0.06a0.79±0.08b7.28±0.32c2.75± 0.10b39.44±5.10b2.67±0.25a2.24±0.43a
NPK4.81±0.14c0.89±0.16b9.22±0.16b3.28±0.25a78.94±5.81a1.05±0.19b0.62±0.08b
NPKM5.37±0.06b1.17±0.05a10.11±0.09a3.63±0.16a81.61±12.62a1.12±0.17b0.85±0.09b
甘薯季Sweet potatoseasonCK6.53±0.04A0.85±0.02C6.77±0.06D0.91±0.20B19.67±2.55C2.70±0.25A3.34±0.83A
PK6.08±0.02B0.87±0.05C7.23±0.11C1.31±0.26B17.86±3.05C2.38±0.12A3.09±0.41AB
NPK4.87±0.05D1.14±0.03B9.06±0.14B3.87±0.26A70.00±4.07A1.04±0.08B1.65±0.32B
NPKM5.38±0.04C1.20±0.01A9.84±0.06A3.69±0.45A48.61±2.90B1.68±0.21B2.04±0.67AB
方差分析Analysis of variance
TF605.786**43.360**343.963**94.695**105.724**98.675**20.605**
SF0.00318.439**13.605**42.773**77.336**8.296**28.933**
T?SF10.396**2.7232.81033.517**4.519*8.552**0.135
CK: 不施肥; PK: 不施氮肥; NPK: 施化学氮肥; NPKM: 化学氮肥配施有机肥。S表示作物季, T表示施肥处理。不同字母表示不同作物季不同施肥处理在P < 0.05(Tukey’s-b test)水平上差异显著, 小麦季用小写字母表示, 甘薯季用大写字母表示。*和**分别表示在P < 0.05和P < 0.01水平影响显著。CK: no fertilizer, control; PK: no N fertilizer; NPK: chemical N fertilizers; NPKM: chemical N fertilizers combined with organic fertilizers; S indicates crop season, T indicates fertilization treatment. Different lowercase letters and capital letters mean significant differences (Tukey’s-b test, P < 0.05) among different fertilization treatments in wheat and sweet potato seasons, respectively. * and ** indicate significant effects at P < 0.05 and P < 0.01, respectively.


下载: 导出CSV

参考文献(47)
[1]赵秉强. 传统化肥增效改性提升产品性能与功能[J]. 植物营养与肥料学报, 2016, 22(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201601002.htm
ZHAO B Q. Modification of conventional fertilizers for enhanced property and function[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201601002.htm
[2]IDKOWIAK M. The effect of tillage system and nitrogen fertilization on changes in physical properties of the soil for winter triticale[J]. Journal of Bacteriology, 2004, 181(18): 5852-5854
[3]MIAO Y X, STEWART B A, ZHANG F S. Long-term experiments for sustainable nutrient management in China. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 397-414 doi: 10.1051/agro/2010034
[4]戚瑞敏, 赵秉强, 李娟, 等. 添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J]. 农业工程学报, 2016, 32(S2): 118-127 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2016S2016.htm
QI R M, ZHAO B Q, LI J, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 118-127 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2016S2016.htm
[5]贺美, 王立刚, 朱平, 等. 长期定位施肥下黑土碳排放特征及其碳库组分与酶活性变化[J]. 生态学报, 2017, 37(19): 6379-6389 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201719009.htm
HE M, WANG L G, ZHU P, et al. Carbon emission characteristics, carbon library components, and enzyme activity under long-term fertilization conditions of black soil[J]. Acta Ecologica Sinica, 2017, 37(19): 6379-6389 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201719009.htm
[6]温延臣, 李燕青, 袁亮, 等. 长期不同施肥制度土壤肥力特征综合评价方法[J]. 农业工程学报, 2015, 31(7): 91-99 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201507014.htm
WEN Y C, LI Y Q, YUAN L, et al. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 91-99 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201507014.htm
[7]KIBOI M N, NGETICH K F, MUGENDI D N, et al. Microbial biomass and acid phosphomonoesterase activity in soils of the Central Highlands of Kenya[J]. Geoderma Regional, 2018, 15: e00193
[8]潘根兴, 陆海飞, 李恋卿, 等. 土壤碳固定与生物活性: 面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201508011.htm
PAN G X, LU H F, LI L Q, et al. Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201508011.htm
[9]TRASAR-CEPEDA C, LEIRóS M C, GIL-SOTRES F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality[J]. Soil Biology and Biochemistry, 2008, 40(9): 2146-2155 doi: 10.1016/j.soilbio.2008.03.015
[10]BANDICK A K, DICK R P. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry, 1999, 31(11): 1471-1479 doi: 10.1016/S0038-0717(99)00051-6
[11]吴金水, 葛体达, 胡亚军. 稻田土壤关键元素的生物地球化学耦合过程及其微生物调控机制[J]. 生态学报, 2015, 35(20): 6626-6634 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520007.htm
WU J S, GE T D, HU Y J. A review on the coupling of bio-geochemical process for key elements and microbial regulation mechanisms in paddy rice ecosystems[J]. Acta Ecologica Sinica, 2015, 35(20): 6626-6634 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520007.htm
[12]高扬, 徐亚娟, 陈维梁, 等. 紫色土坡耕地C、N与微生物C、N变化及其耦合特征[J]. 环境科学学报, 2014, 34(7): 1794-1800 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201407021.htm
GAO Y, XU Y J, CHEN W L, et al. Changes and coupling of C and N in hillslope cropland of purple soil and microbial biomass[J]. Acta Scientiae Circumstantiae, 2014, 34(7): 1794-1800 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201407021.htm
[13]POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry, 1987, 19(2): 159-164 doi: 10.1016/0038-0717(87)90076-9
[14]GEISSELER D, SCOW K M. Long-term effects of mineral fertilizers on soil microorganisms-A review[J]. Soil Biology and Biochemistry, 2014, 75: 54-63 doi: 10.1016/j.soilbio.2014.03.023
[15]何甜甜, 王静, 符云鹏, 等. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响[J]. 环境科学. https://doi.org/10.13227/j.hjkx.202004196
HE T T, WANG J, FU Y P, et al. Effects of adding straw and biochar with equal carbon content on soil respiration and microbial biomass carbon and nitrogen[J]. Environmental Science. https://doi.org/10.13227/j.hjkx.202004196
[16]王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征[J]. 生态学报, 2018, 38(11): 3848-3858 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201811012.htm
WANG C J, WANG Q Q, XU H, et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland[J]. Acta Ecologica Sinica, 2018, 38(11): 3848-3858 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201811012.htm
[17]陈晓光, 李洪民, 张爱君, 等. 氮素形态对甘薯土壤微生物及酶活性的影响[J]. 西南农业学报, 2017, 30(3): 619-623 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201703024.htm
CHEN X G, LI H M, ZHANG A J, et al. Effect of nitrogen forms on soil microbes and soil enzyme activities in sweet potato yield[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(3): 619-623 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201703024.htm
[18]REN F L, SUN N, XU M, et al. Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis[J]. Soil and Tillage Research, 2019, 194: 104291 doi: 10.1016/j.still.2019.06.008
[19]MANGALASSERY S, KALAIVANAN D, PHILIP P S. Effect of inorganic fertilisers and organic amendments on soil aggregation and biochemical characteristics in a weathered tropical soil[J]. Soil and Tillage Research, 2019, 187: 144-151 doi: 10.1016/j.still.2018.12.008
[20]GEISSELER D, LINQUIST B A, LAZICKI P A. Effect of fertilization on soil microorganisms in paddy rice systems-A meta-analysis[J]. Soil and Tillage Research, 2017, 115: 452-460
[21]李炎龙, 刘梓雅, 严景, 等. 华北平原典型农田土壤微生物生物量碳氮磷库的县域分布特征——以河北省曲周县为例[J]. 土壤学报, 2021, 58(1): 235-245
LI Y L, LIU Z Y, YAN J, et al. Spatial distribution of microbial biomass carbon, nitrogen and phosphorus pools in typical farmland soils in North China Plain-A case study of Quzhou County[J]. Acta Pedologica Sinica, 2021, 58(1): 235-245
[22]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
[23]LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155(1): 399-402
[24]JOERGENSEN R G. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value[J]. Soil Biology and Biochemistry, 1996, 28(1): 25-31 doi: 10.1016/0038-0717(95)00102-6
[25]JOERGENSEN R G, MUELLER T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value[J]. Soil Biology and Biochemistry, 1996, 28(1): 33-37 doi: 10.1016/0038-0717(95)00101-8
[26]LIU E K, YAN C R, MEI X R, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158(3/4): 173-180
[27]关松荫. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986
GUAN S Y. Soil Enzyme and its Research Methods[M]. Beijing: Agriculture Press, 1986
[28]王冰冰, 曲来叶, 马克明, 等. 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征[J]. 生态学报, 2015, 35(18): 6078-6088 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201518020.htm
WANG B B, QU L Y, MA K M, et al. Patterns of ecoenzymatic stoichiometry in the dominant shrubs in the semi-arid Upper Minjiang River Valley[J]. Acta Ecologica Sinica, 2015, 35(18): 6078-6088 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201518020.htm
[29]许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7): 2445-2454 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201807042.htm
XU M P, REN C J, ZHANG W, et al. Responses mechanism of C: N: P stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201807042.htm
[30]周晓阳, 徐明岗, 周世伟, 等. 长期施肥下我国南方典型农田土壤的酸化特征[J]. 植物营养与肥料学报, 2015, 21(6): 1615-1621 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201506030.htm
ZHOU X Y, XU M G, ZHOU S W, et al. Soil acidification characteristics in southern China's croplands under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1615-1621 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201506030.htm
[31]邢鹏飞, 高圣超, 马鸣超, 等. 有机肥替代部分无机肥对华北农田土壤理化特性、酶活性及作物产量的影响[J]. 中国土壤与肥料, 2016, (3): 98-104 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201603016.htm
XING P F, GAO S C, MA M C, et al. Impact of organic manure supplement chemical fertilizer partially on soil nutrition, enzyme activity and crop yield in the north China plain[J]. Soil and Fertilizer Sciences in China, 2016, (3): 98-104 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201603016.htm
[32]沈冰涛, 张孝倩, 陈红, 等. 有机肥替代化肥对小麦产量及土壤养分和酶活性的影响[J]. 长江大学学报: 自然科学版, 2019, 16(5): 46-52 doi: 10.3969/j.issn.1673-1409.2019.05.011
SHEN B T, ZHANG X Q, CHEN H, et al. Effect of substituting organic fertilizer for chemical fertilizer on wheat yield and soil nutrient and enzyme activity[J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(5): 46-52 doi: 10.3969/j.issn.1673-1409.2019.05.011
[33]田伟, 李刚, 陈秋会, 等. 等氮条件下化学肥料与有机肥连续大量施用下的环境风险[J]. 生态与农村环境学报, 2017, 33(5): 440-445 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201705008.htm
TIAN W, LI G, CHEN Q H, et al. Environmental risk caused by successive and heavy application of mineral fertilizer and compost with the same amount of nitrogen applied[J], Journal of Ecology and Rural Environment, 2017, 33(5): 440-445 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201705008.htm
[34]唐海明, 李超, 肖小平, 等. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响[J]. 应用生态学报, 2019, 30(4): 1335-1343 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201904031.htm
TANG H M, LI C, XIAO X P, et al. Effects of different manure nitrogen input ratio on rhizosphere soil microbial biomass carbon, nitrogen and microbial quotient in double-cropping rice field[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1335-1343 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201904031.htm
[35]LIU C J, GONG X W, DANG K, et al. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management[J]. Environmental Research, 2020, 184: 109261 doi: 10.1016/j.envres.2020.109261
[36]何亚婷, 齐玉春, 董云社, 等. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201008015.htm
HE Y T, QI Y C, DONG Y S, et al. Advances in the influence of external nitrogen input on soil microbiological characteristics of grassland ecosystem[J]. Advances in Earth Sciences, 2010, 25(8): 877-885 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201008015.htm
[37]罗献宝, 梁瑞标, 王亚欣. 森林表层土壤微生物碳氮库对大气氮沉降增加的响应[J]. 生态环境学报, 2014, 23(3): 365-370 doi: 10.3969/j.issn.1674-5906.2014.03.001
LUO X B, LIANG R B, WANG Y X. Response of soil microbial carbon and nitrogen pools to increasing atmospheric nitrogen deposition in forest surface soil[J]. Ecology and Environmental Sciences, 2014, 23(3): 365-370 doi: 10.3969/j.issn.1674-5906.2014.03.001
[38]STONE M M, DEFOREST J L, PLANTE A F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory[J]. Soil Biology and Biochemistry, 2014, 75: 237-247 doi: 10.1016/j.soilbio.2014.04.017
[39]马亚娟, 徐福利, 王渭玲, 等. 氮磷提高华北落叶松人工林地土壤养分和酶活性的作用[J]. 植物营养与肥料学报, 2015, 21(3): 664-674 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201503013.htm
MA Y J, XU F L, WANG W L, et al. Increase of soil nutrients and enzymatic activity by adding nitrogen and phosphorus to Larix principis-rupprechtii plantation[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 664-674 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201503013.htm
[40]郭天财, 宋晓, 马冬云, 等. 氮素营养水平对小麦根际微生物及土壤酶活性的影响[J]. 水土保持学报, 2006, 20(3): 129-131 doi: 10.3321/j.issn:1009-2242.2006.03.031
GUO T C, SONG X, MA D Y, et al. Effect of nitrogen fertilizer on soil enzymatic activity and rhizosphere microorganisms of wheat[J]. Journal of Soil and Water Conservation, 2006, 20(3): 129-131 doi: 10.3321/j.issn:1009-2242.2006.03.031
[41]严君, 韩晓增, 王树起, 等. 不同氮素形态对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(2): 341-347 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201002013.htm
YAN J, HAN X Z, WANG S Q, et al. Effects of different nitrogen forms on microbial quantity and enzymes activities in soybean field[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 341-347 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201002013.htm
[42]马宗斌, 熊淑萍, 何建国, 等. 氮素形态对专用小麦中后期根际土壤微生物和酶活性的影响[J]. 生态学报, 2008, 28(4): 1544-1551 doi: 10.3321/j.issn:1000-0933.2008.04.022
MA Z B, XIONG S P, HE J G, et al. Effects of nitrogen forms on rhizosphere microorganisms and soil enzyme activity under cultivation of contrasting wheat cultivars during booting and grain filling period[J]. Acta Ecologica Sinica, 2008, 28(4): 1544-1551. doi: 10.3321/j.issn:1000-0933.2008.04.022
[43]黄海莉, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔土壤酶化学计量特征[J]. 应用生态学报, 2019, 30(11): 3689-3696 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201911008.htm
HUANG H L, ZONG N, HE N P, et al. Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3689-3696 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201911008.htm
[44]SAGGAR S, YEATES G W, SHEPHERD T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand[J]. Soil and Tillage Research, 2001, 58(1/2): 55-68
[45]李娟, 赵秉强, 李秀英, 等. 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J]. 中国农业科学, 2008, 41(1): 144-152 doi: 10.3864/j.issn.0578-1752.2008.01.019
LI J, ZHAO B Q, LI X Y, et al. Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility[J]. Scientia Agricultura Sinica, 2008, 41(1): 144-152 doi: 10.3864/j.issn.0578-1752.2008.01.019
[46]FAN J L, XIAO J, LIU D Y, et al. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study[J]. Science of the Total Environment, 2017, 592: 206-214 doi: 10.1016/j.scitotenv.2017.03.060
[47]郭俊娒, 姜慧敏, 张建峰, 等. 玉米秸秆炭还田对黑土土壤肥力特性和氮素农学效应的影响[J]. 植物营养与肥料学报, 2016, 22(1): 67-75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201601009.htm
GUO J M, JIANG H M, ZHANG J F, et al. Effects of maize straw derived biochar on the soil fertility and nitrogen agronomic responses in black soil[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 67-75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201601009.htm

相关话题/土壤 微生物 化学 生态 作物